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Commercial and Transportation Applications
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• Efficiency
– What are the traffic bottlenecks?
– How can we coordinate arrival schedules to minimize 

congestion?

• Marketing
– How do in-store marketing campaigns effect behavior?
– Are shoppers stopping at the sales booth?

• Loss prevention
– How can we detect customer theft?
– How can we detect employee theft?



Security Applications

• Threat detection
– Unauthorized access

– Violence

– Theft

– Tailing

– Loitering

– Sudden widespread panic

• Recognition
– Is this person authorized?

– Is this a “wanted” person?

• Activity understanding
– What are the common 

traffic patterns?

– How can we deploy 
security resources more 
effectively?
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Applications & Typical Scenes
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Automatic Site Monitoring Pipeline
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Feature 
Points



Detection

Tracking

Analysis

Automatic Site Monitoring Pipeline

7

• Background subtraction
– Stauffer and Grimson, CVPR 1999.

– Boykov, Veksler, and Zabih, PAMI 2001.

– Mittal and Paragios, CVPR 2004.

– Sheikh and Shah, CVPR 2005.

– Dalley, Migdal, and Grimson, WACV 2008.

• Feature points
– Shi and Tomasi, CVPR 1994.

• Strong models
– Gavrila, ECCV 2000.

– Leibe, Seeman, and Schiele, CVPR 2005.

– Dalal and Triggs, CVPR 2005.

– Zhu, Yeh, Cheng, and Avidan, CVPR 2006.

– Wojek, Dorkó, Schulz, and Schiele, DAGM 2008.



• Kalman filter
• Meanshift
• …

Automatic Site Monitoring Pipeline
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Detection

Tracking

Analysis

Time windowing: for rendering purposes only



Detection

Tracking
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• Identifying individual people
– Phillips et al.  ICPR 2002.

– Sundaresan, Roy-Chowdhury, and Chellapa, ICIP 2003.

– Lee, Dalley, and Tieu, ICCV 2003.

– Veeraraghavan, Roy-Chowdhury, and Chellappa, PAMI
2005.

• Recognize events (loitering, theft, etc.)
– Ivanonv and Bobick, PAMI 2000.

– Vu, Bremond, and Thonnat, ECAI 2002.

– PETS 2006 and PETS 2007 workshops (many papers)

• Dalley, Wang, and Grimson, PETS 2007.

• Model flow patterns and site usage
– Stauffer, CVPR 1999.

– Andrade, Blunsden, and Fisher, ICPR 2006.

– Wang, Ma, and Grimson, CVPR 2007.

– Wang et al., CVPR 2008.



Thesis Contributions

• Background subtraction
– Waving trees, rippling water 5.5% drop in false positive rate

• Large-scale monitoring
– Clustering of path segments 
– Dalal and Triggs on a GPU Up to 76x faster than CPU

• Gait recognition
– Model-based silhouettes 6%—44% boost in 

recognition rates

• Event detection
– Integrated detection and tracking Only system to complete

the PETS 2007 challenge
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This talk… 
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…

Detections

Site Activity Model

High-res Video



Outline

• Motivation

• Activity model overview

• Weak model detectors

• Strong model detector

• Data parallel implementation

• Summary
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Outline

• Activity model overview

• Weak model detectors

• Strong model detector

• Data parallel implementation
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High Level

• Goal

– Cluster trajectories to find common paths

• Approach

– Infinite mixture model
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Hierarchical Dirichlet Processes (HDPs)
• HDPs: Teh JASA 2006

• w/ trajectories: Wang CVPR 2008
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Outline

• Activity model overview

• Weak model detectors

– Background subtraction

– Feature point detection

• Strong model detector

• Data parallel implementation
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Background Subtraction
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Background Subtraction:

Precision-Recall
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Background Subtraction:

Problems
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Split blobs, missing people:
glare, too frequent foreground

