
Computation for the Corridor:
Experiments in Augmenting Public Spaces

Max Van Kleek (emax@csail.mit.edu)

December 15, 2004

1 Introduction

The OK-net project was conceived in 2002 to design interactive digital information displays for
high-traffic public spaces in the workplace. The aim of the project was to build systems that nat-
urally complemented these spaces and the activities that took place therein, in ways that had not
yet been explored by existing digital information displays. We saw opportunities for three different
types of OK-net applications: applications that acquired and delivered relevant content to passers-
by, applications that turned the displays into two-way channels of informal social communications
among members of an organization, and applications that, in real time, supported the face-to-face
conversations and interactions that occurred near these displays. We hoped that the enhanced in-
formation dissemination capabilities for informal communications provided by such applications
would lead to greater social awareness and connectedness within organizations.

In the process of designing these applications, we realized the need for a large number of
capabilities not afforded directly by any off-the-shelf platform toolkits. Thus, we embarked to
first design a software architecture that embodied these capabilities. This archiecture, the OK-net
software platform extended the AIRE Metaglue agent framework to facilitate display coordination,
information persistence, and sharing. We also designed the platform to make it easier to integrate
emerging systems that provided new, perceptual ways of interacting with users, such as through
vision, gesture, and speech. We believed these interaction technologies would play a key part in
making OK-net displays useful, effective and attractive to users.

At the end of the first phase of the project, we finished laying the initial architectural ground-
work for the OK-net software platform, and implemented an initial suite of applications. This
platform and applications were then installed on a number of OK-net information kiosks that were
deployed in four locations within our laboratory. We then extended the platform to incorporate
speech-based interaction, and performed a user study evaluating users’ impressions. This was
followed by an examination of how to best identify returning users for the purposes of display
personalization, for which a gesture-based authentication scheme was designed and evaluated.

Although the applications currently running on the kiosks still have limited functionality and
perceptual capability, they have already received widespread use and generated substantial user
feedback. This feedback will permit the building of the next generation of applications, for which
designs are currently underway. This paper describes the OK-net project from conception and
motivation through experimentation, implementation, and initial deployment. It discusses several

1

contributions to ubiquitous computing and HCI, and concludes with a discussion of what challenges
remain at the close of the first phase of this project.

2 Background

2.1 The role of public spaces in the workplace

Public areas within the workplace are settings for day-to-day social activities that may not always
be associated with work, but which nonetheless have been found to contribute to the well-being
of individual workers, as well as to the overall health of the organization. Paper bulletin boards,
located on walls in public lounges, hallways, or foyers, have remained important, even as e-mail
and the web have become accessible nearly everywhere. These conventional bulletin boards help
to build an organizational sense of community, by serving as valuable social and informal commu-
nications channels outside of the normal work context. The settings for traditional bulletin boards
are also locations where workers most frequently chat with colleagues who may hail organization-
ally from outside their immediate workgroups. The resulting short, unplanned informal meetings
have been shown to play an important role in forming collaborations, making social connections,
and discovering and exchanging expertise. The increased recognition of impromptu exchanges in
public spaces has led architects and workplace designers to re-think the allocation of space within
the workplace. From the office-block layouts that maximized private office space in the 1960’s
(visible in the notorious ’cubicle farms’ of today), offices have evolved toward open, common areas
emphasizing shared space. Yet despite these changes, little information technology has come into
common use in these public spaces; hence, their usefulness has remained limited. changed little
compared with the modern the modern office desk.

2.2 Knowledge workers’ need to collaborate

As predicted originally by economist Peter Drucker in 1959, the knowledge worker, a new class
of skilled worker whose job was exclusively to create, manipulate, and disseminate information,
came to be a dominant figure in the work force of the United States by the end of the 20th century
[7]. As time went by, knowledge workers not only required a high level of specialization, but also
often needed to accomplish tasks that required experience outside their immediate realms of ex-
pertise. While collaboration with others with the appropriate expertise would at least allow them
to accomplish these tasks more efficiently, it was often difficult for workers to find and form ap-
propriate collaborations outside their immediate work-groups. The aforementioned public spaces
in the workplace comprised places where random, chance social encounters were likely to occur
among people with a broad diversity of expertise and background. Thus, these spaces increasingly
were seen as settings for social interactions that formed valuable weak ties for all individuals within
an organization.

According to Mark Granovetter’s sociological theory of weak ties, individuals who created an
extensive network of casual acquaintances became hubs for communication between groups of
close friends, and thus played a key role in the dissemination of ideas and knowledge within or-
ganizations. Granovetter supported his theory by analyzing how the social well-connectedness of
organizations correlated with their effectiveness at responding to crises or market volatility. This
theory also demonstrated that, on average, a greater proportion of one’s opportunities, such as

2

for job placements and new collaborations, arose more through one’s weak ties than from one’s
closest friends and colleagues. [9] Thus, Granovetter implied that improving the level of social
connectedness would have positive implications for both individuals and their organizations as a
whole.

2.3 Workplace Surveys

Findings from a number of recently conducted workplace studies have suggested that random
encounters among coworkers in the workplace often have led to informal, unplanned meetings, and
that these meetings made important contributions to daily work-related activities. These findings

The Steelcase Workplace Index Survey, entitled “Employees On the Move”, conducted by Opin-
ion Research Corporation (ORC) in May 2002, studied 977 office workers in a variety of settings
in order to determine what workplace offerings enhanced the quality of people’s lives the most.
The findings were unexpected, particularly for Steelcase, a company specializing in the design of
ergonomic desks and chairs. Figures published by the study indicated that, on average, less than
half of the participants’ work-week was spent sitting at their desks. The remainder of the time
was spent largely at meetings away from their desks, holding impromptu meetings “in secondary
spaces, such as hallways, enclaves, and at water coolers” [19].

Further evidence supporting the transition from formal meetings to informal gatherings was
revealed by a study for the iLAND project led by Norbert Streitz of the German National Research
Center for Science and Technology (GMD). This study interviewed 80 members of creative indus-
trial design teams on how technology currently played a role in their design meetings, compared
with how they would like technology to optimally shape their meetings in the future. The study
revealed that most team members felt that formal “brainstorming” sessions in meeting rooms were
run archaically, rarely utilizing the available computer technology in the creative process. Instead,
team members felt that meeting rooms of the future should “have the character of a marketplace,
or a landscape providing opportunities for spontaneous encounters and informal communication”
and that “team meetings [should not be] conducted by meeting in a room, but by providing an
environment and a situation where encounters happened.” [20].

