Introduction to Metamathematics

Julia B. Robinson

Lecture Notes from Mathematics 225
Stephen J. Garland
Department of Mathematics, University of California at Berkeley 1963-1964

These notes are from Julia Robinson's introductory graduate level course in mathematical logic. In the late 1960 s, they were a widely used reference for students preparing for the PhD qualifying examination in logic. Topics include

- the completeness, Skolem-Löwenheim, and Craig interpolation theorems for firstorder logic,
- the completeness of various first-order theories, including Presburger arithmetic (shown by elimination of quantifiers), real closed fields (shown by model completeness), and fields of characteristic p (shown by the Łoś-Vaught test),
- weak second order logic,
- hyperarithmetic sets, which are shown to be those that are Herbrand definable and which properly include the arithmetically definable sets (because the satisfaction function for arithmetic is Herbrand definable),
- equivalent definitions of recursive sets (by definability from a finite system of functional equations and by Turing computability),
- primitive recursive and diophantine sets,
- Gödel's incompleteness and second theorems,
- the undecidability of the theory of groups (via the interpretability of R. M. Robinson's essentially hereditarily undecidable theory Q), and
- the exponential diophantine definability of recursively enumerable sets (Davis, Putnam, and Robinson, Annals of Mathematics, 1961) and the existential definable of exponentiation in terms of addition, multiplication, and any infinite set of primes (steps towards the solution of Hilbert's tenth problem).

Mathematics 225

$$
\begin{aligned}
& \text { Julia Robinson } \\
& 1963-64
\end{aligned}
$$

Notes by Stephen J. Garland

References

Beth, The Foundations of Mathematics
Church, introduction to Mathematical Logic, I
Mene, Introduction to Metamathematics
A. Robinson, Introduction to Model Theory and to the Metamathematics of Algebra
Taroki, Logic, Semantics, Metamathematics
Wang, A survey of Mathematical Logic

Predicate Logic

Symbols: Logical Constants: $\quad \rightarrow, \rightarrow, \wedge(=v)$
Variables (denumerably infinite set)
Constants
Relation Symbols (predicates)
with each relation symbol π is associated a natural number called the remit of π.

Formulas: defined as usual
Our aim will be to prove the completeness theorem for the basic language given above, and then to expand this language and deceive, a new completenew theorem as a corollary to the old.

Rules of Inference: For any formulas ϕ, ψ, and variable α I. Detachment

From φ and $\varphi \rightarrow \psi$, infer ψ.
II. Generalization From φ, infer $\Lambda \propto \varphi$.

Axioms: (the first three schemata are due to kukasiewiez)
AI. $(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow x) \rightarrow(\varphi \rightarrow x))$
AQ. $\quad(\rightarrow \varnothing \rightarrow \varnothing) \rightarrow \varnothing$
AB. $\varnothing \rightarrow(\neg \varnothing \rightarrow \psi)$

At. $\Lambda_{\alpha}(\varphi \rightarrow \psi) \rightarrow\left(\varphi \rightarrow \Lambda_{\alpha} \psi\right)$, where α is not a free variable in ϕ.

As. $\Lambda \propto \varnothing \rightarrow \psi$, where ψ is obtained from Φ by replacing each free occurrence of a by a free occurrence of a variable β or by an occurrence of a constant θ.

Remarks: Parentheses are not included as symbols of the language, but are merely employed to simplify notation. They may be eliminated entirely by writing formulas as $\rightarrow \varphi \psi, \rightarrow \rightarrow \Phi \neg \psi x$, etc. By induction one may show that there exist o at mast one formula beginning with any given symbol of such a string.

Similarly, commas between formulas in a proof are also supertluow.

Let \sum, θ bo a set of formulas. A proof ${ }^{\circ}$. from \sum is a finite sequence of formulas of which the" last formula is θ and such that each formula is either an axiom, a formula of Σ, or is obtained from earlier formulas in the proof by detachment or generalization upon a variable which has no free occurrence in any formula of $\bar{\Sigma}_{0}$.
θ is a theorem of $\Sigma(\Sigma r \theta)$ iff there is a proof of θ from some finite subset Σ of Σ.

Note the necessity of Σ_{0} in order for $\Sigma \vdash \alpha, \Sigma \subseteq T \Rightarrow T r a$ to hold. This detail was overloolied in Henkin's original formulation.

Our notion of proof still does not avoid all difficulties. For instance, if we are given two proofs of $\sum \vdash \varphi$ and $\Sigma \vdash \varphi \rightarrow \psi$, we would like to construct a proof for ψ from Σ by combining the given proofs and then Using detachment. However this may not be done in general since different finite subsets Σ_{0}, Σ_{1} may have been used in the proofs of $\Phi, \Phi \rightarrow \psi$, and at some point in the proof of φ from Σ_{0} we may have generalized upon a variable occurring in Σ_{1}.

To avoid this difficulty we must modify the notion of proof. One method would be to follow Kleene by adding a list of variables generalized upon to the sequence of formulas in the proof. However this is two cumbersome, and we choose the following definition:
(1) is a formal theorem (theorem of logic) ($-\infty$) if there exists a finite sequences of formulas, the last of which is φ_{1} such that each formula is either an axiom or derived from previous formulas by detachment or generalization.
φ is a theorem of $\Sigma(\Sigma \vdash \theta)$ of there is a finite sequence of formulas, the \art of which is Φ, such that each formula is either a formal theorem, in Σ, or obtained from earlier formulas by detachment.

From this defmition we may derive our original rule of inference: (assuming the Deduction Theorem which foll owns)
IV. If α does not occur free in T and $\Gamma \vdash \varphi$, then $\Gamma \vdash \Lambda \alpha \varphi$.

Proof: It is sufficient to prove II for finite T, and we do this by induction on the number of formulas in T. If T has no formulas, then $r \varphi$ and also r na ϕ. Suppose the theorem is true if Γ has n formulas.

$$
\begin{aligned}
& \left\{\phi_{0}, \ldots, \phi_{n}\right\} \vdash \varnothing \\
& \left\{\phi_{0}, \ldots, \phi_{n-1}\right\} \vdash \phi_{n} \rightarrow \phi \\
& \left\{\phi_{0}, \ldots, \phi_{n-1}\right\} \vdash \Lambda_{\alpha}\left(\varphi_{n} \rightarrow \phi\right) \\
& \left\{\phi_{0, \ldots}, \phi_{n-1}\right\} \vdash \phi_{n} \rightarrow \Lambda_{\alpha} \phi \\
& \left\{\phi_{0}, \ldots, \phi_{n}\right\} \vdash \Lambda_{\alpha} \phi
\end{aligned}
$$

hypothesis
Deduction Theorem inductive hypothesis At, I I

Derived Role of Difference
III. From $\varphi \rightarrow \psi$ and $\psi \rightarrow x$, infer $\varphi \rightarrow x$.

Deduction Theorem. Let Σ be a set of formulas and let ϕ, ψ be formulas. If $\sum, \varnothing \vdash \psi$, then $\Sigma \vdash \varphi \rightarrow \psi$.

Proof: Let $\sigma_{0}, \ldots, \sigma_{n}=\psi$ be a proof of ψ from Σ, ∞, and tet $^{2} \sum_{0}$ be the set of formulas of \sum which occur in this proof. We prove that $\sum \vdash \varphi \rightarrow \psi$ by induction on the number of formulas in the proof of ψ from Σ_{0}, φ. case I. σ_{n} is formal precosem in Σ_{0}

$$
\begin{align*}
& \Sigma_{0} \vdash \psi \\
& \vdash \vdash \psi \rightarrow(\phi \rightarrow \psi) \\
& \Sigma_{0} \vdash \varphi \rightarrow \psi
\end{align*}
$$

$$
\left(\text { tanta lo }_{\text {logy }}\right) *
$$

C ave $\mathbb{I I} . \quad \sigma_{n}=\varnothing$

$$
\Sigma_{0} \quad \begin{array}{r}
\vdash \varphi \rightarrow \varnothing \\
\vdash \varphi \rightarrow \varnothing
\end{array}
$$

(tautology)
Case III. $\quad \sigma_{k}=\sigma_{j} \rightarrow \sigma_{n}$, where $j, k<n$

Unnecessary with revised notion of proof.
$\left(\begin{array}{ll}\text { Case II. } & \sigma_{n}=\sum_{0} \sigma_{j}, \phi \sigma_{n}, \text { where } j<n \text { and } \alpha \text { is } \\ & \text { not free in } \Sigma_{0} \text { or in }\end{array}\right.$ not free in Σ_{0} or in ρ

$$
\begin{aligned}
& \sum_{0} \vdash \varphi \rightarrow \sigma_{j} \\
& \sum_{0} \vdash \Lambda a\left(\varphi \rightarrow \sigma_{j}\right) \\
& \sum_{0} \vdash \varphi \rightarrow \Lambda \alpha \sigma_{j} \quad \text { II } \\
& \text { AH, I }
\end{aligned}
$$

* For proofs of tautologies, see pp. 89-95.

$$
\begin{aligned}
& \sum_{0} \vdash \varphi \rightarrow \sigma_{j} \quad \text { inductive } \\
& \left.\sum_{0}^{0} \vdash \varphi \rightarrow \sigma_{k}\right\} \quad \text { Hypothesis } \\
& \vdash\left(\varphi \rightarrow\left(\sigma_{j} \rightarrow \sigma_{n}\right)\right) \rightarrow\left(\left(\varphi \rightarrow \sigma_{j}\right) \rightarrow\left(\varphi \rightarrow \sigma_{n}\right)\right) \\
& \text { (tautolayy) } \\
& \Sigma_{0} \longmapsto \varnothing \rightarrow \sigma_{n} \\
& \text { I, I }
\end{aligned}
$$

Generalization Theorem. Suppose c is a constant which does not occur in any formula of Σ, φ, and let $\varphi(c)$ be obtained from (0) by replacing each free occurrence of α in \varnothing by c. If $\Sigma \vdash \varphi(c)$, then $\Sigma \vdash \Lambda_{\alpha} \theta$.

Proof: Let $\sigma_{0}, \ldots, \sigma_{n}=$ orc) be a proof of orc) from a Finite subset Σ_{0} of Σ, and let γ be a variable which does not occur in Σ_{0} or in any formula of the proof. It may be shown by induction that $\sigma_{0}(8), \ldots, \sigma_{n}(8)$ is a proof from Σ_{0}, where $\sigma(s)$ is the formula obtained by replacing $\sum_{\phi}{ }_{\phi} l(y)$ occurrences of c by o. Hence

$$
\begin{aligned}
& \Sigma_{0} \vdash \wedge \gamma \varphi(\gamma) \\
& \vdash \Lambda \gamma \varphi(\gamma) \rightarrow \varnothing \text { Ar } \\
& \vdash \Lambda \alpha(\Lambda \gamma \varphi(\gamma) \rightarrow \varnothing) \text { IV } \\
& \vdash \Lambda \gamma \varnothing(\gamma) \rightarrow \Lambda \alpha \varnothing \quad A x, I \\
& \Sigma_{0} \vdash \Lambda \alpha \varnothing \\
& \text { I }
\end{aligned}
$$

Σ is called consistent iff there exists no formula θ such that both $\Sigma \vdash \theta$ and $\Sigma \vdash \neg \theta$.

Lemma. (a) If Σ is not consistent, the $\Sigma \vdash \varphi$ for any ϕ.
(b) If Σ is consistent, then so is either Σ, ϕ or $\Sigma, 7 \varnothing$.
(c) If Σ, \varnothing is not consistent, then $\Sigma r \neg 0$.

Proof: (a) By hypothesis, there is a θ such that $\Sigma \vdash \theta$ and $\Sigma \vdash \neg \theta$.

$$
\left.F \neg \theta \rightarrow(\theta \rightarrow \theta) \quad\left(\tan \lambda_{0}\right)_{0, g}\right)
$$

Applying detachment, we obtain $\Sigma \vdash \varnothing$.
(b) Suppose Σ, \varnothing and $\Sigma, \mp \varnothing$ are both inconsistent. Then by (a), $\Sigma, \varnothing \vdash \neg \varnothing$ and $\Sigma, \neg \varnothing \vdash \varphi$.
By the Deduction Theorem.

$$
\begin{aligned}
& \sum \vdash \varphi \rightarrow \neg \varnothing \\
& \Sigma \vdash \neg \varphi \rightarrow \varnothing . \\
& \sum \vdash(\phi \rightarrow-\phi) \rightarrow \neg \phi \\
& \sum \vdash \neg \phi \\
& \Sigma \vdash \varphi
\end{aligned}
$$

tautology
I

But this contradicts the constituency of Σ.
(c) $\Sigma, \varnothing \vdash \neg \varnothing$

Since Σ, Φ is inconsist tent

$$
\begin{aligned}
& \sum \vdash \varphi \rightarrow \neg \varphi \\
& \vdash \vdash(\varphi \rightarrow \neg \varphi) \rightarrow \neg \phi \\
& \sum \vdash \neg \varphi
\end{aligned}
$$

Deduction Theorem
tautology

$$
I
$$

Completeness Theorem. Let S be a predicate logic, and suppose T is a consistent set of sentences. Then T can be simultaneously satisfied in a domain of individuals of the same cardinality as the set of symbols of s.

Proof: Let S^{\prime} be the predicate logic obtained from s by adjoining a set C of additional constants, C having the same cardinality as the set of symbols of S. we shall show that there is a set T^{\prime} of sentences of S^{\prime} such that
(a) $\Gamma \subseteq \Gamma^{\prime}$
(b) T^{\prime} is consistent
(c) For every sentence θ in S^{\prime}, either θ or $-\theta$ is in T.
(d) If $V_{0} \otimes \in T$; then for some $c \in C$, $\varnothing(c) \in T^{\prime}$.

We demonstrate the existence of such a T^{\prime} in the case S has denumerably many symbols. The general case is proved in an analogous fashion.

Let $\left\{\varphi_{1}, \varphi_{2}, \ldots\right\}$ be an enumeration of the sentences of S^{\prime} and let $C=\left\{c_{0}, c_{1}, \ldots\right\}$. Let $T^{\prime}=\bigcup_{r<\omega} T_{r}$, where

$$
T_{0}=T
$$

I. If T_{n}, Φ_{n} is inconsistent, then $T_{n+1}=T_{n}$.
II. If T_{n}, Q_{n} is consistent and φ_{n} is not of the form $V a \phi_{2}$ then $T_{n+1}=T_{n} \cup\left\{\Phi_{n}\right\}$.
III. If T_{n}, Q_{n} is consistent and $\varphi_{n}=V a \varnothing$, then l_{e} r be the \east natural number such that os 2 does not occur in T_{n}, Φ_{n}. Let $T_{n+1}=T_{n} \cup\left\{\varphi_{n}, \phi\left(c_{r}\right)\right\}$.

We show that T^{\prime} satisfies properties $(a)-(d)$.
(a) $T=T_{0} \subset \bigcup_{n c \omega}^{U} T_{n}=T^{\prime}$
(b) It is sufficient to show that T_{n+1} is consistent if Γ_{n} is consistent. Cases I and II are obvious.
Lemma. If $\Sigma, V_{\propto} \oplus$ is consistent and s does not occur in any formula of Σ, Φ, then $\Sigma, V a \varnothing, \phi(c)$ is consistent.
Proof: if $\Sigma, V_{a} \Phi, \phi(c)$ is inconsistent, then

$$
\begin{aligned}
& \Sigma, V_{\alpha} \phi \vdash-\phi(c) \\
& \Sigma, V_{\alpha} \varphi \vdash \Lambda_{\alpha} \rightarrow \varphi \\
& \Sigma, V_{\alpha} \phi \vdash \neg \rightarrow \Lambda_{\alpha} \neg \varphi \\
& \Sigma, V_{\alpha} \phi \vdash \neg V_{\alpha} \phi
\end{aligned}
$$ proceeding lemma Generalization Thu tautology, I definition of V,

which is a contradiction.
The lemma establisher case III.
(c) Since T^{\prime} is consistent so is either Γ^{\prime}, θ or $T i,-\theta$. Let θ_{n} be the formula which is consistent with Γ. Than $\Phi_{n} \in \Gamma_{n+1} \subseteq \Gamma^{\prime}$.
(d) Clear by construction.

Hence T^{\prime} has the required properties in the denumerable case.

In general let v be the cardinality of the set of symbols of S and set $C=\left\{c_{\mu}\right\}_{\mu<z}$. Then the set of sentences of S^{\prime} has cardinality τ and may be indexed $\left\{\varphi_{\mu}\right\}_{\mu<\nu}$. De fine $T^{\prime}=U_{\mu<\nu} T_{\mu}$. where the T_{μ} are defined as before with the added condition that if μ is a limit ordinal then $T_{\mu}=U_{\lambda<\mu} T_{\lambda}$. The proof that (a)-(d) hold is obviously still valid.

