CLU User’s Guide

Dorothy Curtis and Stephen Garland
MIT Laboratory for Computer Science

January 22, 1993; Updated November 29, 2016

This guide describes how to use the portable compiler and debugger for CLU.
This compiler and debugger make CLU available on a wider variety of architectures
than the earlier native CLU compilers that ran only on Vaxes and 6800’s. The
CLU language is described in the book Abstraction and Specification in Program
Development by Barbara Liskov and John Guttag (MIT Press, 1986), and also in
the CLU Reference Manual by Liskov et al (Springer-Verlag, 1981).

1 The CLU compiler

A CLU program consists of one or more modules, also known as abstractions. The
interface specification for an abstraction completely describes how clients (i.e.,
other abstractions) see the abstraction and how they can use it. The interface
specification for a procedural or iteration abstraction is determined by the header
for that procedure or iterator; the interface specification for a data abstraction
(i.e., a cluster) is determined by the header for the cluster together with the
headers for the operations named in the cluster header. The implementation of
each abstraction is theoretically invisible to its clients.

Generally, the code for each module is kept in a separate file, the name of which
ends with .clu. Sometimes it is convenient for several modules to employ common
declarations for compile-time constants, e.g., maz Len = 100 or intSeq = seq[int].
Such “equates” are generally kept in a separate file, the name of which ends with
. EqU.



1.1 Setting up your environment

To make it easy to use CLU, you should customize your Unix environment as
follows. Let "CLU be the directory in which CLU is installed. This directory may
be /fusr/clu, /usr/pclu, /usr/local/lib/clu, or some other directory. Check with
your system administrator to find where "CLU is.

e Put the command setenv CLUHOME clu-location in your .cshrc file, where
"CLU is located at clu-location. (If you are using the bash shell, use the
command export CLUHOME=clu-location instead.) This enables various parts
of the CLU system to find the information they need in "CLU.

e Put $CLUHOME/exe on your Unix search path, e.g., by adding it to the set path
command in your .cshre file. This allows you to invoke the CLU compiler (pclu)
and the CLU indenter (cludent).

1.2 Compiler commands

The CLU compiler compiles .clu files into .c files, which must then be compiled and
linked using the C compiler.! The CLU compiler can be invoked from the Unix
shell by the command pclu. Useful compiler commands include the following.

Command Effect

ce create a compilation environment

Xce extend a compilation environment

spec add interface specifications to the type library
(ignoring implementations)

check check syntax and semantics without generating a .o file

compile check and generate a .c file (if there are no errors)

dump dump the type library to a .lib file

merge read a type library from a .l:ib file

optimize turn on optimization

optimize false | turn off optimization

ext false turn off reporting of external abstractions

help provide a summary of all compiler commands

quit exit from the compiler

IEarlier native CLU compilers for Vaxes and 6800’s compiled .clu into object .bin files, which
were linked by a CLU linker. The portable compiler compiles into C rather than into machine
language.



1.3 How the compiler works

The CLU compiler maintains a type library and a compilation environment (CE).
The type library contains specifications of abstractions; initially, it contains the
specifications for CLU’s built-in modules. The CE contains “equate” information;
it is initially empty. In order to do proper type checking between abstractions, the
CLU compiler adds interface specifications to its type library. When it processes
an abstraction, the compiler remembers the interface of the abstraction in the
type library and uses it in future type checking.

When an abstraction is successfully compiled, two messages may follow the
compilation. The first lists undefined abstractions, that is, abstractions that do
not have specifications in the type library. Undefined abstractions should be
avoided, because they make it impossible for the compiler to perform complete
type-checking. The second message lists abstractions used in the file being
processed whose specifications are known. (This message can be suppressed by
issuing the command ext false to the compiler.)

There are three commonly used ways to get specifications into the type library.

1. merge in an appropriate type library (.[ib file).
2. spec, check, or compile the .clu file containing the abstraction.

3. spec a .spc file containing the interface specification for the abstraction. (A
.spc file differs from a .clu file in that it contains procedure and cluster headers,
but no implementations.)