3 The OK-net platform

3.1 Design Objectives

The objectives of OK-net were twofold: first, to design an open platform for perceptually-enabled
computers in public spaces such as hallways, lounges, and the like; and secondly, to design a num-
ber of applications, on top of this platform, that could provide a variety of useful information and
services. For the former, we included scenarios for applications which would require limited per-
ceptual or inferential capabilties not necessarily present in desktop applications today. In particular,
we wished to design applications to disseminate information that would enable people to be more
socially aware of one another and their immediate organizational surroundings.

Since there were no open pre-existing systems for public spaces that met our needs, we decided
to design OK-net on top of commodity desktop PC software and hardware. This created a number
of design problems at a variety of different levels. At the hardware level, we had to determine how
existing, commodity desktop personal computers could be modified into a form-factor that would

3

be suitable for these spaces, and that could be reasonably obtained and installed. At the level
of the human-computer interface, we had to determine what interaction technologies would be
most appropriate for these spaces. This included determining whether and how the system could
interact with users’ personal devices, such as laptops or mobile phones. At a software level, we
had to determine how to aggregate and represent information, and ensure a level of autonomy and
reliability. In addition, we had to determine how information retrieval, dissemination, and storage
would be coordinated across a number of different OK-net terminals. We also had to consider how
the software could integrate novel human-computer interaction technologies, such as perception
and sensing. Finally, and most importantly, at the application level, we wanted to identify what
types of information and capabilities would be most interesting or useful to people in these spaces,
and how best to deliver these services to them. The remainder of this paper will focus on the
software aspects of the design problem; for details on OK-net hardware design, please see ??.

3.2 Related Work

Our design goals crossed a number of disciplines and research areas in computer science, sociology,
and human-computer interaction. In this section, we will discuss relevant work from research
in computer-human interaction, artificial intelligence and computer supported cooperative work
(CSCW) communities.

3.2.1 Social awareness

As workspaces became increasingly physically fragmented, improving the social connectedness of
individual workers became correspondingly important.

Since the advent of the Portholes project at EuroPARC in 1992 [6], a number of research systems
demonstrated various approaches for supporting awareness in distributed workgroups both on and
off the desktop. One approach was to integrate awareness affordances into existing desktop tools,
such as groupware [21] and e-mail and instant messaging (IM) clients. Applications that supported
informal awareness off the desktop included instant messengers for mobile phones[22], media
spaces on large shared displays in public spaces [3], and digital bulletin boards within workgroup
spaces [10]. Another approach taken by a large number of research projects was to use ambient
displays to provide subtle peripheral social awareness within the physical environment. [12]

3.2.2 Knowledge management and social software

Knowledge management (KM) tools were designed to facilitate the formation of collaborations
among members of large organizations, particularly large corporate enterprises, in part, by identify-
ing who possessed particular expertise on various topics. A central KM server within the enterprise
determined this by performing statistical textual analyses on databases of documents produced by
individuals, identifying keywords that might indicate knowledge in particular areas. When some-
one needed consultation on a particular topic, the KM database would provide a list of people who
were likely to be able to help.

More recent work, such as Henry Kautz’s ReferralWeb, built models of social networks, inferring
the types and strengths of interpersonal relationships among members of an organization, to evalu-
ate potential candidates for collaboration. Kautz theorized that people would feel more comfortable

4

initiating a collaboration with someone with whom they were at least nominally connected, (e.g.,
a mutual friend) rather than with a complete stranger. [13]

3.2.3 Supporting impromptu meetings

Tools to support unplanned, impromptu meetings remained relatively uncommon, compared with
those designed for meeting rooms and offices. Among the few commercial products designed to
support informal meetings included the Huddleboard from Steelcase, a lightweight portable white-
board created for unplanned meetings in random public spaces in the workplace. [2] DUMMBO, a
research prototype from Georgia Tech, resembled an ordinary whiteboard, but was instrumented to
capture all marker strokes and audio, within a limited range, to a circular buffer which was acces-
sible for download immediately from any desktop. [4] The BlueBoard, an augmented touchscreen
plasma display from IBM Research’s BlueSpace project, was similar to OK-net in many respects, and
was intended to allow workers to collaboratively compare their personal calendars and to exchange
documents. Users accessed their personal documents by authenticating themselves to the system
using their corporate-issued RFID cards[17].

3.2.4 Perceptual interaction techniques

OK-net integrated a number of prototype systems to collectively enable more natural computer-
human interaction, including vision-based user detection, speech recognition, and speech synthesis.
Thus, OK-net could be viewed as an experiment to determine how well these systems could work
with one another.

One system that served as an inspiration for the project included the Digital Research Smart
Kiosks project, which integrated a vision-based face tracker and speech input/output into an infor-
mation kiosk form factor, incorporating an expressive animated avatar which users could interact
with while requesting information or playing a game.

4 Software Architecture

4.1 The need for a common, knowledge-rich data representation

The design process for the OK-net software architecture was initiated with the building of several
applications for informal gathering spaces. The first such application was k:info, (to be described in
section 5.1), a dynamic digital billboard designed for large displays in high-traffic spaces that cycled
through a variety of news and current-events. To minimize the amount of maintenance required,
k:info was designed to automatically update its own content. Specifically, it would periodically
retrieve content from a variety of information sources, such as e-mail, the web, and RSS feeds.
It would then display them, eliminating them when they became obsolete. In many cases, these
accumulated documents were descriptions of persons, places, or things. Most often, they comprised
information about events that would happen in the near future. Instead of storing the documents
themselves for display, it became clear that it was more natural and more generally useful to build
and store representations of the things described. For example, by parsing an email about a talk
announcement into a representation of the event itself, k:info could use logistical information such
as where and when the event would take place, and what topics would be discussed, to determine
how, how often, and to whom to display it.

5

The need for a knowledge representation became even more evident when we undertook to
make k:info context-aware. Instead of displaying items according to some fixed and pre-determined
schedule (as with most present-day digital information displays), k:info followed rules that speci-
fied what types of content would be useful to display under different situations. These fuzzy rules,
or heuristics, selected items based on conditions such as the current time of day, weather condi-
tions, or the number of people nearby. In order to express and represent these variable conditions,
it became clear that a language, or ontology was needed. Furthermore, it required the system to be
able to interpret the specified heuristics within the context of what articles were available, in order
to infer a choice of what was appropriate to display. This demonstrated the need for an inference
engine that could interpret statements and to make deductions from prior knowledge.

Thus, k:info inspired the need to choose a knowledge representation and inference framework
which could be used for both traditional system data (such as information about users and items
to display), as well as observations about the world that could be used for enabling applications
to perform context-aware decision-making. The next section describes Metaglue’s knowledge rep-
resentation and storage facilities, and introduces Ontogen, a simple language for expressing ap-
plication ontologies for knowledge stored in Metaglue’s built-in semantic network representation.
Following that is a discussion of ContextKeeper, a forward-chaining blackboard approach that was
used in an initial implementation of k:info. Lessons learned from ContextKeeper led us to a third
approach, a distributed query architecture for opportunistically answering queries about the world.