Merged blobs:
shadows, crowds



Alternative:
Shi & Tomasi Feature Point Detection
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true positives false positives false negatives

true negatives don’t care



Improved Recall, but Low Precision
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Clustering Feature Point Trajectories
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Perplexity 
(cluster uncertainty given observed location)
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perplexity = 1.5



Crowded bidirectional traffic
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Most Tracks Just Going East and West
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A Few Bad Tracks Couple East and West
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Normal westbound track

Normal eastbound track

Bad track #1

Bad track #2

Eastbound & 
#1 associated

Westbound & #2 
associated

#1 & #2 
associated

Track starting point



Outline

• Activity model overview

• Weak model detectors

• Strong model detector

– Dalal and Triggs' HOG detector

– Classification results

– Activity modeling results

• Data parallel implementation
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Dalal & Triggs HOG Features
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Sufficient Precision and Recall
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Better Perplexity
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Point Tracking
mean = 1.5

median = 1.1

Pedestrian Detector Tracks
mean = 2.6

median = 2.4



Selected Clusters
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Breaking up 
Merged Paths
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…

More permissive priors 
Can separate the 6 paths 
from west to escalators



Some Directional Degeneracies Remain
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Cause: tracking errors

Cause: loitering and meandering



Outline

• Activity model overview

• Weak model detectors

• Strong model detector

• Data parallel implementation

– Motivation

– GPU Intuition

– Our design

– Speedups

34



Good Results, but Too Slow

35

years compute 8  hours 40 



  videoof
sec.

frames
30

frame

.seccompute
60

days compute 75   videoofhour  1
sec.

frames
30

frame

.seccompute
60

…a little faster would be nice.

Our data:
• 40 hours
• 1920×1080 frames 

• 6.75× the pixels/frame w.r.t. 640×480
• 27× the pixels/frame w.r.t. 320×240

• progressive scan



CPU Characteristics

• One thing fast
– High clock speed

– Pipelining

• Complex control flow
– Cache

– Branch prediction

– Speculation

– …
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• Task parallel: 
a few different things 
fast
– Multicore

– Hyperthreading

– Sophisticated caches

• Data parallel:
Same instruction on a 
few data items
– MMX, SSE, etc.



GPU Characteristics

• Same instruction, many 
data items
– 240 “cores” or more

• Very high memory 
bandwidth 
– 10× a CPU’s

• Typical speedups: 
– 10×—100×

• Programming
– Style: C/C++

– Optimization effort ≈ 
C++ & assembly mix

• Slow if…
– Insufficiently parallel code

– Random memory access

– Branching
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Intuition: What Works Well on a GPU

• In general

– 10<<<MANY>>> independent inputs and/or outputs

– Localized memory access

• Typical applications

– Filterbanks

– Sliding window algorithms

– Code that’s easy to vectorize in Matlab
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Dalal & Triggs HOG Features
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Our CUDA Pipeline
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for each

frame

for all scales

Read Frame
memcpy to 

GPU

Crop and 

Resample

Normalized Block 

Descriptors

Linear SVM 

Classification

memcpy to 

CPU

Meanshift
Non-maxima 

Suppression

Kalman 

Tracking
Output

Gamma Correction 

and Gradients

Data 

Reordering
Decode Frame

Runs on CPU (1 thread)

Runs on GPU Possible on GPU

CPU ↔ GPU transfers



CPU vs. GPU Times:
Results from a Simplified Profiling Application

Processing Step
CPU 

Implementation
GPU 

Implementation
GPU 

Speedup

Read input (CPU) 0% 17%

GPU resizer setup 5%

Resize 4% 11% 24.3×

Gradients 24% 9% 164.0×

Normalized block descriptors 57% 35% 97.7×

Window classification 14% 8% 100.6×

Cleanup 0% 12% 0.5×

Detection (CPU) 0% 4% 1.1×

TOTAL 23 seconds 0.4 seconds 58.8×
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GPU Speedup Results

• Our Implementation
– 58.8× to 76× speedup (vs. optimized CPU-only)
– Current bottlenecks

• Video decoding on the CPU (17%)
• Block descriptors (35%)
• Bookkeeping & memory transfers (17%)