The top most procedure must be named start_up.

1.4 Command Descriptions

Following are descriptions of the most commonly used compiler commands. Each
command can be abbreviated to two or more characters (e.g., compile can be
abbreviated to co).

e ce filename { , filename ... }

The ce command creates a compilation environment from the named .equ
files. Any previously existing compilation environment is forgotten. (See xce



comand.) The compiler will supply the suffix .equ if it is not part of filename.
Each file named in this command must contain only equates.

xce filename { | filename ... }

The xce command adds the equates in the named .equ files to the current
compilation environment.

check filename { , filename ... }

The check command checks for syntax and type errors in the named .clu files.
The compiler will supply the suffix .clu if it is not part of filename.

compile filename { , filename ... }

The compile command compiles the named .clu files into .o files. The compiler
will supply the suffix .clu if it is not part of filename. A .o file is produced only
if there are no errors. Hence, if a .o file is produced, any messages are warnings,
not errors. The compiler generally produces .o files that are suitable for use
with the CLU debugger. Once a program has been debugged, more efficient .o
files can be produced by issuing the opt command to the compiler before the
compile command.

spec filename { | filename ... }

The spec command enters the interfaces of the abstractions in the named .spc or
.clu files into the type library without type-checking any implementation bodies.
The compiler will supply the suffix .spc or .clu if it is not part of filename.

The type library initially contains the interfaces for the modules defined in
the CLU reference manual. Every module that is processed successfully with
a command, check, or spec command has its interface added to the library.
However, the compiler makes only a single pass over a file, so references within
one module in a file to a module defined later in the file will not be type-
checked unless the interface of the referenced module is already in the library.
To get complete type-checking, it is generally necessary to spec or check all
modules/files in a program before compiling them.

dump filename

The compiler retains in the type library the interface of every module it sees.
This library can be dumped to a .lib file with the dump command and later
reloaded with the merge command. The compiler will supply the suffix .lib if
it is not part of filename. Libraries make complete type-checking much easier
and faster, particularly for very large programs.

4



e merge filename { , filename, ... }

The merge command loads libraries from the given .[ib files and merges them
with the current type library. The compiler will supply the suffix .lib if it is
not part of filename. If the current library already contains an interface for a
module in the library being loaded, the new interface will replace the old.

e optimize [ false |

The optimize command turns code optimization on or off. Optimized code
runs faster. Unoptimized code provides more information when used with the
CLU debugger.

1.5 Producing an executable program

After you have successfully compiled your .clu files into .c files, you must compile
and link these files using the C compiler. The easiest way to do this is to use the
Unix make facility, which can also be used to compile your .clu files. To use make,
you generally construct a file named Makefile and type the shell command make.
To use a makefile named myMakefile, type make -f myMakefile.

Figure 1 contains a sample makefile that can be used to compile the file named
factorial.clu into a program that can be used with the CLU debugger.?

The makefile specifies that the executable file factorial depends on the object
file factorial.o,, which in turn depends on the CLU source file factorial.clu. The
makefile performs the following actions when it is invoked.

1. If factorial.clu is newer than factorial.o, or if factorial.o does not exist, then the
makefile invokes the CLU compiler with the following commands.

Command ‘ Effect
ext false turns off reporting of external abstractions
spec factorial enters interface specifications in type library

compile factorial | compiles factorial.clu into factorial.o

It is important to spec the source file before compiling it, so that specifications
for abstractions that occur later in the file (e.g., a procedure named factorial)
can be used to type-check routines that occur earlier (e.g., the start_up
procedure).

2The three indented lines in the makefile begin with a tab character. The make program will
not work if these tab characters are replaced by spaces.