4.2 Background: Knowledge representation in Metaglue

Prior to the Metaglue Semantic package, there was no common representation for knowledge in
the Metaglue system. Knowledge about the world was held in a purely distributed fashion among
individual agents, and agents would contact and communicate knowledge with one another on an
ad-hoc basis. This was initially viewed as an advantage, since it meant that there was no need to
have an explicit agreed-upon common ontology among agents. In practice, however, this yielded
several difficulties. One problem was that when an agent needed a piece of knowledge, there was
no clear mechanism to figure out whom among the myriad of other agents to consult.

The solution originally proposed for this problem was to reference the Resource Manager (RM)
as an intermediary, who would take a request (in the form of the name of an interface), determine
“the most appropriate agent” to handle the particular request, and return a concrete reference
to the chosen agent. In practice, however, this made building a resource manager impractical,
as it placed too much responsibility on the RM. Essentially, the fact that the RM was required to
make judgments about the suitability of all the other agents in order to respond to a particular
request meant that the RM had to have expertise about all other agents in the system. Then,
the RM was required to measure the efficacy of each, (which not only was a highly subjective
measure, but moreover was usually application- and request-specific). Being able to judge the
suitability of a particular agent to handle a request also meant that the RM had to predict how
agents would respond, since the outcome might affect an agent’s suitability (such as if an agent
had no knowledge or response). This, of course, no resource manager could ever do reliably, since
the task of predicting an outcome of an algorithm was computationally undecidable. As a result,
resource managers were rarely used for this purpose in practice, causing agent writers to resort to
hand-coding agent identifiers and agent-agent relations at compile time.

As will be discussed in 4.4, knowledge-centric approaches such as blackboard architectures
eliminated this problem by allowing whatever agents were available to act opportunistically by

6

themselves to contribute to a problem solving effort, thus enabling effective loose coordination
among agents.

4.2.1 The Metaglue Semantic package

The Metaglue Semantic package, introduced by Peters [16] as part of his Hyperglue extensions to
Metaglue, provided a framework for building semantic networks out of instances of Java classes
that represented individual nodes and links. While the serialized triples-representation of the
Metaglue semantic network strongly resembled RDF, there were a number of differences. Nodes
and links were strongly typed, because they directly corresponded to instances of Java classes de-
rived from the package’s Node or Link class. As a result, both metaglue semantic nodes and links
could have fields. Once created, semantic network elements were made persistent by serializing
themselves into triples stored in any jdbc-compatible SQL database.

4.3 A simple ontology language for OK-net

To facilitate defining new ontologies for metaglue applications, OK-net introduced Ontogen, an
ontology definition language. When definitions of derived node and link types defined in the
Ontogen language were compiled, they were transformed into the appropriate Java source files
corresponding to each of the derived types. Instances could also be expressed in ontogen, which
corresponded to assertions about the world. These assertions were added to a program known as
BuildWorld, which, when executed, filled the active semantic DB with all instance knowledge in
the ontology definition. An example of the ontogen description language is illustrated in figure 1.

Ontogen for Metaglue corresponded to the Web Ontology Language, or OWL, for the Semantic
Web. While the expressive power of OWL as a description logic vastly exceeded that of Ontogen,
the simplicity of Ontogen allowed its entities to be directly mapped onto Java types, which made
objects in the semantic network easy to manipulate from a software engineering standpoint. Map-
ping ontology relationships onto the Java type hierarchy system also eliminated the need for a
reasoner to compute types at runtime. Specifically, the expressiveness of Ontogen was approxi-
mately equivalent to that of RDFS, sans support for multiple subclass relationships (due to Java’s
single-inheritance restriction).

4.4 Version 1: A blackboard architecture for context inference

The first context inference framework designed to fulfill k:info’s needs was a blackboard architecture
known as ContextKeeper. ContextKeeper was inspired by Terry Winograd’s recent work with Inter-
active Workspaces [27] which applied a traditional AI problem-solving architecture to the problem
of context inference. In contrast to a traditional remote procedure-call (RPC) or context widget
([5]) model, the blackboard approach, he contended, promoted a knowledge-centric, rather than
process-centric approach. Additionally, blackboards enabled coordinated problem solving among
agents, by defining roles for each of the various agents, and a protocol for inference within the task
of context resolution.

ContextKeeper was designed as a centralized respository where Metaglue agents could store
their own assertions about what they wished to share about what they knew about the world. All
such assertions were expressed in terms of types defined in a common ontology type hierarchy (or
T-Box) to which all agents had access. Each assertion carried an identifier indicating from which

7

;; sample ontology example.ont
;; set up the namespace
ontology edu.mit.aire.applications.kiosk.semantic.example

;; set up type ontology
subtype-of Thing Node
subtype-of Situation Thing
subtype-of Entity Thing
subtype-of PhysicalEntity Entity
subtype-of InformationEntity Entity
subtype-of LivingEntity PhysicalObject
subtype-of Article InformationEntity
subtype-of Person LivingEntity
subtype-of Student Person
subtype-of Faculty Person
;; set up relationship (link) ontology
subtype-of Relation Link
subtype-of AdvisorOf Relation
; ...

;; add properties (i.e., fields) to Person
;; semantic object
has-property Person name java.lang.String
has-property Person age int
has-property Student office java.lang.String

;; set restrictions on endpoints of links
to-node-type AdvisorOf Student
from-node-type AdvisorOf Faculty

;; make instances of stuff
is-a max Student
is-a howie Faculty

;; assign values to fields
property-value max age 24
property-value max office "32-224"
property-value max name "electronic Max"
property-value howie name "Dr. Howard Shrobe"
property-value howie office "32-225"

;; link them up
link AdvisorOf max howie

Node

Thing

Situation Entity

Physical
Entity

Relation

Informati
onEntityEvent

ArticleLiving
Entity

Person

Student Faculty

Link

Advisor
Of

Generated java class hierarchy

OntoGen source file example.ont

name: Dr. Howard Shrobe
office: 32-225

AdvisorOf

name: electronic Max
office: 32-224
age: 24

Instantiated semantic network

BuildWorld.java

Figure 1: Defining ontologies in Ontogen. Type descriptions in ontogen are transformed into separate
java classes that descend from Node and Link. Descriptions of instances are written to a Java class
called BuildWorld, which, when executed, generate a semantic network in the relevant Hyperglue
semantic database.