• Wojek, Dorkó, Schulz, Schiele [DAGM 2008]
– 30× speedup
– Optimized for the previous GPU architecture
– Less efficient usage of memory bandwidth
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Summary

• Fast HOG implementation

– 58.8× to 76× speedup

• Better clustering of trajectory flows

– Qualitative improvements

– Perplexity
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Future Work

• Scale to true HD real-time 
– Multithreaded CPU

– Multiple GPUs

– Asynchronous data transfers

– More computation to GPUs

• Better HOG training
– Explicit occlusion handling

– Add video features 
(a la Dalal and Triggs 2006)

• Alternative detectors
– Boosted cascade on GPUs

(CPU: Avidan; Viola & Jones)

• Activity modeling
– Learn long-term flow trends

– Temporal dependencies 
(via HMMs)

• Integrate with other 
technologies in this 
thesis…
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Appearance models 
for recognition

Multimodal tracking
for event detection

Other Potential Applications
for Fast and Robust Pedestrian Detection
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Abandoned 
Luggage!
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Detection
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Analysis

Automatic Site Monitoring Pipeline
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• Background subtraction

– Stauffer and Grimson. Adaptive Background Mixture Models for Real-time 
Tracking.  CVPR. 1999.

– Boykov, Veksler, and Zabih.  Fast Approximate Energy Minimization via Graph 
Cuts.  PAMI. 2001.

– Mittal and Paragios.  Motion-based Background Subtraction using Adaptive 
Kernel Density Estimation.  CVPR. 2004.
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2005.

– Sheikh and Shah.  Bayesian Object Detection in Dynamic Scenes.  CVPR.  2005.

– Dalley, Migdal, and Grimson.  Background Subtraction for Temporally 
Irregular Dynamic Textures.  WACV.  2008.

• Feature points

– Shi and Tomasi.  Good Features to Track.  CVPR. 1994.

• Strong models

– Gavrila.  Pedestrian Detection from a Moving Vehicle.  ECCV. 2000.

– Leibe, Seeman, and Schiele.  Pedestrian Detection in Crowded Scenes. CVPR. 
2005.

– Dalal and Triggs.  Histograms of Oriented Gradients for Human Detection.  CVPR.  
2005.

– Zhu, Yeh, Cheng, and Avidan.  Fast Human Detection using a Cascade of 
Histograms of Oriented Gradients.  CVPR.  2006.
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Detection
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• Identifying individual people
– Sinha, Balas, Ostrovsky, and Russell.  Face Recognition by Humans: Nineteen Results All 

Computer Vision Researcher Should Know About.  IEEE. 2006.
– Phillips et al.  The Gait Identification Challenge Problem: Data Sets and Baseline 

Algorithm.  ICPR. 2002.
– Sundaresan, Roy-Chowdhury, and Chellapa.  A Hidden Markov Model Based Framework 

for Recognition of Humans from Gait Sequences.  ICIP.  2003.
– Lee, Dalley, and Tieu.  Learning Pedestrian Models for Silhouette Refinement.  ICCV.  

2003.
– Veeraraghavan, Roy-Chowdhury, and Chellappa.  Matching Shape Sequences in Video 

with Applications in Human Movement Analysis.  PAMI.  2005.

• Recognize events (loitering, theft, etc.)
– Ivanonv and Bobick.  Recognition of Visual Activities and Interactions by Stochastic 

Parsing.  PAMI. 2000.
– Vu, Bremond, and Thonnat .  Temporal Constraints for Video Interpretation.  ECAI.  2002.
– Francois et al. VERL: An Ontology Framework for Representing and Annotating Video 

Events.  Multimedia.  2005.
– PETS 2006 and PETS 2007 workshops (many papers)
– Dalley, Wang, and Grimson.  Event Detection using an Attention-based Tracker.  

PETS. 2007.

• Model flow patterns and site usage
– Stauffer.  Automatic Hierarchical Classification using Time-based Co-occurrences.  CVPR.  