# Sample CLU makefile

CLU = ${CLUHOME}/exe/pclu
LDFLAGS = -L${CLUHOME}/code -lpclu_debug -lgc -1lm -lc -lpthread
DEBUG = ${CLUHOME}/debug/*.o0

factorial: factorial.o
${CC} -o factorial factorial.o ${DEBUG} ${LDFLAGS}

factorial.o: factorial.clu
rm -f factorial.c

${CLU} -ext false -spec factorial -compile factorial

clean:

rm -f factorial factorial.o factorial.c

Figure 1: Sample makefile for creating programs for CLU debugger

2. If factorial is newer than factorial.o, or if factorial does not exist, then the
makefile invokes the C linker with the command

cc -o factorial factorial.o ${CLUHOME}/debug/*.o \
-L${CLUHOME}/code -lpclu -lgc -1m -1lc -lpthread

to link factorial.o with the CLU debugger and library files to produce an
executable file named factorial.

Because the above commands are tedious and difficult to type correctly,
programmers are strongly encouraged to put them into makefiles and not to type
them by hand.

Once the program factorial has been debugged, the makefile in Figure 2 can
be used to produce an optimized version of the program. Before typing make with
this makefile, you must type make clean to remove the files created for use with
the debugger.

1.6 Managing larger programs

The two makefiles in the previous section are appropriate for small programs. For
larger programs, more sophisticated makefiles can save time in several ways.

6



# Sample CLU makefile

CLU
LDFLAGS

${CLUHOME}/exe/pclu
-L${CLUHOME}/code -lpclu -1lgc -1lm -lc -lpthread

factorial: factorial.o
${CCY} -o factorial factorial.o ${LDFLAGS}

factorial.o: factorial.clu
rm -f factorial.c
${CLU} -ext false -spec factorial -opt -comp factorial

clean:
rm -f factorial factorial.o factorial.c

Figure 2: Sample makefile for creating optimized programs

e They can be used to avoid recompiling all modules whenever a single module
changes.

e They can shorten the time needed to create a type library by using the merge
command instead of the spec command.

Figure 3 contains a sample makefile for managing a moderate size program.
Definitions at the beginning of the makefile describe where to find the modules
that must be compiled and linked to build an executable program:

e SOURCES contains a list of the four source .clu files for the program.

e EQUATES is the name of an .equ file containing equates (such as strSeq =
sequencelstring]) that are used in several of the source files.

e LIBRARY is the name of a CLU type library that will be constructed from the
interface specifications in the source files.

e OBJECTS contains a list of the four .o files that will be produced by the C
compiler from four .c files produced by the CLU compiler.

e PROGRAM is the name of the executable program that will be produced from the
.0 files and the CLU libraries by the C linker.



### Sample Makefile for multimodule program

CLU = ${CLUHOME}/exe/pclu
LDFLAGS = -L${CLUHOME}/code -lpclu_debug -lgc -1m -lc -lpthread

CLULIBS = ${CLUHOME}/1lib/*.1lib

DEBUG = ${CLUHOME}/debug/*.o

EQUATES = Equates.equ

SOURCES = collection.clu countWords.clu getWord.clu lowercase.clu
LIBRARY = countWords.lib

OBJECTS = collection.o countWords.o getWord.o lowercase.o

PROGRAM = countWords

.SUFFIXES: .o .clu

.clu.o:
rm -f $*.c
${CLU} -ext false -merge ${LIBRARY} -ce ${EQUATES} \
-compile $<

${PROGRAM}: ${0OBJECTS}
${CC} -o ${PROGRAM} ${0OBJECTS} ${DEBUG} ${LDFLAGS}

${LIBRARY}: ${EQUATES} ${SOURCES}
make library

library:
${CLU} -ext false -merge ${CLULIBS} -ce ${EQUATES} \
-spec ${SOURCES} -dump ${LIBRARY}
all: ${LIBRARY} ${PROGRAM}

clean:
rm -f ${LIBRARY} ${0BJECTS} ${PROGRAM}

Figure 3: Makefile for multimodule program




The .SUFFIXES: line in the makefile declares that .o files can be built from .clu
files, and the three lines beginning with the one that contains .clu.o: instruct
the makefile to do this using the following commands:

Command Effect

ext false turns off reporting of external abstractions

merge ${LIBRARY} | creates a type library from count Words.lib

ce ${EQUATES} creates a compilation environment from Equates.equ
compile $< compiles the .clu file into a .o file

The remainder of the makefile describes the actions it will take in response to
user commands.

e The first use of the makefile should be via the command make all, which
causes the makefile to build the type library countWords.lib and then to build
the executable program countWords.

e Afterwards, whenever there is a change in the implementation of a procedure
in one of the source .clu files, the command make (or make countWords) should
be typed to rebuild the executable program countWords. The makefile will
determine automatically which .o files are out of date with respect to the
recently changed .clu files, and it will recompile only those files before relinking
countWords. 1t is precisely this behavior of the make facility that makes it so
attractive: when you change a small part of a large system, make notices exactly
which files you’ve changed, and it updates just that the part of the system that
depends on those files.

e Whenever there is a change to a procedure or cluster interface in one of the
source .clu files, the command make all must reissued to remake the type
library before remaking the executable program.

There are two important limitations of makefiles such as this:

1. Because .clu files contain implementations for procedures in addition to headers
for clusters and procedures, there is no way for the makefile to determine
when a change in a .clu file affects an interface and when it affects only the
implementation of an interface. Hence, to avoid remaking the .[tb interface
library every time an implementation changes, the makefile requires an explicit
make library command whenever an interface changes.



2. The makefile starts a separate CLU compilation to remake each out-of-date
.0 file. More sophisticated makefiles can be constructed that start a single
compilation to remake all out-of-date .o files; these makefiles save time because
they read .lib type libraries and build compilation environments from .equ files
just once, rather than several times. But they are much more complicated than
the makefile shown here, and are not necessary for moderate-sized projects.

2 Using Emacs with CLU

The emacs editor provides convenient facilities for preparing and compiling CLU
source files. A special clu-mode allows you to access information about CLU using
the emacs help facility, and it allows you to run the CLU compiler and indenter
under emacs. It also automatically indents lines in a CLU program as you enter
them.

In order to use emacs with CLU, you should edit your .emacs file (if you do
not have one, create one) to load a library that defines a clu-mode. You can do
this by inserting the file "CLU/emacs/.emacs into your .emacs file.

2.1 Using Emacs to prepare CLU programs

The emacs editor will go into clu-mode automatically when you visit any file with
a name that ends in .clu. Once in clu-mode, the following commands are available:

<ESC> & Runs the CLU compiler.

When typed in a buffer named test.clu, <ESC> & causes emacs to propose
running the CLU compiler with the command pclu test.clu. You can edit
this command line, or you can replace it with the command make, before typing
<RETURN>; emacs will then run pclu or make and display the results in a separate
compilation buffer. You can also edit the command line to pclu alone, and then
enter compiler commands by positioning the cursor at the compiler prompt in
the compilation buffer.

C-X C-K Kills a running CLU compiler.

C-X ‘ Locates errors after a CLU compile.

If there were errors in a CLU compilation, C-X * will position the first error
message at the top of the compiler window and put the cursor at the beginning

10



of the line containing the error. Each successive C-X * will move to the next
error.

<ESC> <TAB> Indents the current buffer.

This command indents the file in a more CLU-like fashion than is done
automatically in clu-mode.

At any time while in emacs, you can return the display back to one window by
entering either C-X 1 or C-X 0. C-X 1 returns the entire display to the window
in which the cursor is presently in. C-X 0 returns the entire display to the other
window. C-X b can be used to move to any buffer.

2.2 CLU help from Emacs

You can use the emacs help facility to view information in the CLU reference
manual. To get CLU help, type C-h (the help key) followed by one of the keys:

e d for help on CLU symbols such as int$mul, array, ARRAY$LOW, FILE NAME,
string$s2ac, stream$primary_output.

e g for general CLU information on topics such as terminal_i/o , file,
own_variables, CLUSTERS, syntactic_sugar.

e / for CLU apropos. Give a partial name, like file, and get a list of all the
CLU symbols and topics that include that name.