8

agent it came, allowing agents using that information to directly query the source of information.
Metaglue agents could subscribe to particular types of assertions and be informed by a callback
mechanism when these assertions were added. Agents that contributed assertions to the system
were known as Knowledge sources. One general purpose knowledge source was a JESS [1] rule-
chainer agent that could be fed rules expressed in a CLIPS-like rule syntax, and would forward-
chain over assertions on the blackboard and assert conclusions back to the blackboard.

4.5 Version 2: DBCBB: A distributed query architecture for context

Implementing ContextKeeper revealed that a forward-chaining blackboard was not as suitable for
a distributed agent architecture as originally imagined. First, from a philosophical standpoint, it
seemed counter to the nature of Metaglue to force agents to consolidate the knowledge that they
had kept in a distributed fashion among agents, back into a single database. From a system design
perspective, there were the disadvantages of creating a potential scalability bottleneck as well as
a potential single point of failure. A greater problem, however, stemmed from the volatile nature
of the data being modeled. Specifically, the problem derived from the fact that agents which acted
as knowledge sources to the blackboard could not determine whether the new knowledge that it
received would be useful to other agents or to the application. Therefore, agents were continually
obliged to report changes about the world. Since features of context that could potentially be
useful to applications were often highly dynamic (frequently changing aspects of the world, such
as fluctating temperatures or proximity readings from sensors measuring distances to users nearby),
updates were necessitated extremely frequently, causing constant cascades of inference.

An additional issue came from the problem of truth maintenance. Since facts pertaining to
context inference attempted to model a dynamic system (ie., the world), assertions true at one
moment in time might not be true at each successive moment. In a forward chaining framework,
this knowledge would have to be explicitly retracted, set to expire, or somehow made to be super-
seded by successive contributions. The framework would then have to eliminate the entailments
that were no longer true. Since in ContextKeeper, assertions were constantly being retracted, truth-
maintenance became extremely expensive.

To eliminate these problems our second system, the Distributed Back-Chaining Black Board or
DBCBB, took a backward chaining approach for making applications contextually aware. In this
approach, an application needing to know about the world issued a high-level query to its under-
lying inference framework. The framework routed the query to various knowledge sources which
attempted either to solve the query with knowledge they had, or to break the query down into
smaller subqueries which had a better chance of being solved, prior to passing them on. Agents
with the necessary evidence to satisfy a query produced that evidence, which then was unified with
the original high-level query and returned to the application. By being application-driven rather
than context- or data-driven, this approach allowed knowledge sources to produce information on
demand, whenever the application needed it. Furthermore, keeping knowledge local to agents un-
til it was needed eliminated the constant updating of an external, centralized knowledge repository.
Answers to queries were interpreted as an agent’s proposed answer, true at the particular moment
the query was satisfied instead of being a presentiment about the future. As a result, there was no
need for any truth maintenance mechanism.

The design of DBCBB started with a traditional Scheme pattern-matching backwards chain-
ing rule engine, which was integrated in Metaglue using the Kawa Scheme interpreter in Java??.
Queries assumed the form of tuples of symbols, possibly containing wildcard variables. When a

9

query was made, the agent first attempted to satisfy the query itself using its own internal knowl-
edge base and rules. If no solution were found, it dispatched the query to all other query-capable
agents in the user’s society. Each of these agents, in turn, attempted to resolve the query with
its own rules and knowledge bases, until a solution was found. Since some agents had rules that
“translated” a particular query from high-level queries to lower-level (ie. more concrete) ones,
a single query could result in a backchaining inference cascade among the agents, enabling the
distributed problem solving behavior with localized knowledge. The inference query propagation
mechanism eliminated inference loops among agents by passing the current goal stack along during
each successive query invocation, and by comparing each rule’s antecedents against the goal stack
prior to attempting each rule. Informally, if an element in the antecedent matched an element in
the goal stack, this implied that the rule required currently unknown knowledge, and thus the rule
would not provide any more information.

In the Metaglue implementation of DBCBB, agents wishing to issue or answer queries extended
from QueryableAgent, a new type of metaglue ManagedAgent derived for this purpose. Each
QueryableAgent had an independent instance of an inference engine and its own local knowl-
edge base. This provided some flexibility by allowing multiple agents to have differing “opinions”,
or beliefs of what was true about the world, even among agents within the same society. It was
left to the application to determine which of the responses to heed if it received multiple answers.
The application could decide it needed to explicitly call the agents that helped resolve the original
query in order to provide more information to clarify any ambiguities.

5 Applications

5.1 k:info: a “Smart” Billboard

As described earlier, k:info was conceived as a dynamic information billboard application that au-
tomatically updated itself from a variety of news and information sources, and curated itself based
upon what it perceived that people nearby were likely to want to see. The Metaglue agents that
managed content for display fell into two categories: knowledge sources and curators. Knowledge
sources were responsible for pulling in relevant content for the display. Examples of knowledge
sources currently in use at CSAIL included agents that retrieved content from e-mail mailing lists,
XML RSS feeds, static web pages, and web services. The behavior of the display (ie., what k:info
chose to display at any particular moment) was governed by the curators, whose job it was to
nominate particular items for display. To choose among candidates, the curators themselves might
rely upon other knowledge sources, referred to as contextual knowledge sources. An example of
a contextual knowledge source would be one that inferred nearby users’ interests, based on, for
example, previous interactions with a kiosk.

The k:info application called for candidate items and asked curators to vote for their favorites.
Votes, assigned arbitrary integer values, were tallied for each candidate element, and the elements
with the largest number of votes won selection. In the event of a tie, k:info made its selection
among the tied candidates randomly.

In practice, we found that breaking up behaviors into individual curators allowed us to yield
complex behaviors from a relatively simple set of agents. For example, the Least Recently Displayed
curator, was designed to ensure variety by keeping track of when each piece of content was last
presented, and voting for those which had not been displayed in a while. In conjunction with

10

(current-temperature cambridge 20 celsius)
(current-windspeed cambridge 15 kph NW)
(current-weather-condition cambridge clear)

(display-location <CSAIL-lobby-G1> cambridge)

k:info

query:
(recommendations-for-display <CSAIL-lobby-G1> <weather-alert> ?recommendation-strength)

weather
ks

weather
curator

(if (current-weather ?city severe-weather) and
 (display-location ?display ?city))
 then
 (recommendations-for-display ?display <weather-alert> +1.0))

(if (current-weather ?city pleasant-weather) and
 (display-location ?display ?location))
 then
 (recommendations-for-display ?display <weather-alert> +0.1))

(if (current-temperature ?location ?temp celsius) and
 (current-windspeed ?location ?windspd kph ?dir) and
 (current-weather-condition ?location clear) where
 ((?temp > 15) and (?temp < 35) and (?windspd < 40))
 then
 (current-weather ?location pleasant-weather))

(... more weather rules ...)

display-
info ks

1. Application issues query to DBCBB framework

(recommendations-for-display ...