We assumed in the construction of T ' that T being consistent in S implied Γ was consistent in S^{\prime}. For suppose T is inconsistent in S^{\prime}. Then $T \nleftarrow \theta$ and $T \nleftarrow-\theta$, where we can take θ in S. If we write down proofs of θ and $\neg \theta$ and then replace all constants in C by variables, the result will be proofs of θ and $\neg \theta$ from T in S. Hence T would be inconsistent in S, contradicting our hypothesis.

We now construct a model for S^{\prime}, taking as the domain of individuals the constants of S^{\prime} and defining a valuation V as follows: for all sentences ϕ, ψ,
(i) If ϕ is an atomic sentence, $V(\phi)=T$ if $T r \phi$.
(ii) $V(-\phi)=T$ if $V(\phi)=F$.
(iii) $V(\phi \rightarrow \psi)=F$ if $V(\phi)=T$ and $V(\psi)=F$.
(iv) Nf($\phi==$ Na $x, V(\phi)=T$ if for every element in the domain of individuals $V(x(c))=T$, where $X(c)$ is obtained from x by substituting , for all free occurrences of α.

It may be demonstrated by induction that there is exactly one such valuation V.

Lemma．For every sentence ϕ of $S^{\prime}, T^{\prime} r \phi$ if $V(\phi)=T$ ．
Proof：We prove the lemma by induction on the length of φ ．If ϕ is an atomic sentence，$T^{\prime}-\varnothing$ if $V(\phi)=T$ ， by definition．

Cave I．a）$P=-\psi$ and $\nabla(\psi)=T$
$T^{\prime} \vdash \psi \quad$ inductive hypothesis
not $T^{\prime} \vdash ー \psi$
b）$\varphi=-\psi$ and
not $T^{\prime} \longmapsto \psi$
T＇レー
since Γ^{\prime} is consistent $V(\psi)=F$
inductive hypothesis
since T^{\prime} is complete

Case II：$\varnothing=\psi \rightarrow x$
a）$V(\psi)=F$

$$
\begin{aligned}
& T^{\prime} \vdash-\psi \\
& \vdash-\sim \psi \rightarrow(\psi \rightarrow x) \\
& T^{\prime} \vdash \varnothing \\
& V(\varnothing)=T
\end{aligned}
$$

b）$\quad V(x)=T$

$$
\begin{aligned}
& T^{\prime}+x \\
& r x \rightarrow(\psi \rightarrow x) \\
& T^{\prime} \vdash \phi \\
& V^{\prime}(\phi)=T
\end{aligned}
$$

inductive hypotheses tautology
I definition of v
inductive hypothesis tautology
I
definition of V
c）$V(\psi)=T$ and $V(x)=F$ $T^{\prime} \vdash \psi$

$$
T^{\prime} r \rightarrow x
$$

$$
\vdash \psi \rightarrow(-x \rightarrow \neg(\psi \rightarrow x))
$$

$$
T^{\prime} \longmapsto \backsim \varphi
$$

not $T^{\prime}-\varnothing$

$$
V(\theta)=F
$$

$r \psi \rightarrow(-x \rightarrow \neg(\psi \rightarrow x))$	tautology
$T^{\prime} r \rightarrow \varphi$	I, I
not $\Gamma^{\prime} r \varphi$	T consistent
$V(\phi)=F$	def．of ∇.

\｛inductive hypothesis

Case III. $D=\Lambda_{\alpha} \psi$
a) Suppose $T^{\prime} \vdash \wedge a \psi$.
$T^{\prime} \not \mathrm{p}^{\prime} \neq \psi(\mathrm{c})$, for every , $V(\psi(c))=T, \quad$ for every s $V($ nay $)=T$
b) Suppose not T'rnar.

$$
\begin{aligned}
& T^{\prime}:-\Lambda_{\alpha} \psi \\
& \vdash-\Lambda_{\alpha} \psi \rightarrow V_{a-\psi} \psi \\
& T^{\prime} \vdash V_{\alpha} \neg \psi \\
& T^{\prime} \vdash-\psi(c) \\
& V(\psi(c))=F \\
& V\left(\Lambda_{\alpha} \psi\right)=F
\end{aligned}
$$

AS, I inductive hypeothois def. of V
since T^{\prime} is complete tautology
I
for some ce C by constration inductive hypothesis def. of v

The lemma concludes the proof of the completeness theorem since it shows that the set Γ^{\prime} is simultaneously satisfiable by V in the model constructed.

Problems on the size of models
Let T be a vet of sentences of a predicate logic S.

1. If T has a model then it has a model of the same cardinality as its set of symbols.
2. If T has a model of cardinality μ, then for every $v>\mu, T$ has a model of cardinality v.
3. For every infinite cardinal τ there exist o a predicate logic of τ symbols such that for some T no model with fewer than v elements exists.
a) Demonstrate such a predicate logic with no constants.
b) Demonstrate such predicate logic with a finite number of relation symbols.
4. How large can a set T of ν sentences force a model to be?

Sketcher of solutions:

1. T has a model $\Rightarrow T$ consistent; use completeness theorem
2. Duplicate one individual τ times.
3. a) Take v rotations $\left\{F_{\mu}\right\}_{\mu<v}$ and $l_{C} t \quad T$ contain all instances of $V_{x} F_{\mu} x, \Lambda_{x}\left(F_{\mu x} \rightarrow \neg F_{\nu} x\right)$, where $\mu \neq \nu$.
b) Take v constants $\{c, \pi\}<v$ and one relation F. Let T contain all instances of $F c_{\mu} c_{\mu}, \sim F c_{\mu} c_{2}$, where $\mu \neq 2$.
4. If z is infinite, there exists a model of cardinality ν - form a sub-predicate logic containing only the constants and predicates of T.

If v is finite, the model may still have to be infinite. Egg., take

$$
\Gamma=\left\{\begin{array}{l}
\Lambda_{x}-F_{x x} \\
\Lambda_{x} V_{y} F_{x y} \\
\Lambda_{x y z}\left(F_{x y} \rightarrow\left(F_{y z} \rightarrow F_{x z}\right)\right) .
\end{array}\right.
$$

Predicate Logic with \entity

To our original system of predicate logs we add a relational constant and the following axioms:

AG. $\alpha=\alpha$
AT. $\alpha=\beta \rightarrow(\phi \rightarrow \psi)$, where ψ in obtained from ϕ by replacing one Free occurrence of a by a free occurrence of β

For the proof of the following theorem, the subscript = will indicate a notion of the predicate logic with identity; nonsebscripted notions reter to the former predicate logic.

Completeness Theorem for Predicate Logic with Identity
Let Γ be a consistent $=$ set of sentences of a predicate logic S with equality. Then T has a model $=$ with cardinality at most that of the set of symbols of S.

Proof: Let S_{0} be the predicate logic without identity, but with a binary relation $=$. Let Δ be the set of sentences obtained by generalization of $A 6, A 7$. Then $\Delta t \Phi$ for every instance ϕ of $A 6, A 7$ by $A 5$. Also, if $\theta e \Delta, F=\theta$. Hence if T is consistent, then $\Gamma \cup \Delta$ is consistent.

Let S have v symbols and let M be a model of cardinality v of $T \cup \Delta$. The relation = will go into some binary relation E in the model M. E is an equivalence relation since

$$
\begin{aligned}
& F=\alpha=\alpha \\
& F=\alpha=\beta \rightarrow \beta=\alpha \\
& F=\alpha=\beta \rightarrow(\beta=\gamma \rightarrow \alpha=\gamma)
\end{aligned}
$$

$$
A 6
$$

use A7 twice use A7

Now Vet M^{\prime} be a model whose domain consists of the equivalence classes of M determined by E. It is a matter of routine to check that M^{\prime} is a model $=$ for T and shat M^{\prime} has no more than \checkmark elements.

Skolem-howenheim Theorem
If S is a denumerable logic infinite and T is a set of sentences of S, then if Γ has an model, T has a denumerable model rand in fast a model of any cardinality.).

Proof: Adjoin to S a set $C=\left\{c_{\mu}\right\}_{\mu<v}$ of new constants, and let $\Delta=\left\{c_{\lambda} \neq c_{\mu}: \mu \neq \lambda\right\}$. Then $T \cup \Delta$. is consistent since T has infinite anode d and the constants occuring in any finite subset of Δ may be mapped $1-1$ into that model.

Hence Tum has a model of cardinality at most v, and Δ guarantees that this cardinality is at least v.

Lowenheim proved the theorem in 1915 in the case that T was finite Skolem generalized the result in 1920. Note that the proof applies equally to the following theorem:

If T has arbitrarily large finite models, then T has an infinite model.

Tarsi's Predicate Logic with Identity
Archie Math. Log \geq 1965, p. 61,81
Symbols: Logical constants: $A, \rightarrow, \rightarrow=$
Variables: v_{0}, v_{1}, \ldots
Relation symbols
Definitions: The Quine closure of a formula \varnothing with exactly the free variables $v_{i_{0}}, \ldots, v_{i_{n-1}}$, where $i_{0}<\ldots<i_{n-1}$, is the sentence $\Lambda v_{i_{0}} \cdots \Lambda v_{i_{n-1}} \phi$ and is denoted by $[\phi]$.
$R(\theta, \psi, \alpha, \beta)$ if ψ is obtained from ϕ by replacing one free occurrence of α in ϕ by a free occurrence of β.
$S(\phi, \psi, \alpha, \beta)$ if ψ is obtained from ϕ by replacing all free occurrences of a in Φ by free occurences of β.

All universally valid sentences of this logic can be derived from the following axioms by detachment. Furthermore, the axioms are independent. (α, β variables; φ, ψ, x formulas)

Axioms: B). $[(\phi \rightarrow \psi) \rightarrow((\psi \rightarrow x) \rightarrow(\phi \rightarrow x))]$
Ba. $[(\neg \varphi \rightarrow \varnothing) \rightarrow \varnothing]$
Bu. $[甲 \rightarrow(\neg \phi \rightarrow \psi)]$
B4. $\left[\Lambda_{\alpha} \Lambda_{\beta} \varphi \rightarrow \Lambda_{\beta} \Lambda_{\alpha} \varnothing\right]$
BS. $[\Lambda \alpha(\varphi \rightarrow \psi) \rightarrow(\Lambda \alpha \phi \rightarrow \Lambda \alpha \psi)]$
Be. $[\Lambda \alpha \oplus \rightarrow \varphi]$
B7. $[\phi \rightarrow \Lambda \alpha \varnothing]$, where α is not free in ϕ
B8. $[\neg \wedge \alpha \neg \alpha=\beta]$, where α and β are not the same variable
Ba. $[\alpha=\beta \rightarrow(\varphi \rightarrow \psi)]$, where ψ is atomic and $R(\varphi, \psi, \alpha, \beta)$

The advantages of Taroki's system is that it avoids substitution, and thereby leads to an easier arithmetization. A law of substitution may be derived, however, to aid in proving theorems, for if $s(\phi, \psi, \alpha, \beta)$, then $\vdash \psi \leftrightarrow \Lambda_{\alpha}(\alpha=\beta \rightarrow \infty)$. (r in old system)

Proof: $\vdash \beta=\alpha \rightarrow(\psi \rightarrow \phi)$
$\vdash \alpha=\beta \rightarrow(\psi \rightarrow \phi)$
$\vdash \psi \rightarrow(\alpha=\beta \rightarrow \infty)$
$\vdash \wedge \alpha(\psi \rightarrow(\alpha=\beta \rightarrow \phi))$
$\vdash \psi \rightarrow \Lambda_{\alpha}(\alpha=\beta \rightarrow \phi)$
$\vdash \Lambda_{\alpha}(\alpha=\beta \rightarrow \phi) \rightarrow(\beta=\beta \rightarrow \psi)$
$\vdash \beta=\beta \rightarrow\left(\Lambda_{\alpha}(\alpha=\beta \rightarrow \phi) \rightarrow \psi\right)$
$\vdash \quad \Lambda_{\alpha}(\alpha=\beta \rightarrow \phi) \rightarrow \psi$
by repeated use of A7
AT
tautology
II
AH
A 5
tautology
A_{6}, I

Lemmas: 1. $\vdash[\phi \rightarrow \psi]$, $\vdash[\varnothing] \Rightarrow \vdash[\psi]$ (\vdash in new venue)
2. $\vdash[\phi] \Rightarrow \vdash[\Lambda \alpha \phi]$
3. $\vdash[\varnothing \rightarrow \psi], \vdash[\psi \rightarrow x] \Rightarrow \vdash[\varphi \rightarrow \psi]$
4. If ϕ is tautological, then $\vdash[\theta]$.
5. $\vdash\left[\Lambda_{\alpha}(\varphi \rightarrow \psi) \rightarrow\left(\phi \rightarrow \Lambda_{\alpha} \psi\right)\right]$ if α is not free in ϕ
6. $\vdash[\alpha=\alpha]$
7. $\vdash[\alpha=\beta \rightarrow \beta=\alpha]$
8. $\vdash[\beta=\alpha \rightarrow(\phi \rightarrow \psi)] \Rightarrow \vdash[\alpha=\beta \rightarrow(\neg \psi \rightarrow \neg \phi)]$
9. $\vdash\left[{ }_{\beta}=\alpha \rightarrow(\varphi \rightarrow \psi)\right] \Rightarrow \forall[\alpha=\beta \rightarrow((\psi \rightarrow x) \rightarrow(\phi \rightarrow x))]$
10. $\vdash[\alpha: \beta \rightarrow(\phi \rightarrow \psi)] \Rightarrow \vdash[\alpha=\beta \rightarrow((x \rightarrow \phi) \rightarrow(x \rightarrow \psi)]$
II. $F[\alpha=\beta \rightarrow(\phi \rightarrow \psi)], \alpha, \beta \neq \gamma \Rightarrow \vdash[\alpha=\beta \rightarrow(\Lambda \gamma \phi \rightarrow \Lambda \gamma \psi)]$
12. $R(\phi, \psi, \alpha, \beta) \Rightarrow \vdash[\alpha=\beta \rightarrow(\phi \rightarrow \psi)]$
13. $S(\varphi, \psi, \alpha, \beta) \Rightarrow \vdash[\alpha=\beta \rightarrow(\varphi \rightarrow \psi)]$
14. $S(\Phi, \psi, \alpha, \beta) \& \alpha \neq \beta \Rightarrow \vdash[\wedge \alpha \varphi \rightarrow \psi]$

Tarski's system is complete, for any proof of φ in the old system can be transformed into a proof of $[0]$ in the new one. Axioms $A I-A 7$ are axioms $B I-B J$ and lemmas $5,15,6,12$ respectively.

Lemmas 1 and 2 are proved by induction: 1 by induction on the number of free variables in $\phi \rightarrow \psi$. The remainder of the proofs are routine.

Number Theory

Let N be the predicate logic with identity and Constants: 0,1
Relations (or operations): t, \cdot
Let r be the set of all sentences which hold in the arithmetic of natural numbers.

Now let N ' be formed from N by adding a new constant c, and let $T^{\prime}=\Gamma \cup\{c \neq 0, c \neq 1, c \neq \mid+1, \ldots\}$. Γ^{\prime} is consistent since any finite subset of $\{c \neq 0,(\neq 1, \ldots\}$ is consistent with r. Hence $r^{\prime \prime}$ has a denumerable model.

Thus no sot of sentences characterizes the natural numbers, since a model for T is not isomorphic to o model for T. This result on non-standard models was shown by skolem in 1934 .

A mathematical structure or relational structure consists of a domain A and certain relations loperations, constants). For example, the arithmetic of natural numbers is $\left\langle\omega, t_{1}, 0,1\right\rangle$.

A set $S \subseteq A$ is definable if there is a formula Φ with one free variable such that $S x \leftrightarrow \varphi(x)$. Similarly, a relation $R \subseteq A \times A$ is definable iff there is a formula φ of two free variables such that $R(x, y) \leftrightarrow \varphi(x, y)$.