For example, if you type C-h d, emacs will prompt you with Describe CLU
symbol:  If you type oneof$make_ <RETURN>, emacs splits your screen and gives
help about the CLU operation oneof$make..

You can request information using uppercase, lowercase, or a mixture of
uppercase and lowercase. Symbol completion works (hit the <TAB> key); for
example, if you type array$ followed by <TAB>, you’ll get a list of possible
completions (all the operations on the CLU array abstraction in this case). If
the cursor is placed on a CLU symbol when you type C-h d, emacs will propose
giving help about that symbol; for example, if your cursor is placed someplace on
array[fool$low in your file, and you type C-h d, emacs will prompt you with
Describe CLU symbol (default array$low): ; typing <RETURN> selects this
default help topic.

11



To be reminded of this information, you can type M-x clu-doc-help (i.e.,
META-x clu-doc-help).

3 The debugger

The CLU debugger enables users to monitor execution of a program. Users can
single step a program, executing one line at a time, or they can set breakpoints in
the program. The debugger suspends execution of a program whenever it reaches
a breakpoint, so that the user can determine how control reached that breakpoint
and/or examine the values of program variables.

Whenever a procedure is invoked, information about the invocation is pushed
onto a runtime stack. This information is known as a stack frame. By examining
the stack when a breakpoint is reached, the user can determine how control reached
the current procedure.

The debugger enables users to print the values of program variables, which
are CLU objects. Users can control how much of the representations for objects
are displayed. The printing depth is the maximum number of levels of nesting of
an object that will be displayed. The printing width is the maximum number of
components of an object that are displayed at each depth. The greater the width,
the more elements in an array and the more fields in a record that are printed.
The greater the depth, the more information about each element in an array or
each field in a record that is displayed.

3.1 Command overview

A debugger command consists of a command name followed by a sequence
of arguments separated by spaces. The following describes related groups of
debugger commands. The next section contains an alphabetical list of all debugger
commands and describes them in detail.

e Running

The run and continue commands cause the program to run continuously. The
next command causes execution of a single program line.

e Breakpoints

12



The break command sets breakpoints. The show command shows the current
breakpoints. The delete command deletes breakpoints. The step command
turns on single stepping for a procedure. The unstep command turns off single
stepping for a procedure. The trace command turns on tracing for exceptions.
The untrace command turns off tracing for exceptions.

e The stack
The where command displays the stack. The up and down commands select
different frames in the stack.

e Printing
The print command displays the values of variables. The width and depth
commands control how much of the value is displayed.

e Invocation

The eval command evaluates procedure invocations.

e Source code

The 1list command displays source code. The func command selects a
procedure to be displayed. Reaching a breakpoint also selects the procedure
containing as the one to be displayed. Moving up and down the stack changes
the procedure to be displayed.

e Miscellaneous

The help command gives brief information on debugger commands. All
commands can be displayed via help all. The quit command terminates
the debugger.

3.2 Commands

This section describes each command in detail. Commands are listed alphabet-
ically. Users can repeat execution of the continue, eval, up, list, down, next
commands simply by pressing the <RETURN> key.

e break {breakpoint ...}

The break command instructs the debugger to stop when a particular procedure
or iterator is entered or exited or before a particular line in a file is executed.
Each breakpoint is either the name of a procedure, the name of an iterator, or a

13



line number, which refers to a line in the file containing the current procedure
(or iterator). Note that the func, up, and down commands change the current
procedure. Some examples:

break start_up % sets breakpoints on entry to and
% exit from the top-most procedure

break 10 % sets a breakpoint at line 10
% in the current procedure

break 10 20 % sets breakpoints at lines 10 and 20
% in the current procedure

break t$opl t$op2 % sets breakpoints on entry to and
% exit from procedures t$opl and t$op2

break t$opl t$op2 10 % sets breakpoints on entry to and
% exit from procedures t$opl and t$op2
% and at line 10 in the current procedure
% (which may not be either t$opl or t$op2)

func t$opi % select function t$opl
break 10 % sets a breakpoint at line 10 in t$opl