2. DBCBB dispatches recommendations-for-display
of the weather alert to the Weather Curator

(display-location ...
(current-weather ...

knowledgebase
rulebase

3. DBCBB attempts solve antecedents of rules in Weather Curator,
which in turn requires asking weather and display info KSes

Figure 2: Illustration of how k:info, the dynamic billboard application, uses DBCBB to determine
what to display by soliciting votes from agents for candidate content items. In this figure, k:info
is trying to determine whether to display the weather report next, which causes a curator agent
to need to assess the actual weather conditions near the display. To obtain this information, the
weather curator queries the DBCBB, which connects it to yet another agent, which is directly con-
nected to a web-based weather service.

11

other curators such as the Severe Weather curator, which would vote for displaying weather more
frequently during unpleasant weather conditions, the resulting behavior was one that generally
made sense to end users, i.e., interposing severe weather warnings frequently within other news
content. In the future, we may consider implementing a subsumption architecture ?? in place of
the simple voting scheme, so that higher priority curators, such as an Emergency Message curator,
could proactively suppress certain lower-priority curators.

5.2 SKINNI: The Stata Center Information Guide

The Smart Kiosk Information Navigation and Noteposting Interface (SKINNI) for OK-net was an
interactive graphical user interface for touch-screen displays that allowed users to explicitly look
up a variety of lab-related information, including current events provided by a variety of k:info
knowledge sources as described earlier, coupled with a lab directory and map information. The
original motivation for SKINNI for our laboratory came from two primary observations of working
at CSAIL. First, it was observed that lab members often had trouble keeping track of the large
number of seminars, invited talks and special events that took place each day in the laboratory.
Students, in particular, reported that they frequently forgot about talks they had wished to attend,
even after receiving e-mail reminders that were sent by the organizers. Secondly, the lab seemed
to lack a cohesive sense of community among lab members, particularly among members from
different research groups, or whose offices were on different floors of the building. A preliminary
informal survey of 10 CSAIL lab members supported these observations: the percentage of people
they could identify from among research groups that were situated on floors other than their own
within the building was generally under 10%, compared to an approximately 75% for members who
had offices on the same floor. [23] Our goal, thus, was to raise lab members’ general awareness of
both social and research-related events, as well as members’ awareness of one another.

SKINNI presented the day’s events in a format similar to a number of popular calendaring
applications such as Apple’s iCal or Microsoft’s Outlook, but had a number of unique features. First,
as already discussed, content was updated automatically by the same agents that managed content
for k:info. Second, SKINNI could send timely reminders of events as text messages to users’ cell
phones shortly before the events transpired.

5.2.1 Lead me: a Bluetooth-based building tour guide for SKINNI

To demonstrate how multiple OK-net terminals could work together in tandem to enhance SKINNI’s
functionality, we developed an extension to SKINNI known as Lead me. When a user queried SKINNI
about a location, such as looking up a location on SKINNI’s map, or looking up the location of a lab
member’s office via the directory, and the system detected that the user might be equipped with a
bluetooth1 -enabled device (that supported the OBEX push-protocol), it offered to lead the user to
the destination. If the user chose this feature, SKINNI would contact the rest of the OK-net kiosks
about the user’s desire to get to a particular destination. Then, as the user walked around the
building passing by OK-net kiosks in elevator lobbies, he/she would receive updated instructions
and maps of how to get to the desired destination. This feature would terminate when either the
user reached the closest node to the destination, or after 10 minutes.

1Bluetooth is a standardized short-range wireless peripheral communications protocol that we chose due to its recent
popularity and support by portable digital device and mobile phone manufacturers. See http://www.bluetooth.com for
further details.

12

Figure 3: SKINNI user interface. Top: The today view allows users to quickly discern the day’s
events, with timeline and list views of events. Middle: Directory view enables quick searching and
browsing of the CSAIL directory. Bottom: Help and map information.

13

This feature was very well received when it was demonstrated at the Stata Center, although in
practice it was difficult to provide adequate guidance throughout the building due to the limited
number of OK-net terminals we had deployed.

5.3 Serendipity: Initiating informal interactions between coworkers

Serendipity was an application that took proactive measures to allow coworkers to get to know one
another. Serendipity ran a match-making algorithm that was triggered when the system detected
two users within close proximity. Serendipity users ran an application on their mobile phones,
which used Bluetooth to detect other users with mobile phones within a radius of approximately
10 meters. Results of scans were compared against a list of registered users on the Serendipity
server. The server determined whether to take action and try to inspire an interaction, first by
consulting whether it had ever done so for a particular pair of people before, and if not, by gauging
whether the potential mutual benefit of the introduction would exceed the users’ thresholds for
interruptions. This metric, which we referred to as the potential utility gain of an introduction,
was computed by taking a normalized combination of the intersection of the users’ interest pro-
files with a weighted inner product between term frequency keyword vectors extracted from the
users’ email inboxes. While static profiles bootstrapped the system by providing preferences and
interests explicitly, the inner product of the extracted term frequency statistics attempted to model
approximately how coincident the users’ current interests and expertise were. When the potential
utility gain of an interaction exceeded a user-adjustable “proactivity threshold” for both parties,
Serendipity attempted to initiate an interaction. When this occurred, it first determined whether
or not there was an OK-net kiosk nearby. If a kiosk nearby was available, as illustrated in figure
4, it influenced the k:info billboard running on the display to select items that correlated with the
users’ mutual interests. The idea was that this would help “break the ice”, by providing a topic
of conversation that both people could relate to. If no kiosk was nearby, Serendipity resorted to
sending MMS text messages to both parties with a short description of the other person, and a little
thumbnail picture (from each user’s profile).

One of the primary challenges in designing Serendipity was to preserve the users’ privacy. In
particular, users’ interest profiles extracted from their e-mails and other authored documents tended
to be extremely sensitive, and users would most likely not want this to be shared with strangers. To
solve this problem, we decided to keep user models local to users on their own desktops such that
when Hyperglue’s access control policies took effect, Hyperglue would ensure that only the agents
belonging to the user would be allowed to access or modify this profile. We also attempted to give
each user as much control over the profiling process as possible, such as by allowing the user to
easily start or stop the profiling process, and to specify a skip-list for e-mails that they did not want
the system to see. When the server needed to compare two users’ interest vectors for similarity, the
agents within the user’s society first hashed the keys of the interest vector prior to giving it to the
server. This ensured that even if intercepted, the topics themselves would not be easily identifiable,
while similarity could be computed just as effectively.