Examples: x is a square $\leftrightarrow \quad V_{y}(y \cdot y=x)$

$$
\begin{array}{rll}
x \leq y & \leftrightarrow & V z(x+z=y) \\
x-y=z & \leftrightarrow & y+z=x v\left(z=0 \wedge V_{w}(x+w=y)\right) \\
x \mid y & \leftrightarrow & V_{z}(x \cdot z=y) \\
\times \text { Pow } Z & \leftrightarrow & \neg V z[(z+z+3) \backslash x]
\end{array}
$$

x is a prime $\leftrightarrow \quad x \neq 0 \wedge x \neq 1 \wedge \neg V_{y} z[x=(y+2) \cdot(z+2)]$

Nonstandard models for number theory: Denumerable Case
The natural numbers $0,1,1+1,1+1+1, \ldots$ will be abbreviated by $\Delta_{0}, \Delta_{1}, \Delta_{2}, \ldots$

What can be said about the "unnatural" numbers with respect to the ordering 's'? Their position may be determined by noting that any statement which holds in the standard model must hold in every nonstandard model. Egg.,

$$
\begin{aligned}
& \neg V_{x}(x<0) \\
& \Lambda_{x}\left(x \leq \Delta_{n} \leftrightarrow x=\Delta_{0} \text { v } x=\Delta_{1} \vee \cdots \vee x=\Delta_{n}\right)
\end{aligned}
$$

Thus any unnatural number must some 'after' all natural numbers. Let α be any unnatural number. We know that

$$
x \neq 0 \rightarrow V_{y}(x=y+1) \wedge V_{z}(z=x+1)
$$

Hence α belongs to a "row" $\ldots \alpha-\Delta_{2}, \alpha-\Delta_{1}, \alpha, \alpha+1, \alpha+\Delta_{2}, \ldots$ which extends infinitely in both directions. Rows are not interleaved under \& since

$$
\Lambda_{x} \sim V_{y}(x<y<x+1) .
$$

There are denumerably many rows since $\left[\frac{\alpha}{2}\right]<\alpha<\alpha+\alpha$, where $\quad y=\left[\frac{x}{2}\right] \leftrightarrow x=y+y \quad x=y+y+1$.
These rows are distinct by virtue of the definition of $i j$, for otherwise we could show that a natural number belonged to one of these rows. Likewise between any two rows is another row: $\quad \alpha<\left[\frac{\alpha \geqslant \beta}{2}\right]<\beta$.

The above arguments show that the order type of any denumerable nonstandard model is $\omega+(\omega+\omega) \eta$.

Theorem. There are exactly $2^{N_{0}}$ denumerable, non-isomurphic nonstandard models for arithmetic.

Proof: There are no more than $2^{N_{0}}$ models for arithmetic since there are only 2^{N} ways in which the relations + and. may be assigned in a denumerable domain.

On the other hand there are at least $2^{x_{0}}$ models. For let S be any subset of the natural numbers. Define a constant c_{s} and a set Δ_{s} of formulas

$$
\Delta_{S}= \begin{cases}P_{n} \backslash c_{S} & \text { whenever } n \in S \\ P_{n} \backslash C_{S} & \text { whenever } n \notin S\end{cases}
$$

where p_{n} is the $n^{\text {th }}$ prime. Any finite subset of Δ_{s} is consistent with the set Γ of true sentences of arithmetic, and thus Tu Tu Δ_{s} is consistent. By the completeness theorem, there is denumerable model m_{s} for $\Gamma_{u} \Delta_{s}$.

Now a given model m_{s} can satisfy only a denumerable number of sets Δ_{T}. For if $S \neq T, G_{S} \neq G_{T}$ in the model, and $M_{N_{0}}$ has only denumerably many elements. Since there are $2^{x_{0}}$ subsets of the natural numbers, there must be $2^{N_{0}}$ models to satisfy all the Δ_{s}.

As a corollary to the proof of the proceeding theorem, we see that we can construct a non-standard model with cardinality $2^{x_{0}}$; i.e., take a model for $T \cup \cup_{s} \Delta_{s}$.

Problems

1. Is there a number other than 0 which is divisible by all natural numbers in any nonstandard model of arithmetic?
2. Is there an unnatural prime π such that $\pi+2$ is also prime?
3. Io there a row each number of which is comparite? Is there a row each number of which is divisible by a natural number greater than 1 ?
4. Does every unnatural number have an unnatural prime divisor?
5. Show that every definable set of natural numbers can be defined by a formula of the form

$$
S_{x} \leftrightarrow Q \alpha_{0} Q \alpha_{1} \ldots Q \alpha_{n} P=0
$$

where P is a polynomial with integer coefficients.

Size of Models
Let S be a predicate logic with ν symbols and T be a set of sentences with an infinite or arbitrarily large finite models. Then we know T has models of every cardinality $\geqslant v$. We cannot do much better than this, for there is a predicate logic of $2^{x_{0}}$ symbols which has arbitrarily large finite models but no infinite models of cardinality $\leqslant 2 x_{0}$. Ire., choose constants $\left\{c_{\lambda}\right\}_{\lambda \leq \omega}$ and let $N_{k}=V\left(x_{1}, 1 f_{2} \wedge \ldots \cap x_{k} \ldots x_{1}\right)$. Now let T be the set of all sentences of the form
$N_{\alpha^{k}} \rightarrow c_{\alpha} \neq c_{\beta}$, where $\alpha \cap\{1, \ldots k\} \neq \beta \cap\{1, \ldots, k\}$.
For every integer k_{0} there is a model for T with $2^{k_{0}}$ elements since there are only $2^{k_{0}}$ subsets of $\{1, \ldots, k\}$. But any infinite model satisfies all the N_{k}, and hence the number of constants mut be 2^{x} :

We have seen that there are $2^{x_{0}}$ non-isomorphis denumerable models of arithmetic. Some of this complexity may be eliminated by strengthening the requirement on the model. I.e., let $\left\{S_{z}\right\}_{z<2} \alpha_{0}$ be all unary relations on ω and let T be the set of true sentences of the structure $a=\left\langle\omega, c, S_{0}, S_{1}, \ldots, s_{v}, \ldots\right\rangle$. Then all denumerable model for T are isomorphic. We first establish the following \emma:
Lemma. There is a class C of subsets of w with cardinality $2^{N_{0}}$ such that $S, T \in 巴 \Rightarrow S \cap T$ is finite.

Proof: For each real number α such that $1 \leq \alpha<10$ let $F_{\alpha}(n)=\left[\alpha \cdot 10^{n}\right]$ and set S_{α} equal to the range of F_{α}. Any two $S_{\text {a }}$ have a finite intersection since the decimal expansions of α and β for $\alpha \neq \beta$ agree for only a finite initial segment.

Theorem. Let S be a predicate logic with $2^{x_{0}}$ unary relations $\left\{S_{\tau}\right\}_{v<2} \%_{0}$ and a binary relations. Suppose $Q=\left\langle\omega,\left\langle S_{0}, \ldots\right\rangle\right.$, where the S_{2} exhaust all unary relations on ω, and let \sum be the set of true sentences of α. Then all denumerable models of Σ are isomorphic.

Proof: The standard model for a is preciecly the standard model of arithmetic since we can define the natural numbers by

$$
\begin{aligned}
& x=\Delta_{0} \leftrightarrow \hat{\lambda}^{\prime}(x \leq y) \\
& x=\Delta_{1} \leftrightarrow \hat{X}_{y}\left(y \neq \Delta_{0} \rightarrow x \leq y\right) \wedge x \neq \Delta_{0}, \text { etc. }
\end{aligned}
$$

Now suppose that Y has an unnatural model.
For every infinite set S_{z} the sentence

$$
\Lambda_{x} V_{y}\left(y \geqslant x \wedge S_{v} y\right)
$$

is true. Hence every infinite set S_{y} contains an unnatural number. But the sentence

$$
\wedge_{x}\left(S_{\alpha} x \wedge S_{\beta} x \rightarrow x<\Delta_{n}\right)
$$

is in $\sum{ }^{x}$ whenever S_{α} and S_{β} are in the class e of the lemma since $S_{\alpha} \cap s_{\beta}$ is finite in that case. Hence no two sets in C have an unnatural number in common, so that there must be at least $2^{N_{0}}$ elements in any nonstandard model.

Problem: Given a set Γ of sentences in an arbitrary predicate logic, show that if T has arbitrarily large finite models, then T has an infinite model of $2^{N_{0}}$ elements.

Well-Ordered Predicate Logics

Let \mathcal{L} be a (well-ordered) predicate logic with a well-ordered set of relation symbols. A structure $\mathbb{R}=\langle A, R, S, \ldots\rangle$ is called a structure of \mathcal{E} if the relations of R are well-ordered of the same type as the relation symbols of $\mathcal{2}$ and such that corresponding relations of α and R are of the same rank.

If $R=\langle A, R, \ldots\rangle$ and $S=\langle B, S, \ldots\rangle$ are structures of \mathcal{L}, R is a substructure of \& if $A \subseteq B$ and if R, S are corresponding relations, $R=S P A$, the restriction of S to A. We also say that $\&$ is an extension of R and write $\mathbb{R} \leqslant \&$ or $S \geqslant Q$.

A sentence D of \mathcal{L} is true in a structure R of \mathcal{L} iff \varnothing is true in the domain of R under the interpretation that each relational symbol of \mathcal{A} denotes the corresponding relation of R.

A structure R of d is a model of a set T of sentences of \mathcal{L} of every sentence of $T \neq$ is true in R.

Two structures \mathbb{R} and $\&$ of \mathcal{L} are
(i) arithmetically equivalent $(\mathbb{R} \equiv \mathcal{S})$ if every sentence of \mathcal{L} which is true in R is true in S^{*}
(ii) isomorphic $(R \cong S)$ iff there is a $1-1$ mapping of the domain of R onto the domain of $\&$ which preserves all relations.
R is an elementary substructure (subuytem) of 8 $(Q \propto \&)$ of R is a substructure of $\&$ which that whenever e elements a_{0}, \ldots, a_{n-1} in the domain of Q satisfy a formula ϕ of \mathcal{L} with n free variables, then $a_{0}, \ldots, \alpha_{n-1}$ satisfy ϕ in $\&$. we also say that s is an elementary extension of R.
"Note that "and conversely" is superfluous, since for every sentence θ, either θ or $\neg \theta$ is true in \mathbb{R}.

Examples.

1. Let $N T=$ natural numbers, $I N=$ integers, and $E N=$ even integers. Then if $R=\langle N T,+1,0,1\rangle$ and if T is any non-standard arithmetic,

$$
\begin{aligned}
& n \propto T^{\prime} \text { but not } N \cong T \\
& N \leq T \wedge \pi \equiv T \Rightarrow N \propto T
\end{aligned}
$$

2. Let $\varepsilon=\left\langle E N_{1}\langle \rangle\right.$ and $\ell=\langle I N,<\rangle$. Then $\varepsilon \cong \ell$ and $\varepsilon \leq U$, but not $\varepsilon \propto U$ since 0,2 satisfy $\rightarrow \underset{z}{V}(x<z<y)$ in ε but not in ℓ.

Theory of Fields

Let \mathcal{L} be the predicate loge with $0,1, t, \cdots$ A structure $F=\langle F, 0,1,+, \cdot\rangle$ is a field if the following sentences are true in \overparen{X}

$$
\begin{array}{rlrl}
{[(x \cdot y)+z} & =x+(y+z)] & {[x \cdot(y+z)} & =x \cdot y+x \cdot z] \\
{[x+y} & =y+x] & {[0 \neq 1]} & \Lambda_{y}^{y} y(x+y=0) \\
{[(x \cdot y) \cdot z} & =x \cdot(y \cdot z)] & {[x+0=x]} \\
{[x \cdot y} & =y \cdot x] & {[x \cdot 1=x]} &
\end{array}
$$

NB: The definition of a structure may be modified in the obvious manner to include constants and operations. For simplicity sake, however, we shall omit them from proofs, as the additional details are routine. Alternatively, we could omit them altogether and include additional axioms to treat $0,1, t$. as relations.

Let $R T=$ rational numbers. Then a structure $Q=\langle R T, 0,1, t, \cdot\rangle$ is a rational field, and if $Q^{\prime}=\left\langle Q^{\prime}, 0,1, t, \cdot\right\rangle$ is such that $Q \leq Q^{\prime}$ and $Q \equiv Q^{\prime}$, but not $Q \cong Q^{\prime}$, we could call Q^{\prime} a nonstandard rational field. There exist denumerable non-standard rational fields, for let \mathcal{L}^{\prime} be a predicate logic obtained from \mathcal{L} by adjoining a constant t and let Δ be the set of sentences

$$
\Delta_{p} \cdot t \neq \Delta_{q} \quad \text { for } \quad p \neq 0, p, q \in N T \text {. }
$$

Δ is consistent with the set T of sentences of \mathcal{L} which are true in Q. Hence there exist o a denumerable structure $Q=\langle A, 0,1, t, \cdot, t\rangle$ which is a model for Tu s. Letting $R_{0}=\langle A, 0,1, t, \cdot\rangle$, we have $\underset{f}{ }\left(\Delta_{p} \cdot \notin \neq \Delta_{q}\right)$ true in R_{0} bot not in Q. However, all nonstandard rational fields are elementary extensions of $Q: Q \leq Q^{\prime} \wedge Q \equiv Q^{\prime} \Rightarrow Q \propto Q^{\prime}$. For if r_{1}, \ldots, r_{n} satisfy $\phi\left(x_{1}, \ldots, x_{n}\right)$ in Q, then

$$
V_{x_{1}, \ldots, x_{n}}^{\prime}\left(\Delta_{p_{1}} x_{1}=\Delta_{q} \wedge \ldots \wedge \Delta_{p_{n}} \cdot x_{n}=\Delta_{q_{n}} \wedge \phi\left(x_{1}, \ldots, x_{n}\right)\right)
$$

is true in Q. Hence it is true in Q^{\prime}, and the same elements r_{1}, \ldots, r_{n} satisfy ϕ in Q^{\prime}.

A complex field $C=\langle C, 0,1,+, \cdot\rangle$ satisfies the
following schema:
(i) algebraically closed: $\bigwedge_{x_{1}, \ldots, x_{n}} V_{y}\left(y^{n}+x_{1} \cdot y^{n-1}+\ldots+x_{n}=0\right)$
(ii) characteristic 0 : $x_{1}, \ldots, x_{n} y \quad 1+1 \neq 0,1+1+1 \neq 0, \ldots$
we shall prove that any field satisfying (i) and sis) is arithmetically equivalent to C. Thus the nonstandard complex fields are precisely the algebraically closed fields of characteristics 0 .

A real closed field is a maximal real field (in the sense that adjoining i gives (). Real fields are characterized by the sentences
(i) $\wedge_{x, y}(x \cdot x+y \cdot y \neq-1), \wedge_{x, y, z}(x \cdot x+y \cdot y+z \cdot z \neq-1), \ldots$

Real closed fields are characterized by (i) and
(ii) every equation of an odd degree has a root
(iii) every number or its negative has a square root. It is true that all real closed fields are arithmetically equivalent.

Problem. "If every element of R is definable in B, then $R \leq \& \wedge R \equiv \& \Rightarrow R \propto \&$." Show that this statement is false, and prove the strongest statement possible by restricting the kinds of defining formulas. Hint: look at the formulas in prenex form.

A set T of sentences of \mathcal{L} is complete iff for every sentence θ of \mathcal{L}, either $\Gamma \vdash \theta$ or $\Gamma \vdash \rightarrow \theta$. (syntactical completeness)
A vet T of sentences of \mathcal{L} is semantically complete if for every pair $R, \&$ of structures of \mathcal{L}, if every sentence of T is true in both R and $\&$, then $R \equiv \&$.
E.g., the set of sentences for algebraically closed fields of characteristic 0 is complete.

If 8 is a class of structures of \mathbb{d}, then the theory of $\&(T h \&)$ is the set of sentences of \mathcal{A} which are true in every structure of $\&$.

An open problem is whether or not the theory of finite fields can be axiomatized; i.e., whether the set of true sentences of the theory is recursive. This is equivalent to asking if the set is recursively enumerable, since its complement may be enumerated. It is known that the set of true sentences of finite group theory is not re.

The sentence $\lambda_{x} v_{y, z}(x=y \cdot y+z \cdot z)$ holds in all rational finite fields but not in ${ }^{x} y, z l l$ infinite fields. For if the characteristic of the field is 2 , every number is a square. If the characteristic is odd, there are $\frac{p^{n}-1}{2}$ non-zero squares, or $\frac{p^{n}+1}{2}$ squares. Hence more than half of the elements of the field are squares, so that the vets $\left\{y^{2}\right\},\left\{x-z^{2}\right\}$ must have an element in common. In infinite fields, the mast that can be said is that every number is the sum of four squares.

Let $Q_{k}=\left\langle A_{k}, R_{k}, \ldots\right\rangle$ be structures of some predicate logic \mathcal{d}^{k} for all $k \in \mathbb{k}$. Then we define

$$
U Q_{k}=\left\langle U A_{k}, U R_{k}, \ldots\right\rangle .
$$

Example. Let $\ell_{i}=\left\langle\mathcal{N}_{i},\langle \rangle\right.$, where $| N_{i}=\{x: x \in \mathbb{N} \cap x \geqslant i\}$.
Then $\cup l_{i}=\langle | N,\langle \rangle=\ell$.
$l_{i} \cong e_{j}$ for all i, j

$$
\ell_{i} \equiv \ell_{j}
$$

$l_{i} \leq l_{j}$ for all $j \leq i$
$l_{i} \leq U l_{j}$
but $\ell_{i} \not \approx \ell$
ℓ, \ll 。

Lemma. If $\alpha \in$ is a family of structures of a p.1. \& such that any two elements of of have a common extension, then UQX is an extension of every v tructure of q_{R}.