Whenever the debugger reaches a breakpoint, it displays the corresponding line
in the source file and stops before executing that line.

continue

The continue command directs the debugger to continue running the program,
either until the next breakpoint or until the next instruction in a procedure (or
iterator) that is being single-stepped. It terminates any single-stepping set by
the next command in the current procedure (or iterator).

delete breakpoint {breakpoint ...}

The delete command removes the specified breakpoints. (Note: If there are
two breakpoints with the same line number, only the first will be deleted.) The
argument all causes all breakpoints to be removed. Some examples:

delete t$opl % deletes the breakpoints on entry to
% and exit from the procedure t$opl

14



delete all % deletes all breakpoints

depth {integer}

The depth command controls the printing depth for objects printed by the
print command. If the depth command has no argument, the debugger prints
the current depth. See also the width command.

down {integer}

The down command moves down the specified number of stack frames. If no
argument is specified, then 1 is assumed. See also the where command and the
up command.

eval expression

The eval command evaluates the specified expression. The following section
describes the legal expressions. Some examples:

eval a = "xyz" % sets the variable a to "xyz"
eval po = stream$primary_output() % sets po to

% the primary output stream
eval stream$putl(po, a) % prints a on po

The assignment to the variable a in the example above changes the value of the
variable a in the current stack frame, if such a variable exists. Otherwise, it
creates a debugger variable named a and assigns the value of the expression to
that variable.

func {name}

The func specifies the named procedure (or iterator) to be the one of current
interest, either for listing source code or for setting breakpoints at line numbers.
If no argument is given, the current line is printed, along with the five preceding
and five succeeding lines

func t$op1l % select function t$opl
list % list lines surrounding t$opl
break 10 % set a breakpoint at line 10 in

% the file containing t$opl

15



e help {command}

The help command, with no arguments, gives a summary of command names.
When a command name is present as an argument, the help command will give
a short description of the specified command. If the argument is the keyword
all, short descriptions of all commands are displayed.

o list {integer ...}

The 1ist command displays source code in the current procedure (or iterator).
By default, the current procedure is the routine that last reached a breakpoint.
When the debugger first starts up, the start_up procedure is selected as the
current procedure. The func, up, and down commands change the current
procedure to the specified procedure. The arguments to 1ist specify the line
numbers of interest (use a space to separate the line numbers). The where
command can be used to show the current line numbers in the currently active
procedures.

list % list lines at current breakpoint
func t$op1l % select function t$opl
list % list lines surrounding t$opl

e next {integer}
The next command directs the debugger to single step to the next line
in the current procedure. When a numeric argument n is present, the
debugger executes the next n lines in the current procedure and prints out
the corresponding source code as each line is executed.

e print wvariable
The print command prints the values of variables, procedure arguments, and
own variables. Uninitialized variables are printed as 777.

e quit
The quit command causes the debugger to terminate.

e rebuild

The rebuild command causes the debugger to run make and then the program.

® restart

The restart command causes the debugger to restart the program by creating
a new process and by causing own variables to be initialized and the stack to
be empty.

16



run

The run command causes the debugger to continue running the program.

show

The show command displays the location of the current breakpoints.

step name

The step command turns on single stepping for the specified procedure.

trace name

The trace command turns on tracing for the named signal.

trace bounds % trace the bounds exception
trace all % trace all exceptions

unstep name

The unstep command turns off single stepping for the specified procedure.

untrace name

The untrace command turns off tracing for the named signal.

untrace bounds % stop tracing the bounds exception
untrace all % do not trace any exceptions

up {integer}

The up command moves up the specified number of stack frames. If no argument
is specified, 1 is assumed. See also the where command and the down command.
where {integer}

The where command displays the frames on the stack. A numeric argument n
limits the output to the last n frames pushed on the stack.

width {integer}

The width command controls the printing width for objects printed by the
print command. If the width command has no argument, the debugger prints
the current width. See also the depth command.

