The Portable CLU Debugger

Dorothy Curtis
February 17, 1992

CLU programs compiled with portable CLU can be debugged by specifying the ~debug option
consistently on each portable CLU invocation, and then running the resulting executable.
At that point, the debugger takes control and allows you to debug the program.

1 Basics

The debugger enables users to monitor execution of a program. Users can single step a
program, executing one line at a time, or they can set breakpoints in the program. The
debugger suspends execution of a program whenever it reaches a breakpoint, so that the user
can determine how control reached that breakpoint and/or examine the values of program
variables.

Whenever a procedure is invoked, information about the invocation is pushed onto a
runtime stack. This information is known as a stack frame. By examining the stack when a
breakpoint is reached, the user can determine how control reached the current procedure.

The debugger enables users to print the CLU objects referred to by program variables.
Users can control how much of the representations of such objects is displayed. The printing
depth is the maximum number of levels of nesting of an object that will be displayed. The
printing width is the maximum number of components of an object that are displayed at
each depth. The greater the width, the more elements in an array and the more fields in a
record that are printed. The greater the depth, the more information about each element in
an array or each field in a record that is displayed.

2 Hints

2.1 Interrupting the debugger

When a program is running, typing control-c (i.e., holding down the control or ctrl key and
then pressing the letter ¢), will cause control to be passed back to the debugger. This assumes
that control-c is your INTR (interrupt) character. (See man (2) stty.) For control-c to
take effect, the program must pass through a procedure entry /exit point or a procedure with
line breakpoints set in it (these lines do not need to be executed). A program in an infinite
loop, which does not call a procedure, will not respond to control-c. To kill off such a

program, type control-z (or your SUSP (suspend) character), use the jobs shell command
to locate the errant program, and type

kill -9 Y%number_associated_with_program

You may need to use the reset shell command to restore normal tty behavior.

2.2 Capturing output

The (Unix) script command provides a method for capturing output created during a
debugging session.

2.3 Line editing

The debugger supports a limited amount of line editing. The following files are used to
specify key bindings for line editing: ~/.lineedit.keys and ~/.inputrc. These files override the
default settings given by the following table.

Key Action Alternative key
ctrl-A | move to beginning of the line ESC
ctrl-B | move back (left) one character left-arrow on 1k-201s

ctrl-D | delete current character

ctrl-E | move to end of current line
ctrl-F | move forward (right) one character | right-arrow on 1k-201’s
ctrl-J | complete entry

ctrl-K | delete to the end of the line remove-key on 1k-201’s
ctrl-M | complete entry

ctrl-N | move to next history item down-arrow on 1k-201’s
ctrl-P | move to previous history item up-arrow on 1k-201’s

ctrl-U | delete line
ctrl-W | delete word

del delete previous character
move forward one word next-screen on 1k-201’s
move back one word prev-screen on 1k-201’s

2.4 Fatal errors

When running a program, a fatal error may occur and result in a Unix Segmentation
Violation or Bus Error. When this happens, the debugger executes a where command to
display the stack and then terminates. These errors are frequently caused by uninitialized
variables.

If a program accesses uninitialized variables without triggering a fatal error, the state of
the debugger may be corrupted.

If a circularly-linked object is printed, the debugger may terminate when the stack fills

up.

2.5 How Printing Works

When printing an object of type t, the debugger uses t$print, if it exists and takes an
object of type t (or cvt) as its first argument and a pstream as its second argument. If such
an operation does not exist, rep$print for type t is used.

3 Command Overview

A debugger command consists of a command name followed by a sequence of arguments
separated by spaces. The following describes related groups of debugger commands. The
next section contains an alphabetical list of all debugger commands and describes them in
detail.

e Running
The run and continue commands cause the program to run continuously. The next
command causes execution of a single program line.

e Breakpoints

The break command sets breakpoints. The show command shows the current break-
points. The delete command deletes breakpoints. The step command turns on single
stepping for a procedure. The unstep command turns off single stepping for a proce-
dure. The trace command turns on tracing for exceptions. The untrace command
turns off tracing for exceptions.

e The Stack
The where command displays the stack. The up and down commands select different
frames in the stack.

e Printing
The print command displays the values of variables. The width and depth commands
control how much of the value is displayed.

e Invocation

The eval command evaluates procedure invocations.

e Source code

The list command displays source code. The func command selects a procedure to
be displayed. Reaching a breakpoint also selects the procedure containing as the one
to be displayed. Moving up and down the stack changes the procedure to be displayed.

e Miscellaneous

The help command gives brief information on debugger commands. All commands
can be displayed via help all. The quit command terminates the debugger.

4 Commands

This section describes each command in detail. Commands are listed alphabetically. Users
can repeat execution of the continue, eval, up, list, down, next commands simply by

pressing the <RETURN> key.

e break {breakpoint ...}

The break command instructs the debugger to stop when a particular procedure or
iterator is entered or exited or before a particular line in a file is executed. Each
breakpoint is either the name of a procedure, the name of an iterator, or a line number,
which refers to a line in the file containing the current procedure (or iterator). Note
that the func, up, and down commands change the current procedure. Some examples:

break start_up

break 10

break 10 20

break t$opl t$op2

break t$opl t$op2 10

func t$opl
break 10

sets breakpoints on entry to and
exit from the top-most procedure

sets a breakpoint at line 10
in the current procedure

sets breakpoints at lines 10 and 20
in the current procedure

sets breakpoints on entry to and
exit from procedures t$opl and t$op2

sets breakpoints on entry to and

exit from procedures t$opl and t$op2
and at line 10 in the current procedure
(which may not be either t$opl or t$op2)

select function t$opl
sets a breakpoint at line 10 in t$opl

Whenever the debugger reaches a breakpoint, it displays the corresponding line in the
source file and stops before executing that line.