Proof: Let $S=U Q_{R}=\langle B, S, \ldots\rangle$ and suppose $\mathbb{R}=\langle A, R, \ldots\rangle \in Q \in$. $A \subseteq B$ by definition and since $R \subseteq S, R x y \rightarrow S x y$. Conversely, if $x, y \in A$, then Soy implies there is a $\lambda=\left\langle c, T_{1} \ldots\right\rangle \in K$ such that $x, y \in C$ and $T_{x y}$. Let u be a common extension of R and r. Then $T_{x y} \Rightarrow U_{x y} \Rightarrow R_{x y}$.

Theorem. If \mathcal{R} is a family of structures of a pl. \mathcal{L} such that any two structures of $q x$ have a common elementary extension, then $U Q X$ is an elementary extension of every structure of a_{d}.

Proof: We prove by induction on the length of a formula \varnothing of $\&$ that
(*) for any $R \in R$ and $a_{1}, \ldots, a_{n} \in R$, if a_{1}, \ldots, a_{n} satisfy φ in R, a_{1}, \ldots, a_{n} satisfy ϕ in $U R$.
case 1. If Φ is an atomic formula, (4) holds by the lemma.
Cases 2, 3. If $(*)$ holds for ψ, x, then ($*$) holds for $\neg \psi, \psi \rightarrow x$. (Details straightforward).

Case 4. Suppose (4) holds for ψ and a_{1}, \ldots, a_{n} satisfy $\rho={\underset{\alpha}{\alpha}}^{\sim} \psi$ in R. Then there is an $a \in A$ such that a_{1}, \ldots, a_{n}, a satisfy ψ in R and hence in $U a_{k}$ by ($\%$). Hence a_{1}, \ldots, a_{n} satisfy $v_{\alpha} \psi$ in $\cup q_{x}$. Conversely if $a_{1}, \ldots, a_{n} \in A$ satisfy $V_{a} \psi$ in UR, then a_{1}, \ldots, a_{n}, b satiety ψ in UR, and there is a $X=\langle C, T, \ldots\rangle \in O_{X}$ such that $b \in C$. By hypothesis, there is a $X^{\prime} \in \sigma_{x}$ such that $\mathbb{R}, \vec{\lambda} \propto \boldsymbol{r}^{\prime}$, a_{1}, \ldots, a_{n}, b satisfy ψ in \mathcal{A}^{\prime} by $(*)$, and hence a_{1}, \ldots, a_{n} satisfy $v_{\alpha} \psi$ in ${X^{\prime}}^{\prime}$ and finally in R since $R \propto X^{\prime}$.

NB: By the preceeding example we see that we cannot prove a similar theorem for \equiv or \cong extensions.

The following theorem gives a test for determining when an extension is elementary:

Theorem. Let $R=\langle A, R, \ldots\rangle$ and $S=\langle B, S, \ldots\rangle$ be structures of a p.l. \mathscr{L}. Then $\mathbb{R \alpha S}$ iff $R \leq \&$ and for every sentence ϕ of \mathcal{L} and elements $a_{1}, \ldots, a_{n} \in A$, a_{1}, \ldots, a_{n} satisfy $V_{\alpha} \oplus$ in $\&$ implies there is an $a \in A$ such that a_{1}, \ldots, a_{n}, a satisfy \varnothing in \mathscr{S}.

Proof: Similar to previous proof.

Theorem (Downwards Lowenheim-Sloolem-Tanki)
Let $R=\langle A, R, \ldots\rangle$ be a structure of a denumerable predicate logic \mathcal{L}, and let C be any infinite roust of A. Then there exists a structure $S=\langle B, S, \ldots\rangle$ such that $C \subseteq B$, card. $C=$ card B, and $\& \propto Q$.

Proof: Well-order A. Let $B_{0}=C$ and B_{n+1} be the class of all $a \in A$ such that there exists a formula D of \mathcal{L} and elements $b_{1} \ldots, b_{k} \in B_{n}$ for which a is the fins element in the ordering of A such that b_{1}, \ldots, b_{k}, a satisfy Φ. Set $B=U B_{n}$ and $S=R P B, \ldots ; \quad S=\langle B, S, \ldots\rangle$.
card $B=$ card C since \mathscr{L} has only N_{0} formulas and since there are only card B_{n} finite sequences of elements of B_{n}.

By construction, $S \leq Q$ (routine to chat
that operation are ok). If $b_{1}, \ldots, b_{i} \in B$ satisfy $V_{\alpha} \varphi$ in R, then for some $n, b_{1}, \ldots, b_{1} \in B_{n}$, and hence there is an $a \in B_{n+1} c B$ such that b_{1}, \ldots, b_{k}, a satisfy Q in \mathbb{R}. Thus by the previous theorem, $\delta \propto \mathbb{R}$.

The Downwards LST theorem can be generalized to a pl. with v symbols, in which case C most have at least v elements. for card $B=\max \{$ card $c, z\}$). That this is the bert result may be seen by considering the p.l. of $2^{x_{0}}$ symbols constructed earlier which has no denumerable model.

By the Downwards LST theorem, we may consider a model as the union of its denumerable substructures.

Theorem (Upwards Lowenheim-Skolem)
Let $R=\langle A, R, \ldots\rangle$ be an infinite structure of apredicate logic \mathscr{L} with ν symbols. Then for all $\beta \geqslant \max \{v$, card $A\}$, there exists a structure $\delta=\langle B, S, \ldots\rangle$ with sard $B=\beta$ and such that $Q \propto \&$ properly; ie., $A \neq B$.

Proof: Let \mathcal{L}^{\prime} be the pl. obtained from \mathcal{L} by adjoining constants for elements of A in a wellordered sequence. Let R^{\prime} be the structure corresponding to R in the enriched language, and let r be the set of true sentences of RN. Now let S^{\prime} be a structure of card β satisfying r, and let $\&$ be the structure of the original \angmaye \mathcal{L}^{\prime} corraponding to S^{\prime}. $R^{\prime} \equiv S^{\prime}$ and $R^{\prime} \leq S^{\prime}$ by contrition. Also, since every element of A^{\prime} bis a name in \mathcal{E}^{\prime}, $R^{\prime} \propto S^{\prime}$.

Again we cannot do better since, for example, any proper extension of $\left.N T,<, \delta_{0}, \delta_{1}, \ldots\right\rangle \quad\left(S_{2}=\right.$ subset of $\left.N T\right)$ has $\geqslant 2^{N}$ elements. Still, we can prove the following slightly stronger theorem:

Theorem. Let $R=\langle A, R, \ldots\rangle$ be a structure of a p.l. \& with ν symbols. If card $A=\lambda_{0}$, then there exists a structure $\delta=\langle B, \delta, \ldots\rangle$ of \mathcal{L} such that card $B=2^{N_{0}}$ and $R \propto \&$.

Proof: Since A is denumerable, there are at most $2^{x_{0}}$ distinct relations in R. Let R^{\prime} be obtained * from R by deleting all but the first occurrence of a given relation and let \mathscr{L}^{\prime} be the p.l. corresponding to R^{\prime}. \mathcal{L}^{\prime} has $\mu \leq 2^{x_{0}}$ symbols, and by the Upward LS Theorem, there is a structure 8^{\prime} of \mathcal{L}^{\prime} such that $R^{\prime} \propto \delta^{\prime}$ and card $\delta^{\prime}=2^{x_{0}}$. Let $\&$ be the structure of \mathcal{L} corresponding to S^{\prime}. By construction, card $\delta=2^{\pi_{0}}, R \leq S$. Suppose $a_{1} \ldots a_{n}$ satisfy ϕ in Q, and let ' \varnothing^{\prime} be the corresponding formula of \mathcal{L}^{\prime}. Then $a_{1} \ldots a_{n}$ satisfy \mathbb{Q}^{\prime} in \mathbb{R}^{\prime} and hence in \mathcal{S}^{\prime} and 8 . Thus $R \propto \&$.

Finitization of Theories

General problem: When san a set of sentences be derived from a finite subset?

Egg., later we shall show that Peano's axioms are not finitizable, but that the stronger vet theory, in which Peano's axioms may be derived, is finitizable.

Definitions: if Σ is a set of sentences of a p.l. 2, then Mod Σ is the class of all structures of $\&$ in which all sentences of Σ hold.

A class C of structures is elementary iff there is a sentence \varnothing such that $C=\operatorname{Mod} \phi$.

A class C of sentences is elementary in the wider sense if there is a class Σ of sentences such that $C=\operatorname{Mod} \Sigma$.

Examples

1. The claws of infinite fields is elementary in the wider sense. Take Σ to be the field axioms plur the sentences N_{k} asserting the existence of k distinct elements.

The class of finite fields is not elementary in the wider verse since if a set Σ of sentences has arbitrarily large finite models, it has an infinite model.

Hence the class of infinite fields is not elementary. for if it were equal to Mod 0. then Mod $\boldsymbol{A} 0$ would be the class of all structures which were not infinite fields, and Mod $\{\rightarrow \infty$, field axioms\} ~ w o u l d ~ b e ~ t h e ~ c a u s ~ of finite fields.
2. The class of fields of characteristic O is elementary in the wider sense.

The class of fields of nonzero characteristic is e not elementary in the wider sense. For suppose it is equal to $M_{0} d \bar{z}$. Then $\Delta=\{1+1 \neq 0,1+1+1 \neq 0, \ldots\}$ is consistent with Σ, so that $\Sigma u \Delta$ has a model of characteristic 0 .

Hence the class of field of characteristic O is not elementary.

Complete Theories

We shall develop three methods for determining when a set T of sentences is (syntactically) complete: the method of the elimination of quantifiers, Vaught's Test, and the Prime Model Test.

Elimination of Quantifiers
This method was originally developed by Tanski and is the mast adaptable to machine computation. It proceeds as follows: Suppose \mathcal{L} is a predicate logic and ϕ is a formula of $\&$ with at least one bound variable. Then we may put θ in prenex normal form and distribute the \neg, V, and n in the quantifies free part so that

$$
\varphi \leftrightarrow Q[-] \vee_{n}\left(\varphi_{1} \vee \ldots \vee \Phi_{n}\right),
$$

where each ϕ_{i} is a conjunct " of atomic formulas and negations of atomic formulas, Q a (possibly empty) string of quantifiers, and $[a]$ indicates that the ' \rightarrow ' may or may not be prevent depending on the type of the last quantifier. Then

$$
\phi \leftrightarrow Q[-]\left(V_{x} \varphi_{1}, \cdots v N\left(\varphi_{n}\right) .\right.
$$

Now to show that a set Γ^{x} ot sentences is complete, it suffices to show first that for every ϕ_{i} as above, there exists a formula θ with no bound variables and in which. is not free such that $T^{n} \vdash V_{x} \varphi_{i} \leftrightarrow \theta$. This first step establishes that every sentence $\underset{\infty}{x}$ is equivalent to a sentence θ with no bound variables ria the normal form above). Thus it then suffices to show that for every such θ, either $T r \theta$ or $T \vdash \sim \theta$.

In carrying out the two main steps of this argument. we will allow ourselves to enrich the language $\&$ by new definitions, provided that we can prove the eliminability of such definitions on the basis of the set r. In outline then, the steps of the method are:
I. Start with a set T of sentences of a p. \. 2. Formulate a set Δ of definitions (dictated by succeeding steps), and let \& ' $^{\prime}$ be the enriched language containing names for the defined objects.
II. Let θ be a typical conjunct of atomic formulas and negations of atomic formulas of \mathfrak{Q}^{\prime} (with parameters indicating the number of each type of atomic formulas. Reduce the complexity of θ by new definitions if passible.
III. Show Tu $\Delta F \underset{\alpha}{v} \Theta \leftrightarrow \psi$, for some formula ψ of \mathbb{L}^{\prime} without bound variables and with no additional free variables.
II. Show that every sentence of ' '' without bound variables is decidable from rus.
(II). List or prove lemmas needed for steps I-I. In case T was empty to start with, this provides a set of axioms for the theory involved.

Example: Consider $T h\langle R T, \leqslant, 0,1\rangle$, where $R T$ is the set of rationals in $[0,1]$.
I. We take for T the sentences we know to be true:

$$
\begin{array}{cc}
\wedge_{x, y, z}(x \leq y \wedge y \leq z \rightarrow x \leq z) & \wedge \wedge \vee(x \leq y \wedge x \neq y \rightarrow x \leq z \wedge x \neq z \wedge z \leq y \wedge z \neq y) \\
\wedge_{x, y}(x \leq y \vee y \leq x) & \wedge(0 \leq x \wedge x \leq 1) \\
\wedge_{x, y}(x \leq y \wedge y \leq x \rightarrow x=y) & 0 \neq 1
\end{array}
$$

For additional definitions, we take

$$
\begin{aligned}
\wedge_{x, y}(x<y & \leftrightarrow x \leq y \wedge x \neq y) \\
T & \leftrightarrow 0=0 \\
F & \leftrightarrow 0 \neq 0
\end{aligned}
$$

II. In the original language \mathcal{L}, there are four types of atomic formulas and negations of atomic formulas:

$$
\alpha=\beta, \quad \alpha \leq \beta, \quad \neg \alpha=\beta, \quad \neg \alpha \leq \beta,
$$

where α, β are either variables, 0 , or 1 .

In the expanded language, we can reduce this number to two types: $\alpha=\beta$ and $\alpha<\beta$ since

$$
\begin{aligned}
\alpha \leq \beta & \leftrightarrow \alpha<\beta \vee \alpha=\beta \\
-\alpha=\beta & \leftrightarrow \alpha<\beta \quad v \beta<\alpha \\
-\alpha \leq \beta & \leftrightarrow \beta<\alpha
\end{aligned}
$$

Then a typical θ is

$$
\alpha_{1}<x \wedge \ldots \wedge \alpha_{l}<x \wedge x<\beta_{1} \wedge \ldots \wedge x<\beta_{m} \wedge x=\gamma_{1} \wedge \ldots \wedge x=\gamma_{n} \wedge[\psi] \text {, }
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i}$ are variables distinct from x or constants, and ψ does not contain x.
III. We perform the reduction of ${\underset{x}{x}} \theta$ in five cases:

Cave 1. $l=m=n=0 . \quad X_{X} \otimes \leftrightarrow \psi$.
Case 2. $n \neq 0$. Let $\theta\left(x_{1}\right)$ be obtained from θ by substituting an occurrence of γ_{1} for each occurrence of x. Then ${\underset{k}{ }} \theta \leftrightarrow \theta(r$,
Case 3. $n=0 ; l, m \neq 0$. We can show by induction that

Case 5. $m=n=0 ; l \neq 0 \quad{\underset{K}{x}}^{\text {S }} \leftrightarrow \leftrightarrow \alpha_{1}<1 \wedge \ldots h \alpha_{l}<1 \wedge[\psi]$
II. We note that

$\alpha<\alpha \leftrightarrow F$	$F V \theta \leftrightarrow \theta$	TV $\theta \leftrightarrow T$
$\alpha<0 \leftrightarrow F$	$F \wedge \theta \leftrightarrow F$	Tn $\Theta \leftrightarrow \theta$
$1<\alpha \leftrightarrow F$	$-F \leftrightarrow T$	$\neg T \leftrightarrow F$

and that the reduced formula x obtained by iterating III contains only the formulas $0<1,1<0,0=1, T, F$. Hence $T-x$ or $T \vdash \rightarrow x$.
I. The axioms listed in I are sufficient to establish the reductions in III and II.

Naught's Test

Definition. A consistent set Γ of sentences of a pl. \mathcal{L} is \geq-categorical if all models of T with cardinality ν are isomorphic.

Naught's Theorem. Suppose T is a consistent set of sentences of a p.1. \& with $\frac{1}{2}$ symbols such that Γ has no finite models and T is v-categorical for some $v \geqslant r$. Then T is complete.

Proof: Suppose θ is not decidable from T. Then Tu\{ $\theta\}$ is consistent. and since T has no finite models, T, θ must have an infinite model. Hence by the Lowenheimskolem Theorem, T, Θ has a model of cardinality v; say Q. Similarly, let s be a model of $\Gamma, \neg \theta$ of cardinality v. Then $\mathbb{R \nexists \&} \mathcal{S}$, so that $\mathbb{R} \neq \mathcal{S}$, which contradicts the v-categoricity of T.