17



3.3 Expressions

The eval command currently accepts the following expressions:

e Constants:

— booleans: 0 for false, 1 for true

— characters: ‘a’

— strings: "abc"
— integers: 1

— reals: 1.2

e Variables:

The debugger first looks for a debugger variable with the given name, then for
a local variable in the current procedure (or iterator), then for an own variable
in the current procedure (or iterator) and finally for an own variable in the
current type.

The current version of the debugger does not always print the value of the
variable that one expects: if two parallel scopes use the same name to denote
variables of different types, the first declaration determines the print operation.

e Invocations:

The programmer may invoke stand-alone procedures and procedures from
parameterized or unparameterized clusters. Arguments to procedures can
be constants or variables, as described above. The current debugger does
not recognize sugars: users must type eval int$add(1,2) rather than eval
1+2. The debugger does not type-check arguments for procedure invocations;
irrecoverable errors may result if arguments do not have the appropriate types.

Some support has been added to ease access to components of complex objects.
Instead of eval record[fl:int, f2: stringl$get f1(rl), the user may
type eval rep$get _f1(rl).

3.4 Operational notes
3.4.1 Interrupting the debugger

When a program is running, typing control-c (i.e., holding down the control or
ctrl key and then pressing the letter c), will cause control to be passed back to

18



the debugger. This assumes that control-c is your INTR (interrupt) character.
(See man (2) stty.) For control-c to take effect, the program must pass through
a procedure entry/exit point or a procedure with line breakpoints set in it (these
lines do not need to be executed). A program in an infinite loop, which does not
call a procedure, will not respond to control-c. To kill off such a program, type
control-z (or your SUSP (suspend) character), use the jobs shell command to
locate the errant program, and type

kill -9 Ynumber_associated_with_program

You may need to use the reset shell command to restore normal tty behavior.

3.4.2 Auxiliary files

When a program is executed under the debugger, an auxiliary file with symbol
information is created. If the program is named psi, then the file is named
psl.sym.

To preserve break point settings between debugging sessions, the debugger
maintains the current breakpoints in a file. If the program is named ps1, then the
file is named ps1.bkpts.

3.4.3 A note on stacks

When an iterator is active, the invoking procedure will appear on the stack twice:
once for the invocation and once for the body of the for statement. Also, low-level
routines that are in-lined may not appear on the stack, so setting breakpoints at

such low-level routines may have no effect. Own initialization is not traceable and
does not appear on the stack.

3.4.4 Capturing output

The (Unix) script command provides a method for capturing output created
during a debugging session.

3.4.5 Fatal errors

When running a program, a fatal error may occur and result in a Unix
Segmentation Violation or Bus Error. When this happens, the debugger

19



executes a where command to display the stack and then terminates. These
errors are frequently caused by uninitialized variables.

If a program accesses uninitialized variables without triggering a fatal error,
the state of the debugger may be corrupted.

If a circularly-linked object is printed, the debugger may terminate when the
stack fills up.

3.4.6 How Printing Works

When printing an object of type t, the debugger uses t$print, if it exists and
takes an object of type t (or cvt) as its first argument and a pstream as its second
argument. If such an operation does not exist, rep$print for type t is used.

4 Line editing

The debugger and compiler support a limited amount of line editing. The
following files are used to specify key bindings for line editing: ~/.lineedit.keys
and ~/.inputrc. These files override the default settings given by the following
table.

Key Action Alternative key
ctrl-A | move to beginning of the line ESC
ctrl-B | move back (left) one character left-arrow on 1k-201’s

ctrl-D | delete current character

ctrl-E | move to end of current line
ctrl-F | move forward (right) one character | right-arrow on 1k-201’s
ctrl-J | complete entry

ctrl-K | delete to the end of the line remove-key on 1k-201’s
ctrl-M | complete entry

ctrl-N | move to next history item down-arrow on 1k-201"s
ctrl-P | move to previous history item up-arrow on 1k-201’s

ctrl-U | delete line
ctrl-W | delete word

del delete previous character
move forward one word next-screen on 1k-201’s
move back one word prev-screen on lk-201"s

20