14

user approaches kiosk

k:info personalizes news
 for user 1

2nd user approaches
 kiosk

generic display

MIT President Steps Down
President Charles Vest decides
to step down at the end of
the academic year

Serendipity chooses
 content that maximally
 overlaps both users' profiles

1

MIT News

1 2

Figure 4: Serendipity interaction with k:info. Serendipity acts as a content curator for k:info,
recommending content that is most similar to both users’ interests when Serendipity senses via
bluetooth that two users who could mutually benefit from knowing one another are nearby.

6 Interaction technologies: Lightweight identification

6.1 Personalization requires identification

As public information displays became increasingly ubiquitous, active personalization, in turn, be-
came critical, in order to provide positive user experiences and to prevent the displays from being
perceived as mere annoyances or distractions. One critical necessity for providing a personalized
user experience was for the system to know something about the user. However, since users should
not be obliged to trust blindly the myriad public displays they encountered throughout their day
with their personal information, public terminals should require as little private information as pos-
sible. A compromise was to try to have displays automatically deduce what they needed to know
about the users based on observations of their explicit actions. Just as many web sites today took
advantage of users’ anonymous clickstream data to start tailoring content prior to the users’ log-
ging in, public displays did not actually require having the users’ specific identities in order to start
tailoring the displays. Although it had been shown that building such user models with limited ac-
cess to personal information yielded correspondingly limited possibilities for personalization, [15]
anonymous interaction data could be predictive of various aspects of future usage patterns, such as
when the user was likely to visit again [14].

Unlike anonymous clickstream data, which contained distinguishing identifiers that helped to
indicate successive visits, such as the user’s network (IP) address, interactions at touchscreen dis-
plays usually did not have any immediately distinguishable characteristics for returning users. In
order to enable the construction of user models that spanned multiple visits, the display required a

15

means by which it could recognize returning visitors.
While a traditional log-in and password approach would suffice in some cases, this approach

had a number of drawbacks. First, ensuring one’s security would require having a different pass-
word and login for each display. Results from a small in-house survey of 15 CSAIL lab members
indicated that most were already using between 5 and 10 distinct systems every day, each requiring
a username and password; furthermore, they were obliged to memorize between 6-10 unique pass-
words. While this might seem manageable, as the number of displays increased, users would either
be forced to reuse usernames and passwords, which would compromise security, or memorize an
unmanageable number of username/password combinations. Secondly, typing one’s username and
password while standing at a public kiosk terminal, on a potentially unfamiliar keyboard, could
also be unreasonably slow compared to the total amount of time spent interacting with the kiosk,
a factor which might make users reluctant to log-in. Another in-house survey of 10 users timed
how long it took to type in a username and password repeatedly for 6 trials each. While typing
times varied wildly, no users were faster than 2.8 seconds, with an average of 6.06 seconds and a
standard deviation of 3 seconds across all trials.

Biometric identification techniques, such as voiceprint, face-id or fingerprint, or RFID provided
other options. While effective at identifying a user, biometric identification techniques relied on a
physical aspect of a user that was (generally) tied to their physiology. Therefore, users’ principals,
or the digital identity from the displays’ perspectives, became inextricably tied to users’ actual
identities, which resulted in an inappropriate privacy risk for use on untrusted displays. RFIDs
required users to either use a tag that they carried around (with its incumbent privacy implications),
or to carry a different tag for each system, which had practical limitations.

6.2 Lightweight identification

Thus, we proposed new methods of identification for use in building models for personalization
on untrusted public systems, known as lightweight identification techniques. Unlike traditional
authentication techniques which were based on their effectiveness against being compromised,
lightweight identification schemes were evaluated with the following criteria:

1. Anonymity - The degree to which users’ lightweight principals were intrinsically tied to any
identifying information about a person’s actual identity; lightweight identities would not be
traceable back to their original owners, and a person would be allowed to obtain multiple
principals or change principals whenever they wished.

2. Ease of use - The speed and facility with which users could identify themselves to a system;
effective lightweight schemes would be able to identify a person within a negligible fraction
of total interaction time with the system, and with little cognitive or physical effort.

3. Size of cognitive footprint - The nature and amount of information a user must remember in
order to identify him- or herself to a system; a smaller footprint eased the task of memorizing
mappings from systems to identification keys, and allowed users to more easily keep multiple
principals straight, such as for different systems.

4. Cognitive persistence - How persistent the information required to identify oneself remained
over time.

16

5. Scalability - The maximum size of the set of potential users from which a user could be
uniquely distinguished.

6. Degree of guarantee - The traditional measure of “security”; the degree of certainty that a
person was, in fact, the owner of the principal for which they were identified.

The relative importance of each of these criteria when evaluating a particular scheme depended
on the application. For personalizing public displays and information kiosks, anonymity, ease of use,
and scalability were likely to be of primary importance. Since public kiosk systems were untrusted,
protecting the anonymity of the user on public displays eliminated the potential for “Big Brother”
tracking scenarios, and also prevented the accumulation of potentially sensitive information. The
second criterion was created for practical reasons; since interaction times with kiosks were typically
very short, the time and effort required for identifying oneself to a system must be sufficiently small
for the system to be useful. Finally, scalability was very important, since public displays could have
an extremely large potential user base. Meanwhile, however, the degree of security (or certainty
that a user is who he or she claims to be) was likely to be less important than for an application
that, for example, provided access to a user’s sensitive information.

6.2.1 Related research

Much of the inspiration for lightweight identification came from Weinshall and Kirkpatrick’s re-
cent work on utilizing observed human memory phenomena for user identification that could be
performed with little apparent conscious effort [25]. In essence, they described a lightweight iden-
tification technique based on the imprinting/recognition memory of the human visual perceptual
system that was scalable, easy for users to perform, and yielded a high degree of confidence for
recognition.

6.3 User identification with Distinctive Touch

Our system, known as Distinctive Touch, or DT, was a lightweight identification scheme for touch-
screen information kiosks. As described in [24], DT made use of human tactile memory to allow
users to easily identify themselves: users created their own “passdoodles”, unique, identifying per-
sonal scribble gestures, which they performed on a display. New users demonstrated their gesture
five times, based upon which the system would build a model using both doodle shape and gesture
velocity. A gesture recognizer then determined the most similar model out of its library of users,
and generated a confidence level corresponding to how closely the doodle matched the particular
user.

Passdoodles featured two main advantages for public touch-screen displays over the traditional
use of textual username and password. First, doodling was easier and faster to perform while
standing at a touchscreen display than typing a username and password on either an on-screen
or attached physical keyboard. Secondly, recalling and remembering gestures such as passdoodles
relied more on one’s implicit motor learning capabilities than one’s conscious semantic memory,
resulting in its more easily being memorized, and recalled with less conscious effort. In addition,
unlike biometric identification schemes such as fingerprinting or face-id, doodles are anonymous
and virtually untraceable back to their owners.