Example. Let T be the set of axioms for $T h\langle R T,<, 0,1\rangle$. Then T is consistent and has no finite models. Moreover, T is N_{0}-categorical by Cantor's Theorem, so that T is complete.

Cantor's Theorem states that all dense enumerable simple orderings are isomorphic. For let $\langle A, C, 0,1\rangle$ and $\langle B,<, 0,1\rangle$ be structures of Th $\langle R T,<0,1\rangle$, and enumerate A and B by $0,1, a_{1}, a_{2}, \ldots ; 0,1, b_{1}, b_{2}, \ldots$ we construct an isomorphism F by

$$
\begin{aligned}
& F 0=0 \quad F 1=1 \quad F a_{1}=b_{1} \\
& F a_{2}=\text { first element of } B-\left\{0,1, b_{1}\right\} \text { in same relation to } b_{1}
\end{aligned}
$$

$$
\text { as } a_{2} \text { is to } a_{1} \text {; say } b^{\prime}
$$

if $b^{\prime}=b_{2}, F^{-1} b_{2}=$ at $^{\text {t }}$ element of $A-\left\{0_{1}, a_{1}, a_{2}\right\}$ which worth Continue working bact and forth between A and B in this manner. For more detail, see Kamke, Naive set Theory.

Prime Model Test

Definitions.
Let R be a structure of a predicate language α^{2}, and Net \mathcal{L}^{\prime} be obtained from \mathcal{L} by adjoining names for the elements of R. Then the diagram of $\mathbb{R}\left(\Delta_{R}\right)$ is the vet of all atomic sentences and negations of atomic sentences of \mathscr{R}^{\prime} which hold in R.

Let T be a nonempty consistent set of sentences of a p.\. 2. Then T is model -complete iff
I. for every $R, \& \in \operatorname{Mod} T$ such that $R \leq \infty$, also $R \alpha \&$. or II. For every $R \in \operatorname{Mod} T, \Gamma_{U} \Delta_{R}$ is complete in \mathscr{L}^{\prime}.

The two definitions of model completeness are equivalent. For suppose I holds and $T_{0} \Delta_{R}$ is not complete. Let θ be undecidable from $T u \Delta_{R}$ and hold in R, and let R^{\prime} be the structure of \mathcal{E}^{\prime} corresponding to R. $T_{U} \Delta_{R}, \neg \theta$ is consistent and has a model 8^{\prime}. But Δ_{R} holds in S^{\prime} so that $R^{\prime} \leq S^{\prime}$ and by $I, Q^{\prime} \alpha s^{\prime}$, which is a contradiction. Conversely, let $\mathbb{R}, \& \in \operatorname{Mod} T, \mathbb{R} s \&$. $T \cup \Delta_{\mathbb{Q}}$ is complete by II, so that \& also satisfies Δ_{R}.

Theorem. Let T be a consistent set of sentences, and suppose \varnothing and ψ are sentences such that whenever $M, M^{\prime} \in \operatorname{Mod} T, M \leq M^{\prime}$, and ϕ holds in M, then ψ holds in M:. Then there exists a purely existential sentence θ for which $T \vdash \phi \rightarrow \theta$ and $T \vdash \theta \rightarrow \psi$.

Proof: Let \in be an arbitrary existential sentence for which $\Gamma \vdash \epsilon \rightarrow \psi$, and $\left.l_{e}\right\rangle \Omega$ be the set of all such $\neg \varepsilon$. Suppose $\Gamma_{U} \Omega_{U} \varnothing$ is consistent, and let R be a model. Now any structure \& which satisfies $\Gamma U \Delta_{R}$ is isomorphic to an extension of R, and since Q holds in R, ψ holds in $\&$.
Hence $T_{U} \Delta_{R} \vdash \psi$.

In particular, for some finite subset $\left\{\delta_{1}, \ldots, \delta_{n}\right\} \leq \mathbb{A}_{R}$, $T \longmapsto \delta_{1} \wedge \ldots \wedge \delta_{n} \rightarrow \psi$. Let $\delta\left(a_{1} \ldots a_{k}\right)=\delta_{1} \wedge \ldots \wedge \delta_{n}$, where the $a_{1} \ldots a_{k}$ are those elements in the domain of Q without names in \mathscr{L}.

$$
\begin{aligned}
& \Gamma \vdash \neg \psi \rightarrow \neg \delta\left(a_{1} \ldots a_{k}\right) \\
& \Gamma \vdash \neg \psi \rightarrow \Lambda_{\mathrm{k}} \neg \delta\left(v_{1} \ldots v_{k}\right) \quad \text { since } a_{1} \ldots a_{k} \text { do not occur in } \Gamma, \psi \\
& \Gamma \vdash \underset{v_{1} \ldots v_{k}}{V} \delta\left(v_{1} \ldots v_{k}\right) \rightarrow \psi
\end{aligned}
$$

Hence $\quad \underset{v_{1} \cdots v_{k}}{V} \delta\left(v_{1} \ldots v_{k}\right) \in \Omega$, but $\underset{v_{1}, \ldots v_{k}}{V} \delta\left(v_{1} \cdots v_{k}\right)$ holds in R,
 Consequently $T u \Omega \vdash \neg \varnothing$, and for some finite urberet $\left\{-\omega_{1}, \ldots, \cdot, \omega_{n}\right\} \subseteq \Omega, \quad \Gamma \vdash \neg \omega_{1} a \ldots \wedge-\omega_{n} \rightarrow \neg \varnothing$.

$$
\Gamma \longmapsto \Phi \rightarrow \omega_{1} \vee \ldots \vee \omega_{n}
$$

To $\omega_{1} v \ldots v \omega_{n} \rightarrow \psi$ since Tト $\omega_{i} \rightarrow \psi$ for each ω_{i}
Furthermore, $\omega_{1} v \ldots \omega_{n}$ may be placed in existential form by moving all quantifiers to the front.

Corollary. If \varnothing holds in M^{\prime} whenever ϕ holds in M und $M \leq M^{\prime}$ (ϕ persistent under extension), then there exist an existential sentence θ for which $T R \varphi \leftrightarrow \theta$.

Corollary. (dual to above) if ϕ holds in M whenever θ holds in M^{\prime} and $M \leq M^{\prime}$ (ϕ persistent under restriction). then there exists a universal sentence θ such that $\Gamma \longmapsto \varphi \leftrightarrow \theta$.

Proof: If φ is persistent under restriction, then $\rightarrow \varnothing$ is persistent under extension, and for some existential sentence θ, $T \vdash \neg \varnothing \leftrightarrow \theta$, or $T \vdash \phi \leftrightarrow \neg \theta$. BLt $\neg \theta$ is universal.

Theorem. If T is model complete, then to every sentence \varnothing corresponds a purely existential sentence $\&$ for which $T \vdash \varphi \leftrightarrow \theta$.

Proof: If T is mode complete, every sentence is persistent under extension.

Theorem. T is model complete iff for every formula © with free variables $v_{1} \ldots v_{k}$ there exists an existential formula ψ with no additional free variables such that $T \longmapsto \bigwedge_{v_{1} \cdots v_{k}}(\varphi \leftrightarrow \psi)$. (i.e., if every definable set is existentially definable.)

Proof: Suppose T is model complete and MEMod T. Let $a_{1} \ldots a_{n}$ satisfy 0 in M. Then $a_{1} \ldots a_{n}$ satisfy ϕ in every extension M^{\prime} of M. Let \mathscr{L}^{\prime} be the language with names for the elements of M. Then $\phi\left(a_{1} \ldots a_{n}\right)$ is persistent under extension with respect to r in \mathcal{L}^{\prime}, and hence there is an existential sentence ψ in \mathcal{L}^{\prime} such that

$$
\begin{aligned}
& \Gamma \vdash \varphi\left(a_{1}, \ldots, a_{n}\right) \leftrightarrow \psi\left(a_{1} \ldots a_{n}, b_{1} \ldots b_{m}\right) \\
& \Gamma \vdash \varphi\left(a_{1} \ldots a_{n}\right) \leftrightarrow V{ }_{x, \ldots x} \psi\left(a_{1} \ldots a_{n}, x_{1} \ldots x_{m}\right) \text { since }
\end{aligned}
$$

$b_{1} \ldots b_{m}$ do not occur in $\Gamma^{x_{1} \ldots x_{m}}$ or ϕ. By generalization,

$$
\left.\left.T \longmapsto \wedge_{v_{1} \ldots v_{n}} \varphi\left(v_{1} \ldots v_{n}\right) \leftrightarrow v \psi_{x_{1} \ldots v_{m}} \ldots v_{n}, x_{1} \ldots x_{m}\right)\right] \text {, }
$$

which is the ${ }^{v_{1} \ldots v_{n}}$ desired result.
Conversely, suppose such an existential formula ψ exists for every formula Φ. ψ is persistent under extension. so that if $a_{1} \ldots a_{k}$ satiety φ in $M \in \operatorname{Mod} T, \quad a_{1} \ldots a_{k}$ satisfy ϕ in all extension models. Hence all extensions of M are elementary and T is model complete.

Definition. A sentence φ is primitive if it is purely existential with quantifier free part consisting of a conjunct of atomic formulas and negations of atomic formulas.

Theorem. T is model-complete iff for every $M \in \operatorname{Mod} T$ and every primitive formula θ, $a_{1} \ldots a_{k}$ satisfy θ in some $M^{\prime} \geqslant M$ implies $a_{1} \ldots a_{k}$ satisfy φ in M.

This theorem provides a test for model-completenass.

Proof: If the condition holds for primitive formulas, it holds for all a formulas since

$$
{\underset{x}{ }}_{V_{x}}\left(\phi_{1} \vee \ldots \vee \phi_{k}\right) \leftrightarrow V_{x} \varphi_{1} \vee \ldots \vee V_{x} \phi_{k} .
$$

Let $*$ be any existential formula. Then $\psi\left(a_{1} \ldots a_{k}\right)$ is persistent under restriction in \mathbb{R}^{\prime}, the langrage with names for elements of M. Hence there is an existential sentence θ such that

$$
\begin{aligned}
& \Gamma \longmapsto \psi\left(a_{1} \ldots a_{k}\right) \leftrightarrow \neg \theta\left(a_{1} \ldots a_{k}\right) \\
& \Gamma \longmapsto \neg \psi\left(a_{1} \ldots a_{k}\right) \leftrightarrow \theta\left(a_{1} \ldots a_{k}\right) \\
& \left.\Gamma \longmapsto v_{1} \ldots v_{k} \neg \psi\left(v_{1} \ldots v_{k}\right) \leftrightarrow \theta\left(a_{1} \ldots a_{k}\right)\right]
\end{aligned}
$$

Thus all formulas are equivalent to existential formulas, and by the preceeding theorem, Γ is model complete.

Definition. Let T be a consistent non-empty set of sentences. A model M_{0} of T is a prime model iff every model of Γ has a submode isomorphic to M_{0}.

Lemma. Let M_{0} be a prime model of Γ and let Δ_{0} be its diagram. Then $\Gamma u \Delta_{0} \vdash \varnothing$ if $\Gamma \vdash \varphi$.

Proof: If $T u \Delta_{0} \vdash \Phi$, then Φ holds in all models of T, so that $T \vdash \varphi$.

Theorem (Prime Model Test) if T is model-complete and has a prime model, then T is complete.

Proof: Since T is model complete, $T_{u} \Delta_{0}$ is complete; and since M_{0} is prime, T is then complete.

Some Applications of Tests for Completeness

Additive structure of fields
Let F be a finite field and consider Th SF, $0,+7$. We may take as axioms the usual group axioms plus axioms asserting that themesharacteristic of F is P and F has P^{k} elements: $\left.\quad \wedge_{x}^{\left(x+x^{2}+\ldots+x\right.}=0\right), \quad \sum_{x_{1} \ldots p_{p}}^{V}\left(x_{1} \neq x_{2} \cap \ldots \wedge x_{p} \ldots \neq x_{p}\right)$
All models for Th< $F, \mathrm{O}_{\mathrm{O}}+7$ are isomorphic las can be seen by identifying the k generators of the fields), and hence the theory is complete.

Suppose F is infinite of characteristic P. Then a complete set of axioms may be obtained by replacing the last one above by the set asserting the existence of infinitely many elements. The same reasoning applies; or we could we Naught's Test.

Finally let F be infinite of characteristic 0 . Axioms include the group axioms, $\underset{x, y}{ }(x \neq y)$, axioms for characteristics 0 , and the set $\prod_{y}^{v} y=x+x$
structure of the rational field and not insure that F has the structure of the rational field and not jut of the integers.

Theory of the Integers under Addition
We propose to demonstrate by the method of elimination of quantifiers that $T h\langle$ Int., $0,1,+\infty\rangle$ is complete. The following axioms are due to Presburger:
$\left.\begin{array}{ll}\text { A1. } & x+0=x \\ \text { AQ. } & x+(y+z)=(x+y)+z \\ \text { AS. } & x y y+y=0 \\ \text { AK. } & x+y=y+x\end{array}\right\}$ Group anions

A5. $x<y \vee y=x \vee y<x$
AG. $\neg x<x$
AT. $x<y \cap y<z \rightarrow x<z$
As. $x<y \rightarrow x+z<y+z$
Aq. $0<1$
Ala. $\rightarrow V_{x}(0<x \wedge x<1)$
All. $\quad \Lambda_{x}^{x}(x=y+y \vee x=y+y+1)$

All. serves as an induction scheme. Note that using A8. we can prove that the characteristic is 0 : i.e., $x+x+\ldots+x=0 \rightarrow x=0$.

To simplify considerations, we introduce the following definitions:
(1) $1+1=2,1+1+1=3, \ldots$ (referred to as natural numbers)
(a) $0 \cdot x=0,1 \cdot x=x, 2 \cdot x=x+x, \ldots$ (multiplication by natural numbers)
(3) $x-y=z$ if $x=y+z$
(4) $x \equiv y \bmod k$ iff $\quad y k \cdot z=x-y \quad$ (k a natural number)
(s) $T \leftrightarrow 0=0, \quad F \leftrightarrow 0 \neq 0$

Lemma. If $0 \leq k<m$, where k and m are natural numbers, then $k \equiv 0 \bmod m$ implies $k=0$.

Proof: If $k \equiv 0 \bmod m, V_{k}=m \cdot u$. Now if $u \leq 0$, $m \cdot u \leq 0$. Likewise $I \leq u$ implies $m \leq m \cdot v$. Hence $u=0$.

We must now consider formulas constructed from the following atomic parts:
$\alpha=\beta, \quad \alpha \neq \beta, \quad \alpha<\beta, \neg \alpha<\beta, \quad \alpha \equiv \beta \bmod k, \quad \alpha \not \equiv \beta \bmod k$,
where α and β are terms constructed from t and k. First we simplify the types of formulas to be considered:
(i) All negations of atomic formulas may be eliminated since

$$
\begin{aligned}
\alpha \neq \beta & \leftrightarrow \alpha<\beta \vee \beta<\alpha \\
\neg \alpha<\beta & \leftrightarrow \alpha=\beta \vee \beta<\alpha
\end{aligned}
$$

$7 \alpha \equiv \beta \bmod k \leftrightarrow \alpha \equiv \beta+1 \bmod k v \ldots v a \equiv \beta+(k-1) \bmod k$
(ii) Neat, singling out the variable x, we can move all x 's to the same sids of the $=$ or \& sign, so that we need consider only formulas of the types
$j x=\alpha ; k \cdot x \equiv \beta \bmod k \prime ; \gamma<l \cdot x ; m \cdot x<\delta ; \psi$ where ψ is a formula not containing x.

Lemma. $k \cdot x \equiv \beta \bmod m \leftrightarrow t k \cdot x \equiv \nmid \beta \bmod t m$
Proof: $k \cdot x \equiv \beta \bmod m \leftrightarrow k \cdot x-\beta=\operatorname{m} \cdot v$
$\leftrightarrow+k \cdot x-t_{\beta}=t m \cdot u \quad$ (by precessing ${ }^{\circ} \mathrm{mmma}$)
$\leftrightarrow t k \cdot x=\nexists \beta \bmod \quad t m$
(iii) We may further take all coefficients of x to be the same since if $t=0, \quad j \cdot x=\alpha \leftrightarrow+j \cdot x=t_{\alpha}$

$$
j \cdot x<\alpha \leftrightarrow t_{j} x<t_{\alpha}
$$

$k \cdot x \equiv \beta \bmod m \leftrightarrow t k \cdot \beta \equiv \hbar \bmod t_{m}$
Hence by taking n equal to the least common multiple of the coefficients of x, we reduce to formulas like

$$
n \cdot x=\alpha ; \quad n \cdot x \equiv \beta \bmod k ; \gamma<n \cdot x ; n \cdot x<\delta ; \psi
$$

(iv) The coefficient of x may be eliminated by a change of variable $x^{\prime}=n \cdot x$ if we stipulate $x^{\prime} \leq 0 \bmod n$. Thus we reduce to the formulas

$$
x=\alpha ; x \equiv \beta \bmod k ; \gamma<x ; x<\delta ; \psi
$$

(v) All congruences may be taken to be of the form $x \equiv \beta \bmod p^{k}$ for p prime by the following lemma.