1999.
– Andrade, Blunsden, and Fisher. Modeling Crowd Scenes for Event Detection.  ICPR.  2006.
– Wang, Ma, and Grimson.  Unsupervised Activity Perception by Hierarchical Bayesian 

Models.  CVPR.  2007.
– Wang et al. Trajectory Analysis and Semantic Region Modeling using a Nonparametric 

Bayesian Model.  CVPR.  2008.



Same Quality
(minor differences due to training tweaks)
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Dalal & Triggs’ CPU Implementation
Our GPU Implementation

Due to some minor 
training artifacts



A Learned Classification Boundary (rotated)
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Detections on One Frame

52

gege



ROC Curves

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

o
si

ti
v

e 
R

at
e

 

 

pedestrian detection: all non-masked

corner detection: all non-masked

backround subtraction: all non-masked

chance classifier
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Training Set Influence
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MRF equations[MG05]
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Grid of observed pixel colors

Grid of unknown FG/BG labels



Detections before Global Optimization
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Sample Marginal of Observations
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Our Data
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Foreground Likelihood
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Training Data
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Our CUDA Pipeline: 
Percent Time per Module
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for each

frame

for all scales

Read Frame
memcpy to 

GPU

Crop and 

Resample

Normalized Block 

Descriptors

Linear SVM 

Classification

memcpy to 

CPU

Meanshift
Non-maxima 

Suppression

Kalman 

Tracking
Output

Gamma Correction 

and Gradients

Data 

Reordering
Decode Frame

0%/17% 4%/11% - /  5%
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CPU vs. GPU Times:
Results from a Simplified Profiling Application

Processing Step
Time 

(CPU Impl.)
Time 

(GPU Impl.)
GPU Impl. 
Speedup

Read input (CPU) 68.0 ms (0%) 68.0 ms (17%)

GPU resizer setup 18.1 ms (5%)

Resize 1,045.8 ms (4%) 43.0 ms (11%) 24.3×

Gradients 5,636.2 ms (24%) 34.4 ms (9%) 164.0×

Normalized block 
descriptors

13,412.3 ms (57%) 137.2 ms (35%) 97.7×

Window classification 3,159.1 ms (14%) 31.4 ms (8%) 100.6×

Cleanup 23.8 ms (0%) 45.5 ms (12%) 0.5×

Detection (CPU) 16.2 ms (0%) 15.0 ms ( 4%) 1.1×

TOTAL 23,082.4 ms 392.3 ms 58.8×
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Suppressing Spurious Detections
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Results with Mittal & Paragios Traffic 
Clip

Key:

• bboxes from 
ground truth
– True 

positive

– False 
positive

– False 
negative
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Ground truth Mittal & Paragios (2 TP, 0 FP, 1 FN)

MoG (3 TP, 3 FP, 0 FN) Ours (3 TP, 0 FP, 0 FN)
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Pixels Affected by a Given
Mixture Component

Our Model

• Mixture of Gaussians (MoG)

Standard MoG

Ours

p(cij©) /
P

j2Ni wjN (ci;¹j ;§j)

ci the observed color at pixel i

© the model fwj ; ¹j ;§jgj

Ni neighborhood of pixel i

p(cij©) /
P

j2Ni wjN (ci;¹j ;§j)

ci the observed color at pixel i

© the model fwj ; ¹j ;§jgj

Ni neighborhood of pixel i
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Foreground/Background Classification

• Find best matching background Gaussian, j
– Use neighborhood

• Squared Mahalanobis Distance

-

=

input mixture model

dij = (ci ¡ ¹j)T§¡1j (ci ¡ ¹j)dij = (ci ¡ ¹j)T§¡1j (ci ¡ ¹j)

φ3 φ3 φ3

dij
2
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hard Stauffer-
Grimson

soft Stauffer-
Grimson

best 
match only

update all 
matches

Model Update Options

Hard UpdatesSoft Updates
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ROC (Wallflower)
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Parameter Sensitivity
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