Our initial implementation of DT built simple models of doodle shapes and compared candi-
date gestures with the model using a minimum description length measure. During an informal

17

10-user evaluation, we collected 7 positive samples of each user’s chosen doodle. We then per-
formed leave-one-out cross-validation, by omitting a sample from each user’s set, building models
from the remaining samples, and classifying the held out sample. Our recognizer classified 69 out
of the 70 collected samples correctly. Furthermore, the time required to perform each passdoodle
was consistently under 2 seconds, with the average taking 1.08 seconds. Unfortunately, however,
due to the limited number of classes (users), we were unable to gauge the scalability of the algo-
rithm to a large user population. We were also unable to ascertain how much cognitive overhead
remembering passdoodles required compared with traditional passwords. However, findings from
an earlier user study [8] suggested that the ease of memorization of paper-based passdoodles com-
pared closely to that of chosen textual passwords.

We are currently working on improving our doodle-recognition algorithm to incorporate com-
parison of gesture velocity over time. This would have the potential of enhanced scalability, by
allowing simiarly-shaped but differently executed passdoodles to be distinguished from one an-
other, as well as improved security by making impersonation of passdoodles more difficult. We are
planning a larger, follow-up study to evaluate the performance of our new algorithm.

6.4 User identification with mobile devices

An alternative approach reduced user effort by offloading the task of identifying oneself to portable
digital devices that users might already be carrying around with them, such as PDAs or mobile
phones. Wu, et. al., demonstrated [28] a scheme for securely accessing remote services through
potentially insecure public terminals. We tried a number of simpler, lightweight approaches more
suitable for personalization that reduced the amount of work required of the user during identi-
fication. In the simplest such approach, new users downloaded a small digital token to their cell
phone which contained their unique user identification code. When users later returned to the
display, they used their cell phone to present this token back at the display. Our implementation
used a small application (a midlet) on the mobile phone to make a connection to the display (via
the cellular data network) and transmit the user identification code. In practice, the efficiency of
this approach proved to be limited by two factors: the speed with which users could locate their
mobile phone, and delays experienced in making the data connection. As wristwatches become
bluetooth-enabled [11], we may see both of these delays diminish.

7 Interactions using speech

Informal discussions with kiosk users led us to believe that the touchscreen interface was far from
ideal for many purposes. In particular, when a user wished to look up a specific piece of informa-
tion, such as looking someone up in the CSAIL directory, or finding directions to a specific room
within the laboratory, using the SKINNI GUI via touchscreen displays seemed tedious. It required
an elaborate sequence of button taps or a combination of button taps and keyboard entries to nar-
row down a search, or even a brute-force visual scan of a long list of items. Even after several
GUI design iterations we were unable to come up with a better layout that made GUI navigation
more efficient, without increasing the initial learning curve. Therefore, we decided to augment
SKINNI, using natural language via speech with the hope that this would improve the overall user
experience, through a more direct and natural query interface.

18

7.0.1 Design considerations

Many of the original design requirements of the SKINNI GUI interface applied to the speech inter-
face as well. The interface required a low usability threshold, ie., it had to be easily accessible for
new users. In addition, the interface had to accommodate users of diverse ages, nationalities and
computer experience.

Speech interfaces posed a variety of additional usability challenges. Since speech interfaces
were still relatively new and uncommon, users were likely to be inherently less familiar with them
than with GUIs, and would have widely different expectations of their interaction capabilities.
Furthermore, since our speech system was limited to pre-specified forms of queries, rather than
unconstrained spoken interaction, it became a challenge for the application designer to ensure that
the system could recognize the most common forms of queries. Finally, the user interface had to
deal with user misrecognition, since this was likely to occur more often than with a GUI interface.

Acoustic requirements had also to be considered when designing speech interfaces for public
kiosks. Users were unlikely to want to put on a headset microphone for short interactions, and
far field microphones generally captured too much ambient noise. Directed noise-canceling linear
array microphones provided a good compromise at a distance of 2-3 feet; however, they required
users’ mouths to be positioned within a limited physical area near the center of the array, making
the system inaccessible to users of various heights or users in wheelchairs.

7.0.2 Current Implementation

For our implementation, we opted to use the in-house conversational speech engine, Galaxy [18].
Galaxy was attractive for its speaker-independent speech recognition engine that was resilient to
outside noise, speech disfluencies, and accents, as well as for its advanced dialogue and discourse
capabilities.

At present, we outfitted two prototype kiosks for speech, with speakers and active noise-canceling
linear array microphones. A sound daemon running on these machines performed speech detection
and capture, and transmitted speech waveforms to a separate machine designated as the Galaxy
Hub. The hub coordinated recognition and natural language processing, and passed a parsed utter-
ance back to a SKINNI-speech component known as the back-end script. This script interpreted the
parsed utterance, sent actions to the SKINNI GUI, computed a verbal response, and updated the
speech feedback UI. The response to be verbalized was sent back to the Hub, which passed it to the
appropriate text-to-speech (TTS) engine, and sent synthesized waveforms back to the kiosk, where
they were played by the sound daemon. The Galaxy domain, consisting of recognition grammars,
hub and startup scripts, were created via SpeechBuilder [26], a web-based tool for building Galaxy
domains.

7.0.3 Speech state feedback GUI

Initial impressions from using speech on the kiosks led us to realize the importance of convey-
ing immediate feedback about the state of the speech system to the user. Particularly due to the
variable delays incurred in processing the speech, parsing the result, and network transmission,
without feedback users were left unsure as to whether the system had heard the speech, encoun-
tered an error, or was still in the midst of processing. In response, we designed a GUI that displayed
immediate feedback about whether speech was enabled (via a red/green microphone icon), when

19

speech was detected, when it was being processed, output from the recognizer, and, finally, a tex-
tual rendering of the spoken response from the back-end script. We found that this allowed the
user to easily determine when the kiosk was listening, why or how an error occurred, and how
to proceed thereafter. This was particularly helpful when new users were familiarizing themselves
with the speech interface since it allowed them to quickly grasp the system’s capabilities. We be-
lieved this would help reduce the number of users who gave up on the speech interface too early if
they initially experienced problems efficiently interacting with the kiosks.

7.0.4 Designing the Domain Grammar

The most challenging aspect of building the system was designing the recognition grammar that
Galaxy used to interpret spoken utterances. We needed to determine all the basic ways people
would phrase their queries. Due to the large number of different phrasings possible for even the
simplest queries, we limited our initial speech capabilities to only directory field queries (ie. office,
telephone number, email address) and “show me room”-type queries for the map. To determine
the most common phrasings of these queries, we initially built up what were considered the most
common forms, and then asked 10 lab members how they would phrase the queries. We then
extracted common forms from their phrasings and added them to the grammar. In the future, we
hope to design a system that can incrementally learn new phrasings for queries.