Lemma. $x \equiv 0 \bmod \operatorname{mn} \leftrightarrow x \equiv 0 \bmod m \hat{v} x \equiv 0 \bmod n \quad$ for $(m, n)=1$ Proof: If $(m, n)=1$, then $V_{j, k}(k m-j n)=1$. Suppose $x=m v=n v$.

Then $m n(k v-j u)=m k x-j n v=x$, so that $x \equiv 0 \bmod \mathrm{mn}$. The converse is trivial.
(vi) We may further reduce congruences so that a given prime occurs to the same power in all ito congruences. For suppose $x \equiv \alpha \bmod p^{k}$ and $x \equiv \beta \bmod p$. If $k=l$, we may replace the second congruence by $\alpha \equiv \beta \bmod p^{k}$. if $k<l$, then

$$
x \equiv \alpha \operatorname{mad} p^{k} \leftrightarrow x \equiv \alpha \bmod p^{l} v x \equiv \alpha+p^{\prime \prime} \operatorname{mad} p^{l} v \ldots v x \equiv \alpha+\left(p^{l-k}-1\right) p^{l} \operatorname{mad} p^{l} .
$$

Lemma. If $k m-j n=1$, then $x \equiv \alpha \bmod m$ and $x \equiv \beta \bmod n$ iff $x \equiv k m \beta-j n \alpha \bmod m n$.

Proof: Suppose $x \equiv \alpha \bmod m$ and $x \equiv \beta \bmod n$. Then $j n x \equiv j n a \bmod m n$ and $k m x \equiv k m \beta \bmod \operatorname{mn}$, and hence $x \equiv k m \beta-j n d \bmod m n$.

Conversely, if $x \equiv k \mathrm{~km} \beta-j n \alpha \bmod m n$, then $x \equiv-j n a \bmod m$. $x \equiv k m a-j n \alpha \bmod m$ and thus $x \equiv \alpha \bmod m$. Likewise $x \equiv \beta \bmod n$.
(vii) By the preceeding lemma, all congruences may be combined into one since their moduli are relatively prime.

We now describe how to eliminate the quantifier from ${ }_{x} \otimes$, where Θ is the typical conjunct

$$
\begin{aligned}
x=\alpha_{1} & \ldots \wedge x=\alpha_{j} \wedge[x \equiv \beta \bmod n] \cap \gamma_{1}<k \cap \ldots \wedge \gamma_{k}<x \\
& \wedge x<\delta_{1} \wedge \ldots \wedge x<\delta_{g} \wedge[\psi]
\end{aligned}
$$

Cave I. $j \neq 0$. Then $\underset{x}{\underset{x}{y}} \oplus(x) \leftrightarrow \varphi\left(\alpha_{1}\right)$.
Case II. $j=0 . \quad k=0$ or $l=0 . \quad V_{x} \otimes \leftrightarrow T \wedge[\psi]$ since congruences have arbitrarily large for small) solutions.

Case III. No congruence, $j=0, k \neq 0, l \neq 0$.

$$
\underset{x}{\underset{X}{V} \oplus \leftrightarrow \gamma_{1}+1<\delta_{1} \wedge \ldots \wedge \gamma_{1}+1<\delta_{l} \wedge \ldots \wedge \gamma_{k} H<\delta_{1} \wedge \ldots \wedge \gamma_{k}+1<\delta_{l} \wedge[\psi]}
$$

Case IV. Congruence, $j=0, k \neq 0, \ell \neq 0$.
Then \varnothing is equivalent to the disjunction of $k=\ell$ formulas of the type

$$
\begin{aligned}
\gamma_{1} & <\gamma_{i} \wedge \ldots \wedge \gamma_{i-1}<\gamma_{i} \wedge \gamma_{i+1}<\gamma_{i} \wedge \ldots \wedge \gamma_{k}<\gamma_{i} \\
& \wedge \delta_{j}<\delta_{1} \wedge \ldots \wedge \delta_{j}<\delta_{j-1} \wedge \delta_{j}<\delta_{j+1} \wedge \ldots \wedge \delta_{j}<\delta_{l}
\end{aligned}
$$

$\wedge x \equiv \beta \bmod m \wedge \delta_{i}<x \quad \wedge x<\delta_{j}$
where $0<i s k$ and $0<j \leqslant l$. Then the quantifier in $x 0$ may be eliminated by noting that
$x \equiv \beta \bmod m \wedge \gamma<x \wedge x<\delta$

$$
\begin{aligned}
\leftrightarrow(\gamma+1 & \equiv \beta \bmod m \wedge \gamma+1<\delta) \\
& \vee(\gamma+2 \equiv \beta \bmod m \wedge \gamma+2<\delta) v \ldots \\
& v(\gamma+m \equiv \beta \bmod m \wedge \gamma+m<\delta)
\end{aligned}
$$

This completes the proof by elimination of quantifies that Th $\langle I N, 0,1, t,<\rangle$ is complete.

Suppose we wish to consider the natural numbers under addition. We could repeat the above proof for Th $\langle N a t, 0,1, t, r\rangle$ by replacing $A 3$ and $A 9$ by

A3'. $\wedge_{x, y} \vee z(x+z=y \vee y+z=x)$
Aq. $q^{\prime} 0<1$ a $0=x \vee 1=x$ v $\backslash<x$.
However an easier proof of the completeness of Th $\langle N a t, 0,1, t, s\rangle$ is afforded by defining

$$
\text { Nat } x \leftrightarrow x=0 \vee 0<x
$$

and considering the formulas

Then the completeness of Th $\langle\mid N, 0,1, t, x\rangle$ yields the completeness of Th< Nat, $0,1, t,<\rangle$.

Problem. Investigate the problem of finding a complete set of axioms for $T h<$ Pos. Int., 1, >.. This theory was proved to be decidable by Skolem in 1930 and Mastowski in 1952 (JSL), but as of yet no one has produced a complete set of axioms Feferman has shown Th<Par. Int., $1, j, \approx$ is still decidable, where $x \approx y$ iff x and y have the same number of prime factors.

The Rationals under Multiplication
To illustrate one possible method of attacking the preceeding problem, we derive a complete set of axioms for ThiRat, 1,.7. The method is based on the characterization of abelian groups by Wanda Szmielew in Fundament Math (1954).

Definition. An abelian group A_{i} of the first kind of there exists a positive integer n such that $n A=0$. Otherwise, A is of the second kind.

Definition. Elements x_{1}, \ldots, x_{n} are linearly independent mod m iff for all integers $a_{1}, \ldots, a_{n}, \quad \Sigma a_{i} x_{i}=0$ implies $a_{i} \equiv 0 \bmod m$ for all i.
x_{1}, \ldots, x_{n} are strongly linearly independent mod m if for all integers $a_{1}, \ldots, a_{n}, \quad \Sigma a_{i} x_{i} \equiv 0 \operatorname{modm}$ implies $a_{i} \equiv 0 \mathrm{mod} m$ for all:.

Theorem. (Szmielew) Two abelian groups are arithmetically equivalent iff they are of the same kind and for every prime p and positive integer k, the maximum number of elements in each group is the same for each of the following classes:
(i) elements strongly $1 . i . \bmod p^{k}$
(ii) elements of order p^{k} which are $\ . i . \bmod p^{k}$
(iii) elements of order p^{k} which are strongly lii mod p^{k}.

Using this theorem, we may characterize the The Rat, 1,7 by the usual group axioms plus the following axioms: First, a set asserting the group is of the second kind - ${\underset{x}{x}}^{x} \neq 1,{\underset{x}{x}}^{V_{x}} \times \neq 1,{\underset{x}{x}}^{x} x \cdot x \cdot x \neq 1, \ldots$

Next we want axioms stating that 1 is the only element of order p^{k}. This will then satisfy conditions (ii) and (iii). We tale $x \neq 1 \rightarrow x^{2} \neq 1$

$$
x \neq 1 \rightarrow x^{3} \neq 1
$$

Notice that the axioms in the last paragraph are now redundant, as they may be derived from these plus $V_{x} \times \neq 1$.

Finally, in order to satisty rile, we want to assert
the existence of arbitrarily many linearly independent $\bmod \mathrm{m}$ elements. We exhibit such an axiom for two lii. elements $\bmod m$, omitting the generalization. We want elements x, y such that $\sum_{z} x^{a} y^{b}=z^{m} \rightarrow a \equiv b \equiv 0 \bmod m$, or equivalently

$$
a \neq 0 \text { y } b \neq 0 \mathrm{modm} \rightarrow \prod_{z} x^{a} y^{b} \neq z^{m} .
$$

We may state this in a first order language by

$$
\sum_{x, y} \bigwedge_{z_{1}, \ldots, z_{\frac{m(m-1)}{}}^{2}}\left[x \neq z_{1}^{m} \wedge x y \neq z_{2}^{m} \wedge x y^{j} \neq z_{3}^{m} \wedge \ldots \wedge x^{m-1} y^{m-1} \neq z_{\frac{m(m-1)}{2}}\right] .
$$

No such characterization is available for gropes in general since general group theory is not decidable. The same applies to the theory of fields.

Problem. Suppose an element a is not a square in a model A of arithmetic. Is there a model $B \geqslant A$ of arithmetic in which a is a square? State and prove a general theorem of which this is a special case.

Real Closed Fields
We now establish the previously mentioned fact that all real closed fields are arithmetically equivalent by showing that their theory is complete. The result was first established by Tarski by the method of the elimination of quantifiers. Our demonstration is due to A. Robinson and utilizes model-completeness.

We recall that a field is formally real if -1 is not the sum of squares (notion due to Artie o Sohreir-1926). A real field has characteristics 0 . A field is real closed iff it is real and no proper algebraic extension is real. Since this definition cannot be axiomatized as such in a first order language, we employ the following result:
Definition. A field R is ordered iff there exists a sulaset of element u of R called the paritive elements (written $\{a>b\}$) such that for all $a \in \mathbb{R}$,
(i) exactly one of $a=0, a>0,0>a$ holds
(ii) $a>0 \wedge b>0 \rightarrow a+b>0, a \cdot b>0$

Also, (iii) $a>b$ means $a-b>0$.
Theorem. A field R is real closed of R is real, every polynomial of odd degree has a solution in R, and $\hat{a}_{a} V_{x}\left(a=x^{2} v-a=x^{2}\right)$.

Theorem. Every ordered field has a uniquely determined sup to isomorphism) real algebraic extension which is real closed.

If we adjoin i as a root of $x^{2}=-1$ to a real closed field R, then the result is an algebraically round field, and every polynomial may be factored as
(*) $\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)\left[x-\left(b_{1}+i c_{1}\right)\right] \cdots\left[x-\left(b_{m}+i r_{m}\right)\right]$, or in the real field itself as

$$
\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)\left[\left(x-b_{1}\right)^{2}+c_{1}^{2}\right] \cdots\left[\left(x-b_{m}\right)^{2}+c_{m}^{2}\right]
$$

since every factor in (k occurs with its conjugate.

Thus the ordering of a transcendental extension $R(\alpha)$ is completely determined by the ordering of α with respect to the elements of R, for every element of $R(a)$ may be written as

$$
a_{0} \frac{P(\alpha)}{Q(\alpha)}=a_{0} \frac{P(\alpha) Q(\alpha)}{Q(\alpha)^{2}},
$$

where P and Q are polynomials.
Let P be the set of axioms for real closed fields. We show that P is mode $)$-complete. Let $M\left(x_{1}, \ldots, x_{m}, v_{1}, \ldots, u_{n}\right)$ be a conjunction of formulas of the types

$$
\alpha=\beta, \quad \alpha \neq \beta, \quad \alpha>\beta, \quad \alpha \leq \beta, \quad \alpha+\beta=\gamma, \quad a+\beta \neq \gamma, \quad \alpha \cdot \beta=\gamma, \alpha \cdot \beta \neq \gamma,
$$

where α, β, γ are one of the variables $x_{1}, \ldots, x_{m}, v_{1} \ldots, u_{n}, 0$, or 1 . Suppose R and S are real closed fields, $R \leq S$, and for some a_{1}, \ldots, a_{m} in R,
(*) $\underset{u_{1} \ldots u_{n}}{ } V_{1} M\left(a_{1}, \ldots, a_{m}, u_{1}, \ldots, u_{n}\right)$
holds in S. We need to show that $(*)$ holds in R. We proceed by contradiction. Suppose M is a formula such that ($*$) holds in S but not in R, and such that the number n of bound variables is the minimum for which such a formula exists. Since ($\$$) holds in S, there is $a b$ in S such that $(m) V M\left(a_{1}, \ldots, a_{m}, v_{1}, \ldots, v_{n-1}, b\right)$ holds in S. By assumption, it also holds in any subfield of S containing b; i.e., for any T such that $R(b) \leq T \leq S$. Let T_{0} be the real closure of $R(b)$. $T_{0} \leq S$ so that (a*) holds in T_{0}, and hance in all extensions of T_{0}. Now a set of axioms for T_{0} is

$$
P \cup \Delta_{R} \cup T
$$

where Δ_{R} is the diagram of R and T is the set of all sentences of the form $a<b$ or $b<a$, with a in R, which are true in S. Since (be) holds in all models satisfying
these axioms,

$$
P \cup \Delta_{R} \cup \Gamma \vdash \underset{v_{1} \ldots u_{n}}{V} M\left(a_{1}, \ldots, a_{m}, u_{1}, \ldots, u_{n}\right) .
$$

But then,

$$
P_{u} \Delta_{R} \vdash \theta(b) \rightarrow \bigvee_{v_{1}, \cdots u_{n}} M\left(a_{1}, \ldots, a_{m}, v_{1} \ldots, u_{n}\right),
$$

where $\theta(b)$ is the conjunction of a finite number of inequalities $a<b$ and b ea from r. Then

$$
P_{u} \Delta_{\mathbb{R}} \vdash \quad{\underset{y}{ }}_{V_{y}} \theta(y) \rightarrow \bigvee_{u_{1}, \cdots u_{n}} M\left(a_{1}, \ldots, a_{m}, u_{1}, \ldots, v_{n}\right)
$$

But $\Delta_{R} r V_{y} \Theta(y)$, for suppose $\theta(b)=a_{1}<\ldots<a_{+}<b<a_{1}^{\prime}<\ldots<a_{j}^{\prime}$. If $t=0$, take $y=a_{1}^{\prime}-1$; if $j=0$, take $y=a_{t}+1$; otherwise take $y=\frac{1}{2}\left(a_{t}+a_{1}^{\prime}\right)$. Thus we have shown that
so that P is model-complete.
That P is complete follows from the fact that amy real cased field contains a prime field isomorphic to the real algebraic field.

Now consider the set P^{\prime} of axioms for a real closed field without the notion of $s . P^{\prime}$ is still model complete since we may define

$$
x<y \leftrightarrow z \quad{ }_{z}\left(x=y+z^{2} \wedge z \neq 0\right)
$$

and since

$$
\neg x<y \leftrightarrow x=y \vee y<x .
$$

That is, since P is model-complete, every formula is equivalent to an existential formula; in P^{\prime}, every occurrence of a may be replaced by its definition, and since both the definition and itu negation are existential, the resulting formula is still existential. Hence P^{\prime} is still madel-complete. (Note the relation of this result to the preceeding problem.)
Problem. Show that closed fields is, complete. Note that this theory is not complete unless the characteristics is specified.

Since P^{\prime} is model-complete, any formula is equivalent to an existential formula

$$
\phi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \underset{y_{1} \cdots y_{k}}{V} \sigma\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right),
$$

where σ is a boolean combination of equations. Noting that

$$
\begin{aligned}
\alpha=0 \vee \beta=0 & \leftrightarrow \alpha \cdot \beta=0 \\
\alpha=0 \wedge \beta=0 & \leftrightarrow \alpha^{2}+\beta^{2}=0 \\
\alpha \neq 0 & \leftrightarrow V_{y} \alpha y=1,
\end{aligned}
$$

we see that σ may be transformed into a polynomial P so that $\quad \phi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \underset{y_{1}, \ldots, y_{k}, \ldots, y_{k}}{V} P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}, \ldots, y_{s}\right)$.

In an algebraically cased field we cannot do as well since there $\alpha=0 \wedge \beta=0 \leftrightarrow \hat{\wedge} \alpha u=\beta v$. Hence the polynomial may be proceeded by a mixture of both types of quantifiers.