e continue

The continue command directs the debugger to continue running the program, either
until the next breakpoint or until the next instruction in a procedure (or iterator) that
is being single-stepped. It terminates any single-stepping set by the next command in
the current procedure (or iterator).

e delete breakpoint {breakpoint ...}

The delete command removes the specified breakpoints. (Note: If there are two
breakpoints with the same line number, only the first will be deleted.) The argument
all causes all breakpoints to be removed. Some examples:

delete t$opl % deletes the breakpoints on entry to
% and exit from the procedure t$opl

delete all % deletes all breakpoints

e depth {integer}
The depth command controls the printing depth for objects printed by the print
command. If the depth command has no argument, the debugger prints the current
depth. See also the width command.

e down {integer}
The down command moves down the specified number of stack frames. If no argument
is specified, then 1 is assumed. See also the where command and the up command.

e eval expression

The eval command evaluates the specified expression. The following section describes
the legal expressions. Some examples:

eval a = "xyz" % sets the variable a to "xyz"
eval po = stream$primary_output() % sets po to primary output
eval stream$putl(po, a) % prints a on po

The assignment to the variable a in the example above changes the value of the variable
a in the current stack frame, if such a variable exists. Otherwise, it creates a debugger
variable named a and assigns the value of the expression to that variable.

e func {name}

The func specifies the named procedure (or iterator) to be the one of current interest,
either for listing source code or for setting breakpoints at line numbers. If no argument
is given, the current line is printed, along with the five preceding and five succeeding
lines

func t$opl % select function t$opl

list % list lines surrounding t$opl

break 10 % set a breakpoint at line 10 in
% the file containing t$opil

help {command}

The help command, with no arguments, gives a summary of command names. When
a command name is present as an argument, the help command will give a short
description of the specified command. If the argument is the keyword all, short
descriptions of all commands are displayed.

list {integer ...}

The list command displays source code in the current procedure (or iterator). By
default, the current procedure is the routine that last reached a breakpoint. When the
debugger first starts up, the start_up procedure is selected as the current procedure.
The func, up, and down commands change the current procedure to the specified
procedure. The arguments to 1ist specify the line numbers of interest (use a space to
separate the line numbers). The where command can be used to show the current line
numbers in the currently active procedures.

list % list lines at current breakpoint
func t$opl % select function t$opl
list % list lines surrounding t$opl

next {integer}

The next command directs the debugger to single step to the next line in the current
procedure. When a numeric argument n is present, the debugger executes the next n
lines in the current procedure and prints out the corresponding source code as each
line is executed.

print variable

The print command prints the values of variables, procedure arguments, and own
variables. Uninitialized variables are printed as 777.

quit

The quit command causes the debugger to terminate.

rebuild

The rebuild command causes the debugger to run make and then the program.

restart

The restart command causes the debugger to restart the program: a new process is
created, causing own variables to be initialized and the stack to be empty.

run

The run command causes the debugger to continue running the program.

show

The show command displays the location of the current breakpoints.

step name

The step command turns on single stepping for the specified procedure.

trace name

The trace command turns on tracing for the named signal.

trace bounds % trace the bounds exception
trace all % trace all exceptions

unstep name

The unstep command turns off single stepping for the specified procedure.

trace name

The untrace command turns off tracing for the named signal.

untrace bounds % stop tracing the bounds exception
untrace all % do not trace any exceptions

up {integer}

The up command moves up the specified number of stack frames. If no argument is
specified, 1 is assumed. See also the where command and the down command.

where {integer}

The where command displays the frames on the stack. A numeric argument n limits
the output to the last n frames pushed on the stack.

width {integer}

The width command controls the printing width for objects printed by the print
command. If the width command has no argument, the debugger prints the current
width. See also the depth command.

5

Expressions

The eval command currently accepts the following expressions:

6

e Constants:

— booleans: 0 for false, 1 for true
— characters: 'a’

— strings: "abc"

— integers: 1

— reals: 1.2

e Variables:

The debugger first looks for a debugger variable with the given name, then for a local
variable in the current procedure (or iterator), then for an own variable in the current
procedure (or iterator) and finally for an own variable in the current type.

The current version of the debugger does not always print the value of the variable that
one expects: if two parallel scopes use the same name to denote variables of different
types, the first declaration determines the print operation.

Invocations:

The programmer may invoke stand-alone procedures and procedures from unparame-
terized clusters. The current version of the debugger does not allow the user to invoke
parametrized cluster procedures or iterators. Arguments to procedures can be con-
stants or variables, as described above. The current debugger does not recognize sug-
ars: users must type eval int$add(1,2) rather than eval 1+2. The debugger does
not type-check arguments for procedure invocations; irrecoverable errors may result if
arguments do not have the appropriate types.

Idiosyncrasies

6.1 Auxiliary files

When a program is executed under the debugger, an auxiliary file with symbol information
is created. If the program is named psI, then the file is named psi.sym.

To preserve break point settings between debugging sessions, the debugger maintains the

current breakpoints in a file. If the program is named psi, then the file is named ps1.bkpts.

6.2 Stacks

When an iterator is active, the invoking procedure will appear on the stack twice: once for
the invocation and once for the body of the for statement. Also, low-level routines that are
in-lined may not appear on the stack, so setting breakpoints at such low-level routines may
have no effect. Own initialization is not traceable and does not appear on the stack.