7.0.5 Speech User Evaluation

To gauge the usability of our system, we performed a preliminary, informal user study with 10 lab
members. Our study asked subjects to look up the telephone number of eighteen different people
in the lab (selected randomly), using the kiosks. We asked our subjects to use the speech interface
for the first six names, the touchscreen interface for the second six names, and their own preferred
interface for the final six names.

As indicated in Table 1, our study yielded mixed results. As we wished to evaluate how well first
time users would perform, subjects were not told what forms of queries the kiosk could recognize.
This was reflected in the recognition rate for the first two trials being particularly low, at 50%.
However, the rate improved to 72% thereafter. Misrecognitions caused severe time penalties as a
result of requiring an exhaustive search by the speech recognizer, combined with the time required
to generate a spoken error response. A combination of the high error-rate and misrecognition
penalty yielded a longer average time for speech over touch. However, when the recognition was
successful, times were consistently shorter with low variance. Also, it was encouraging that 8 out
of our 10 subjects preferred using the speech interface when given a choice between the two.

7.0.6 Current Progress and Future Work

We are currently working on improving the speech domain, as well as updating our voice models
to improve recognition accuracy. With help from the Spoken Language Systems group, we are also
starting to build new voice models based on raw acoustic data from kiosks rather than models built
from telephone data. Furthermore, we are working to extend our existing speech domain such that
all functionality exposed via our touchscreen interface is also exposed via the speech interface.

20

Unrecognized Recognized Overall Touch
Speech(secs) Speech(secs) Speech(secs) (secs)

Min 10 3 3 4
Max 25 9 25 19
Mean 16.78 5.22 9.11 7.33
S.D. 5.13 0.92 6.24 3.18

Table 1: Study Results: The times indicate the interval between when the subject hears the name
that needs to be queried and when the subject extracts the corresponding telephone number from
the screen.

References

[1] JESS: the Java Expert System Shell. Sandia National Laboratories, 2004.

[2] The Steelcase Huddleboard. http://www.steelcase.com/na/ourcompany.aspx?f=12611&c=15879.

[3] Stefan Agamanolis. icom: a multipoint awareness and communication portal for connecting
remote social spaces. http://www.medialabeurope.org/hc/projects/icom.

[4] J. Brotherton, K. Truong, and G. Abowd. Supporting capture and access interfaces for informal
and opportunistic meetings, 1999.

[5] Anind K. Dey. Understanding and using context. Personal Ubiquitous Comput., 5(1):4–7, 2001.

[6] Paul Dourish and Sara Bly. Portholes: supporting awareness in a distributed work group. In
Conference proceedings on Human factors in computing systems, pages 541–547. ACM Press,
1992.

[7] Peter F. Drucker. The age of social transformation. The Atlantic Monthly, November 1994.

[8] Joseph Goldberg, Jennifer Hagman, and Vibha Sazawal. Doodling our way to better authen-
tication. In CHI ’02 extended abstracts on Human factors in computing systems, pages 868–869.
ACM Press, 2002.

[9] Mark Granovetter. The strength of weak ties. The American Journal of Sociology, 78(6):1360–
1380, 1973.

[10] Elaine M. Huang and Elizabeth D. Mynatt. Semi-public displays for small, co-located groups.
In Proceedings of the conference on Human factors in computing systems, pages 49–56. ACM
Press, 2003.

[11] IBM lab demonstrates special bluetooth watch. http://www.mobilemag.com/content/100/342/C1241/,
August 2002.

[12] Hiroshi Ishii, Craig Wisneski, Scott Brave, Andrew Dahley, Matt Gorbet, Brygg Ullmer, and
Paul Yarin. ambientroom: integrating ambient media with architectural space. In CHI 98
conference summary on Human factors in computing systems, pages 173–174. ACM Press, 1998.

[13] Henry Kautz, Bart Selman, and Mehul Shah. Referral web: combining social networks and
collaborative filtering. Commun. ACM, 40(3):63–65, 1997.

21

[14] Alan L. Montgomery. Using clickstream data to predict www usage.
http://www.andrew.cmu.edu/user/alm3/papers/predicting www usage.pdf, August 1999.

[15] Balaji Padmanabhan, Zhiqiang Zheng, and Steven O. Kimbrough. Personalization from incom-
plete data: what you don’t know can hurt. In Knowledge Discovery and Data Mining, pages
154–163, 2001.

[16] Stephen Peters. Knowledge Representation and Resource Management in Distributed, Pervasive,
Intelligent Environments. PhD thesis, Massachusetts Institute of Technology, 2004.

[17] Daniel M. Russell. Staying connected: Digital jewelry and more. technologies for people. In
Proceedings of SHARE 1998, 1998.

[18] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue. Galaxy-II: A reference architecture
for conversational system development, 1998.

[19] Employees on the move. Steelcase Workplace Index Survey, April 2002.

[20] Norbert A. Streitz, Jorg Geisler, Torsten Holmer, Shin’ichi Konomi, Christian Muller-Tomfelde,
Wolfgang Reischl, Petra Rexroth, Peter Seitz, and Ralf Steinmetz. i-LAND: An interactive
landscape for creativity and innovation. In CHI, pages 120–127, 1999.

[21] John C. Tang and Monica Rua. Montage: providing teleproximity for distributed groups. In
Proceedings of the SIGCHI conference on Human factors in computing systems, pages 37–43.
ACM Press, 1994.

[22] John C. Tang, Nicole Yankelovich, James Begole, Max Van Kleek, Francis Li, and Janak Bhalo-
dia. Connexus to awarenex: extending awareness to mobile users. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 221–228. ACM Press, 2001.

[23] Max Van Kleek, Tyler Horton, and Elizabeth Boyle. SKINNI: Connecting coworkers using
information kiosks in the workplace. Unpublished., 2004.

[24] Christopher Varenhorst. Passdoodles: A lightweight authentication method.
http://oknet.csail.mit.edu/papers/varenhorst.pdf, 2004.

[25] Daphna Weinshall and Scott Kirkpatrick. Passwords you’ll never forget, but can’t recall. In
Extended abstracts of the 2004 conference on Human factors and computing systems, pages
1399–1402. ACM Press, 2004.

[26] E. Weinstein. Speechbuilder: Facilitating spoken dialogue system development. Master’s
thesis, MIT, 2001.

[27] Terry Winograd. Architectures for context. HCI Journal, 16(4), 2001.

[28] Min Wu, Simson Garfinkel, and Rob C. Miller. Secure web authentication with mobile phones.
In Proceedings of the Student Oxygen Workshop 2003, Cambridge, MA, 2003.

22