Robinsoris method produces a decision procedure for real closed fields; namely, start listing all theorems of the theory until a given sentence or its negation appears. Tarski's method, however, gives more insight into the theory as it uses less logical apparatus. His result may be summarized as:

Let P be the set of axioms for real closed Fields with symbols $0,1,7, \cdots, 7$. Then every formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ is P-equivalent to a formula ψ with no more free variables and no bound variables.

This is a stronger result than Robinson's, for now a decision procedure will consist of "checking" a finite number of equations in the reduced formula. In such a manner, many unsolved problems in the theory of real closed fields may be attacked by using computers to perform the redaction. Still, the length of formulas and number of different cases soon becomes prohibitive for even problems of moderate complexity.
R. M. Robinson has solved one problem using model. theoretic techniques. Consider the problem of placing n points on a sphere so the minimum distance between any two is a maximum. For $n=2$, the points ore the ends of a diameter; $n=3$, the vertices of on equilateral triangle; $n=4$, the vertices of a tetrahedron. The proper placement is known for $n \leq 9$ and $n=24$, the later case having been solved by R.M. Robinson.

Another application of Tarski's method concerns the definability of sets of real numbers. If $\phi(x)$ is a formula with one free variable then the reduced formula ψ is a boolean combination of formulas of the types $\alpha=\beta$ and $\alpha<\beta$, where α and β are polynomials in x. Hence the set defined by $\phi(x)$ is a finite union of intervals with algebraic endpoints. In particular, the set of natural numbers is not definable. ($1 t$ is possible, however, to define the set of natural numbers in the rational field. The prot of this fact is difficult.)

Rings of polynomials over fields
One method of demonstrating the incompleteness of a structures with the operations + and. is to show that the set of natural numbers may be defined in the structure. (cf., R. M. Robinson, Transactions, 1951). We shall demonstrate this method by proving the incompleteness of rings of polynomials in one unknown over a field $\{=\langle\boldsymbol{T}=\langle F, 0,1, t$,$\rangle of characteristic$
o. The generalization to more unknowns is trivial.

We define $\quad x \mid y \leftrightarrow \sum_{z} x-z=y$

$$
x \in F \leftrightarrow x \mid 1 \vee x=0 \text {. }
$$

where 1 is the unit element of the ring. I.e., the field
elements are the polynomials of degree 0 . We claim

$$
\text { Nat } x \leftrightarrow \underset{v, v}{V}\left[U \notin F \wedge v \neq 0 \wedge u l v \wedge \bigwedge_{W}(W \in F \wedge u \neq w|v \rightarrow u+w+l| v \vee W=x)\right] \text {. }
$$

This assertion is justified as follows: Suppose x is a natural number and let $v=\alpha, v=\alpha \cdot(\alpha+1) \cdots(\alpha+x)$, where α is the transcendental element of the ring. Then u and v satiety the formula in [3. Note that we dort have to define α; all we need to know is that it exists. Conversely, suppose such a u and v exist. Then $u \backslash v, u+1|v, v+2| v, \ldots$, so that if x were not a natural number, v would have infinately many non-unit divisors. But this is impossible, and hence x mut be a natural number.

Consistency and Oefinability

Consistency Lemma (A. Robinson)
Let \mathscr{L}^{2} and \mathscr{L}^{\prime} be predicate Dogies with $\mathscr{L}_{1} \subseteq \mathscr{L}^{\prime}$.
Suppose that Γ is a set of sentences which is complete in \mathscr{L}, Γ_{1} and Γ_{2} are consistent sets of sentences of \mathscr{L}^{\prime} such that $T \subseteq T_{1} \cup T_{2}$, and that the relation symbols and constants of T_{1} and T_{2} are in \mathcal{L}. Than $T_{1} \cup T_{2}$ is consistent.

Before proceeding to the proof, we illustrate the depth of the lemma. Consider a language \mathscr{L} with $0,1, t_{1}$, and a language d^{\prime} with the additional unary relations Nat and Nat., Let Γ be a complete set of axioms for real closed fields; T_{1} the true sentences of the real field with the unary relation Nat $x \leftrightarrow x$ is a natural number; and T_{2} the true sentences of the real algebraic numbers with the relation Natix $\leftrightarrow x$ is a natural number.

Since computable functions are definable,
the extension of

$$
\varphi_{\text {Nat }}(p, q, r, s) \leftrightarrow \text { Nat } p \text { ^ Nat q } \cap \text { Nat } r \text { ^ Nato }
$$

$\wedge \frac{p}{q}<e<\frac{r}{s}$,
where $e=2.718 \ldots$, is definable. Similarly,
$\Phi_{\text {Nat }}$ is definable. Hence the Dedekind rut determining
e is definable in terms of both Γ_{1} and Γ_{2}.
Since e is in the domain of a model for
r_{1}, we have

But in a model for Γ_{a},

$$
(* s) \neg V_{x}^{V} \hat{p}, q, r, s\left(\phi_{\text {Nat }^{\prime}}(p, q, r, s) \rightarrow \frac{p}{q}<x<\frac{r}{s}\right) .
$$

Hence for a model of $T_{1} u T_{2}$ to exist, Nat and Nat must have different interpretations in that model. Since (x) holds in this model while the negation of $(* \%)$ does not, Nat' must be a larger set than Nat. I.e. Nat' must define a non-standaid model of arithmetic.

In our proof we shall employ the Henkin inconsistency Lemma (to appear JSL). This lemma is actually a strong form of the completeness theorem stake $\Gamma=\Delta$ below to derive the completeness theorem), and indeed the proof is basically the same.

Definition. The vocabulary $W(\Gamma)$ of a vet Γ of sentences consists of all relation, constant, and operation symbols occurring in Γ.

Inconsistency Lemma (Henl大in)
Let T and Δ be sets of sentences. If Tu a has no model, then there exists a sentence θ such that $W(\theta) \subseteq(W(T) \cap W(\Delta)) \cup\{T, F\}, \quad T \vdash \theta$, and $\Delta r \neg \theta$.

Proof: We shall prove the lemma for predicate logics without equality and operations. The extension to general predicate logic is the same as before.

Let v be the cardinality of $W(T) \cup W(\Delta)$. We adjoin τ additional constants to $W(T)$ to form a language \mathscr{L}, and the same v constants to $W(\Delta)$ to form a language \mathcal{L}_{2}. Well-order the constants by $\left\{c_{\mu}\right\}_{\mu<\nu}$ and the sentences
which occur in \mathscr{L}_{1} or \mathscr{L}_{2} by $\left\{\theta_{\mu}\right\} \mu<v$.
Suppose T_{i} is a vet of sentences, $i=1,2$. We say that T_{1} and T_{2} are locally consistent of there is no senterice $\theta, W(\theta) \leq W\left(T_{1}\right) \cup W\left(T_{2}\right)$, for which $\Gamma_{1} \vdash \theta$ and $T_{2} \vdash \neg \theta$.

Lemma. If T_{1} and T_{2} are locally consistent considered as sentences of $W\left(T_{1}\right)$ and $W\left(T_{2}\right)$, then they are locally consistent when considered as sentences of \mathscr{L}_{1} and \mathscr{L}_{2}.

Proof: Suppose Γ_{1} and Γ_{2} are not locally consistent in \mathcal{L}_{1} and \mathcal{L}_{2}. Then for some θ in $\mathscr{L}_{1} \cap \mathcal{L}_{2}$,

$$
\begin{aligned}
& \Gamma_{1} \vdash \theta\left(c_{1} \ldots c_{n}\right) \\
& \Gamma_{2} \longmapsto \rightarrow \theta\left(c_{1} \ldots c_{n}\right) .
\end{aligned}
$$

Since $c_{1} \ldots c_{n}$ do not occur in Γ_{1} or Γ_{2},

$$
\begin{aligned}
& T_{1} \longmapsto \wedge_{x_{1} \cdots x_{n}} \theta\left(x_{1} \ldots x_{n}\right) \\
& T_{2} \longmapsto x_{1} \cdots x_{n}
\end{aligned}
$$

$$
T_{2} \leftharpoondown \sim_{1}, \cdots x_{n} \in\left(x_{1} \cdots x_{n}\right)
$$

which contradicts ${ }^{x_{1} \cdots x_{n}}$ the local consistency of Γ_{1} and Γ_{2}.

To complete the proof of the \emma, we suppose that T and Δ are locally consistent and produce a model for Tu Δ. We define

$$
\Gamma_{0}=T
$$

$T_{\mu+1}=T_{\mu} \cup\left\{\varphi_{\mu},[\varnothing(s)]\right\}$ if $\Phi_{\mu} \in \mathcal{L}_{1}$ and $\Gamma_{\mu}, \varphi_{\mu}$ and Δ_{μ} are locally consistent. $\varphi(c)$ is added if $\varphi_{0}=Y_{\alpha} \phi(\alpha)$, where c is the first constant not in $\Gamma_{\mu}, \Delta \mu$, or $\varphi(\alpha)$
$T_{\mu+1}=\Gamma_{\mu}$ otherwise
$T_{\lambda}=\bigcup_{\mu<\lambda} T_{\mu}$ if λ is a limit ordinal

Similarly,

$$
\Delta_{0}=\Delta
$$

$\Delta_{\mu+1}=\Delta_{\mu} \cup\left\{\varphi_{\mu},[\phi(c)]\right\}$ if $\varphi_{\mu} \in \mathscr{L}_{2}$ and $\Gamma_{\mu+1}$ and Δ_{μ}, Φ_{μ} are locally consistent. $\varphi(c)$ is added it $\varphi_{\mu}=V_{\alpha} \varphi(\alpha)$, where s is the first constant not in $\Gamma_{\mu+1}, \Delta \mu$, or $\varphi(\alpha)$
$\Delta_{\mu H}=\Delta_{\mu}$ otherwise
$\Delta_{\lambda}=U_{\alpha<\lambda} \Delta_{\mu}$ if λ is a limit ordinal
Now let $\Gamma^{\prime}=\Gamma_{\nu}$ and $\Delta^{\prime}=\Delta_{\nu}$.
I. Γ^{\prime} and Δ^{\prime} are locally consistent.

By the following lemma and arguments used before, if Γ_{μ} and Δ_{μ} are local V_{y} consistent, then so are $\Gamma_{\mu+1}$ and $\Delta_{\mu+1}$.

Lemma. If $\Gamma, \vee_{\alpha} \phi(\alpha)$ and Δ are locally consistent, then so are $\Gamma,{ }_{\alpha} \otimes(\alpha), \phi(c)$ and Δ, where c is a constant which does not occur in Γ, Δ, or $\varphi(x)$.

Proof: Suppose the lemma is false. Then there is a sentences $\theta(c)$ for which

$$
\begin{gathered}
\Gamma, V_{\alpha} \varphi(\alpha) \vdash \varphi(c) \rightarrow \theta(c) \quad \text { and } \\
\Delta \vdash-\theta(c) .
\end{gathered}
$$

Then,

But,

$$
\begin{aligned}
& \Gamma, V_{\alpha} \Phi(\alpha) \vdash \hat{\alpha}_{\alpha}(\theta(\alpha) \rightarrow \theta(\alpha)) \\
& \Gamma, V_{\alpha}^{\gamma} \Phi(\alpha) \vdash{\underset{\alpha}{\alpha}}_{v} \theta(\alpha) \rightarrow V_{\alpha} \theta(\alpha) \\
& \Gamma,{\underset{\alpha}{\alpha}}_{\alpha} \varphi(\alpha) \vdash{\underset{\alpha}{\alpha}}_{\alpha}^{\gamma} \theta(\alpha) .
\end{aligned}
$$

$$
\Delta \vdash \Lambda_{\alpha} \neg \theta(\alpha)
$$

or $\Delta r \rightarrow V_{\alpha} \in(\alpha)$,
which is a contradiction.
II. If $\sigma \in \mathscr{L}_{1}$, then either $\sigma \in T^{\prime}$ or $\rightarrow \sigma \in T^{\prime}$. If $\sigma \in \mathscr{L}_{2}$, then either $\sigma \in \Delta^{\prime}$ or $\neg \sigma \in \Delta^{\prime}$.

Proof: If both $\sigma \notin \Gamma^{\prime}$ and $-\sigma \notin \Gamma^{\prime}$, then σ, Γ^{\prime}, and Δ^{\prime} are locally inconsistent as are $T \sigma, \Gamma^{\prime}$, and Δ^{\prime}. Hence
$\Gamma^{\prime}, \sigma \vdash \theta_{1}$ and $\Delta^{\prime} \vdash \neg \theta_{1}$
$\Gamma^{\prime}, \neg \sigma \vdash \theta_{2}$ and $\Delta^{\prime} \vdash \sim \theta_{2}$.
Furthermore,
$\Gamma^{\prime} \vdash \sigma \rightarrow \theta_{1}$ and $\Gamma^{\prime} \vdash \sim \sigma \rightarrow \theta_{2}$
Therefore
$\Gamma^{\prime} 1-\theta_{1} \vee \theta_{2}$
But $\Delta^{\prime} 1-\rightarrow\left(\theta_{1}, v \theta_{2}\right)$, which contradicts the local consistency of $\Gamma^{\prime \prime}$ and Δ^{\prime}.
III. If $\underset{\alpha}{V} \varphi(\alpha) \in \Gamma^{\prime}$, then $\varphi(c) \in \Gamma^{\prime}$ for some c. Similarly for ' Δ^{\prime}, both results following by construction.

We now define a valuation on the sentences of $\mathcal{L}_{1} \cup \mathcal{L}_{2}$. For atomic sentences ∞, let

$$
\begin{array}{ll}
v(\phi)=T & \text { if } \quad \phi \in \Gamma^{\prime} \cup \Delta^{\prime} \\
v(\phi)=F & \text { if } \neg \phi \in \Gamma^{\prime} \cup \Delta^{\prime}
\end{array}
$$

$V(Q)$ arbitrary otherwise.
The valuation is extended to all sentences in the normal fashion.

Let m be the model having as domain the constants of $\mathscr{L}_{1} \cup \mathcal{L}_{2}$. For $\phi \in \mathcal{L}_{1}, v(\theta)=T$ iff $\phi \in \Gamma^{\prime}$ as in the proof of the completeness theorem. Hence m is a model for T. Similarly, for $\Phi \in \mathcal{L}_{2}, \quad v(\phi)=T$ iff $\phi \in \Delta^{\prime}$, and m is a model for Δ. This completes the proof of the lemma.

Henson actually stated this result in terms of the following notions of Gentzen derivability:
Definition $\Gamma F \Delta \Delta$ ff every model of T satisfies some sentence of Δ.
Γ Gentaen of there exist sentences $\delta_{0} \ldots, \delta_{k}$ in Δ such that $T \vdash \delta_{0} v \ldots v \delta_{k}$.

Henkins Theorem. If TFA, then there exists a sentence θ such that $W(\theta) \subseteq W(\Gamma) \cap W(\Delta)$ and for which $\Gamma \vdash \theta$ and θ Gentian

Proof: if TFA, then T and Neg Δ have no common model. By the Inconsistency Lemma, there exists a sentence θ with $W(\theta) \leq W(T), W(\Delta)$ such that Tr e and Neg $\Delta \leftarrow \neg \theta$. $\vdash \neg \delta_{1} \wedge \ldots \wedge \neg \delta_{k} \rightarrow \neg \theta$ or $F \theta \rightarrow \delta_{1} v \ldots \vee \delta_{k}$. Thus $\theta \underset{\text { Gent zen }}{\underset{\sim}{\Delta}}$.

The theorem is equivalent to the Inconsistency Lemma, For suppare T and Δ have no common model. Then Γ N en Δ. and there exists a sentence θ for which $T V \theta$ and θF Neg 0 . $F \theta \rightarrow \neg \delta_{1}, \ldots \sim \delta_{k}$ or $\Delta r \neg \theta$.

Note also that by the Completeness Theorem, TFD af $T \underset{\text { Gentren }}{\operatorname{D}}$. If TFA, then T and Neg Δ have no common model, or Tenter Neg Δ is not consistent. Hence ruNeg $\Delta r \delta_{0}$ and
 converse is obvious.

The Consistency Lemma of A. Robinson now follows as a corollary of the Inconsistency Lemma:

Consistency Lemma. Suppose that Γ_{1} and Γ_{2} are consistent sets of sentences and that $\Gamma_{1} \cap \Gamma_{2}$ is complete relative to $W\left(\Gamma_{1}\right) \cap W\left(\Gamma_{2}\right)$. Then $\Gamma_{1} \cup \Gamma_{2}$ is consistent.

Proof: If T_{1} and T_{2} have no common model, then there is a sentence θ with $W(\theta) \subseteq W\left(T_{1}\right) \cap W\left(r_{2}\right)$ such that $T_{1} r \theta$ and $\Gamma_{2} r-\theta$. But this contradicts the hypotheses that $\Gamma_{1} \cap \Gamma_{2}$ is complete and that both Γ_{1} and Γ_{2} are consistent.

As another corollary we have:

Craig's Lemma. If $r \phi \rightarrow \psi$, then there exists a sentence θ with $w(\theta) \subseteq w(\phi) \cap W(\psi)$ such that $r \varphi \rightarrow \theta$ and $F \theta \rightarrow \psi$.

Proof: Suppose $r \phi \rightarrow \psi$. Then $\{\phi\}$ and $\{\neg \psi\}$ have no common model, so that there is a θ such that $\varphi \vdash \theta$ and $\rightarrow \psi \vdash \neg \theta$. I.e., $\vdash \varphi \rightarrow \theta$ and $\forall \theta \rightarrow \psi$.

Craig Lemma may be proved also for formulas as follows: Let $x_{1} \ldots x_{n}$ be the free variables occurring in the formula $\phi \rightarrow \psi$, and suppase $\phi \rightarrow \psi$. Choose constants $c_{1} \ldots c_{n}$ not occurring in $\phi \rightarrow \psi_{\text {, increasing the language if }}$ necessary. By Craigie Lemma as above, there exist to a sentence θ with $W(\theta) \subseteq W\left(\Phi\left(c_{1} \ldots c_{n}\right)\right) \cap W\left(\psi\left(c_{1} \ldots c_{n}\right)\right)$ such that $\vdash \varphi\left(c_{1} \ldots c_{n}\right) \rightarrow \theta$ and $\vdash \theta \rightarrow \psi\left(c_{1} \ldots c_{n}\right)$. By generalization, $\vdash \Phi \rightarrow \theta\left(x_{1} \ldots x_{n}\right)$ and $\vdash \theta\left(x_{1} \ldots x_{n}\right) \rightarrow \psi$.

Definition. Let \mathcal{L} be a predicate logic with equality and relation symbols $R, R_{1} \ldots$, and let T be a consistent set of sentences of $\dot{\alpha}$. R is defined implicitly in terms of R_{1}, \ldots iff for every domain A and relations T_{1}, \ldots on A there is at mast one $\operatorname{mode}\rangle\left\langle A, T, T_{1}, \ldots\right\rangle$ of T.

Implicit definability may also be defined syntactically as well as semantically, as in the following theorem. In the subsequent discussion, Δ will be the sat of sentences obtained from those of r by replacing each occurrence of R by a new relation symbol S (not in \mathcal{L}), and \mathcal{L}^{\prime} will be the language so expanded.

Theorem. R is defined implicitly in terms of R_{1}, \ldots with respect to Γ of $\Gamma_{u} \Delta{ }_{x_{1} \ldots A_{n}}\left(R_{x_{1}} \ldots x_{n} \leftrightarrow S_{x_{1} \ldots x_{n}}\right)$.
Proof: Obvious application of completeness Theorem.
$\frac{\text { Definition. Let } R}{R}$ bo a relation symbol of rank n. R is defined explicitly by a formula ϕ with respect to T in terms of R_{1}, \ldots iff $R \notin W(\varnothing)$, φ has at most the free variables x_{1}, \ldots, x_{n}, and $\Gamma \vdash{ }_{x_{1} \cdots x_{n}}^{\Lambda_{x_{n}}}\left(R_{x_{1} \ldots x_{n}} \leftrightarrow \infty\right)$.

Bethis Theorem. If R is defined implicitly w.r.t. T in terms of R_{1}, \ldots, then there exists a formula θ such that R is defined explicitly by \varnothing w.r.t. T in terms of R_{1}, \ldots.

Proof: By hypothesis, $T_{u} \Delta F-R_{x_{1} \ldots x_{n}} \leftrightarrow S_{x_{1}} \ldots x_{n}$. Let r and δ be conjunctions of sentences of T and Δ respectively such that

$$
\begin{aligned}
& \leftarrow \gamma_{\wedge} \delta \rightarrow\left(R_{\left.x_{1} \ldots x_{n} \leftrightarrow S x_{1} \ldots x_{n}\right) .}^{\leftarrow} \delta \wedge R_{x_{1} \ldots x_{n} \rightarrow\left(\delta \rightarrow S x_{1} \ldots x_{n}\right)}\right.
\end{aligned}
$$

By Craig's Lemma, there exists a formula θ with free variables at mast $x_{1} \ldots x_{n}$ such that

$$
\begin{aligned}
& 1-\gamma \cap R_{x_{1} \ldots x_{n} \rightarrow \theta}-\theta \rightarrow\left(\delta \rightarrow \delta x_{1} \ldots x_{n}\right)
\end{aligned}
$$

and such that $W(\theta) \subseteq\left\{=, R_{1}, \ldots\right\}$. I.e., neither \mathbb{R} or S orcus in θ. Hence,

$$
\begin{aligned}
& T \vdash R x_{1} \ldots x_{n} \rightarrow \theta \\
& \Delta \vdash \theta \rightarrow S x_{1} \ldots x_{n_{1}}
\end{aligned}
$$

and in the proof of the latter deduction we may replace all occurrences of S by occurrences of R to obtain

$$
T \vdash \theta \rightarrow R_{x_{1}} \ldots x_{n} .
$$

Thus $T \vdash \theta \leftrightarrow R x_{1} \ldots x_{n}$.

A curious observation with regard to Bethis Theorem is that despite it's apparent strength, it has very few applications. One reason is that it is difficult to apply. For instance, in number theory, the relation $R_{x y} \leftrightarrow y=2^{x}$ is recursively definable by

$$
R O 1 \text { a } R x y \rightarrow R(x+1, y+y) \text {. }
$$

Yet it is not clear that the definition is implicit due to the existence of non-standard models. (R is in fact implicitly definable since Godel has shown all primitive recursive functions to be explicitly definable.)

The main application of Bethis Theorem occurs in proofs of non-definability. as will be demonstrated later. What the theorem really tells us is that "Padua's method" always works; ie., if a relation is
not explicitly definable w.r.t. a set T of sentences, then it is possible to find two models for T differing only in the interpretation of that relation.

For example, let $R=\langle$ Real numbers, $0,1, t, F\rangle$ where F denotes the algebraic numbers, and let $\Gamma=$ Th a. Paduais method show that F cannot be defined in terms of t and. w.r.t. T since $V \neg F(x)$ holds in the real closed field but not in the "real algebraic field.

Definability in Arithmetic

1. t in terms of S and. w.r.t. Th \langle Pos. Int., S, t,

$$
x+y=z \leftrightarrow S(x \cdot z) \cdot S(y \cdot z)=S(z \cdot z \cdot S(x \cdot y))
$$

2. + is not definable in terms of alone since there is an automorphism of the integers which leaves - but not + fixed. (This is an examples of Padua's method. For the automorphism creates a new model differring from the old only in the interpertation of $t+$. The particular automorphism is obtained by interchanging a and 3 in the multiplicative structure:

$$
\begin{array}{ccccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots \\
T(n) & 0 & 1 & 3 & 2 & 9 & 5 & 6 & 7 & 27 & 4 & 15 & \ldots
\end{array}
$$

Obviously $x 0_{y}=T\left(T^{-1} x \cdot T^{-1} y\right)=x \cdot y$, but $x \oplus_{y} \neq x+y$.
3. S can be defined in terms of 4 (obvious), but the converse situation does not hold. Intuitively, S determines only the local behavior of \leqslant; ie., consider the nonstandard model of $T h\langle N a t, S, \leqslant, 0\rangle$:

$$
0,1,2,3, \ldots, \ldots, a-1, a, a+1, \ldots, \ldots b-1, b, b+1, \ldots
$$

Interchanging a and b leaves s and 0 fixed, but not <. The only difficulty with this application of Padua's methoct is that we must know that the above is a model, and that the demonstration of this fact may be tediow to formalize.
4. \quad. cannot be defined in terms of $0,1,5$, and $<$. We shall demonstrate this result not by padua's method, but by producing a mode for $T^{\prime}=T h\langle N a t, 0,1,5,\langle \rangle$ in which there is no interpretation of t. For the model take

$$
0,1,2, \cdots ; \cdots, a-1, a, a+1, \ldots
$$

In this model there is no element a^{*} for which $a^{*}>a, a^{*}>a+1, \cdots$; but if + were definable, iata would be such an element.

Alternatively, we could start with any nonstandard model for t and map every nonstandard number a into at 1, thereby preserving $0,1, s$, and $<$, but not t.
5. - cannot be defined in terms of $0,1, s, 4$, and t. As in 4 , consider the model for $t h<N a t, 0,1,5,4,+7$

$$
0,1,2, \ldots, \cdots, \cdots, a-1, a, a+1, \cdots, \cdots
$$

with all necessary rows filled in. In this model there is no a^{*} for which $a^{k}+a, a^{k}>a+a, \ldots$; but if. were definable, $a \cdot a$ would be such an element.

Problems
In the domain of natural numbers, give explicit definitions of i in terms of
(a) + and 1
(b) + and 1 , where $x \perp_{y} \leftrightarrow \bigwedge_{z}(z|x \cap z| y \rightarrow z=1)$.

Definability in Fields

In a field of characteristic 0 we may define 0,1 , and individual rationals. More generally we have

Theorem. If F is an algebraic field and $\alpha \in F$, then α is arithmetically definable iff α is fixed under all automorphisms of F. (R.M. Robinson, JSL)

Proof: If the characteristic of F is $p \neq 0$, then $x \rightarrow x^{p}$ is an automorphism of F. The fixed elements satisfy $x^{p}=x$, whose only solutions are $0,1,2, \ldots, p-1$. These elements are trivially definable.

Suppose F has characteristic O and is a simple extension of the rationals, $F=R(\theta)$. Let f be the irreducible polynomial with rational coefficients such that $f(\theta)=0$, and let $\theta_{1}, \ldots, \theta_{2}$ be the roots of $f(x)=0$ which are in F. Automorphisms of F are characterized by $\sigma_{i}(\theta)=\theta_{i}, i=1, \ldots, k$. Furthermore, $\alpha=g(\theta)$ for some polynomial g in $R[\theta]$. Then $\sigma_{i}(\alpha)=\sigma_{i} g(\theta)=g\left(\theta_{i}\right)$, and since α is fixed under automorphisms, we may define

$$
x=\alpha \leftrightarrow \vee(f(y)=0 \wedge x=g(y))
$$

Finally, let F be an arbitrary algebraic
field of characteristic 0 . Since F is countable, we may write $F=U F_{n}$, where

$$
\begin{aligned}
& F_{0}=R(\alpha) \\
& F_{n} \leq F_{n+1} \\
& F_{n}=R\left(\theta_{n}\right) .
\end{aligned}
$$

Let σ_{n} be an isomorphic mapping of F_{n} onto a subfield of F. Then σ_{n} is determined by $\sigma_{n}\left(\theta_{n}\right)$, which in turn must be a root of the irreducible polynomial for θ_{n} over R. Hence there exists only a finite number of such isomorphisms.

Lemma. Let F be an algebraic field, $\alpha \in F$. If α is fixed under all automorphisms of F, then there exists a subfield $K \leq F$ of finite degree over R such that α is fixed under all is omorphisms of k onto a subfield of F.

Proof: If the lemma is false, then for each n there exists an isomorphism of F_{n} onto a subfield of F such that a is not fixed. Each isomorphism of F_{n+1} onto a subfield of F is an extension of an isomorphism of F_{n} onto a subfield of F, and at each stage there are only a finite number of isomorphisms. Hence by König's Lemma, there is an isomorphism σ of F onto a subfield F^{\prime} of F which does not leave α Fixed. But we must have $F^{\prime}=F$, and this contradicts the fact that α is Fixed under all automorphisms of F.

Now choose $K=R(\theta)$ where, by the lemma, α is fixed under all isomorphisms of K onto subfield of F. Let $\theta_{1}, \ldots, \theta_{k}$ be the roots of $F(\theta)=0$ which are in F, where F is the irreducible polynomial for θ over R. As before, isomorphisms of K into F are determined by $\sigma_{i}(\theta)=\theta_{i}$, and $\alpha=g(\theta)=\sigma_{i} g(\theta)=g\left(\theta_{i}\right)$. Hence $x=\alpha \leftrightarrow V_{y}(f(y)=0 \wedge x=g(y))$.

Note in connection with the preceeding theorem that we define $\sqrt{2}$ in $R(\sqrt[4]{2})$ by
The definition

$$
x=\sqrt{2} \leftrightarrow V_{y}\left(y^{4}=2 \wedge x=y^{2}\right) .
$$

$$
x=\sqrt{2} \leftrightarrow x^{2}=2
$$

does not work, since $-\sqrt{2}$ ado satisfies the right hand side.

Homomorphic Images of Algebras

For our final result in this section we need a strengthened version of the Inconsistency Lemma. Again the proof is similar to the former, and will only be sketched.

Definition. A formula Q is in negation normal form (nnf) if each negation symbol occurring in ϕ immediately precedes a relation symbol, and the only logical symbols in φ are $T, v, \Lambda, V, \Lambda_{2}=$.

Definition. An occurrence of a relation symbol in a formula ρ in nut is a positive occurrence iff it is not immediately preceded by a negation sign in that occurrence. Otherwise the occurrence is termed negative.

Let θ be in nut. Then θ^{*} is obtained from θ by turning all logical symbols except -) upside down, and by changing all positive occurrences of relation symbols to negative ones and vice versa. We have $\vdash \theta^{*} \leftrightarrow \rightarrow \theta$.

Let T and Δ be sets of sentences in inf, and define S_{T} to be the set of all sentences φ which are in nut and such that each relation symbol occurring in φ occurs with the same sign in some sentence of T as in ϕ. Define $\&_{\Delta}$ similarly. We assume that $T, F \in S_{T} \cap S_{\Delta}$.

Theorem. If T and Δ have no common model, then there exists a sentence θ in δ_{Γ} such that θ^{*} is in S_{Δ} and

$$
T \vdash \theta, \quad \Delta \vdash \theta^{*} \text {. }
$$

Proof: First consider the case without equality, constants, or operations. Adjoin v additional constants $\left\{c_{\mu}\right\}<\in v$, where v is the cardinality of the symbols in TuM. Let S' be the set of all sentences in the expanded language in nf with the same signed relations as in Γ. Define so similarly. Well order $\delta_{T}^{\prime} \cup \delta_{\Delta}^{\prime}$ by $\left\{\varphi_{\mu}\right\}_{\mu}<v$. If Σ_{1}, Σ_{2} are sets of sentences in nut. Σ_{1} and Σ_{2} are locally consistent of there does not exist a sentence $\theta \in \mathcal{S}_{\Sigma_{1}}^{\prime}$ such that $\theta^{*} \in \mathcal{S}_{\Sigma_{2}}^{\prime}$ and $\Sigma_{1} \vdash \theta, \Sigma_{2} \vdash \theta^{\star}$.

The sets $T_{\mu}, \Delta \mu$ for $\mu s \nu$ are defined exactly as in the proof of the Inconsistency lemma, this time using the now notion of locally consistent. Let $T^{\prime}=T_{v}$ and $\Delta^{\prime}=\Delta z$. As before, we have
I. If $\phi \in \mathcal{S}^{\prime} \prime$ and $T r \phi$, then $\varphi \in T^{\prime}$. Similarly for $\phi \in S_{\Delta}^{\prime}$.
II. If ${\underset{\alpha}{\alpha}}^{(I}(\alpha) \in T^{\prime}$, then $\phi(c) \in \Gamma^{\prime}$ for some c.
III. T^{\prime} and Δ^{\prime} are locally consistent.
III. If $\phi \in \delta_{\Gamma}^{\prime}-T^{\prime}$, then Γ^{\prime}, ϕ and Δ^{\prime} are not locally consistent.

We now take the set $\left\{c_{\mu}\right\}_{\mu c}$ as the domain of a model m, and define a valuation v as follows: For atomic formulas,

$$
\begin{array}{ll}
v(\phi)=T & \text { if } \quad \phi \in \Delta^{\prime} \cup T^{\prime} \\
v(\phi)=F & \text { if } \quad \neg \phi \in \Delta^{\prime} \cup T^{\prime}
\end{array}
$$

$v(\phi)=F$ otherwise rassignment arbitrary).
The valuation is extended in the usual manner.

Lemma. $v(\phi)=T$ for all $\phi \in T^{\prime} u \Delta^{\prime}$.
Proof: Routinely by induction on the lengegh of φ.
Hence m is a model for Tu A, and the theorem is proved.

The result of the theorem may be strengthenect to include operations and constants by expending the language to include terms, and taking the set of all terms as the domain of the medet. The ease of equality is more involved since the axioms for $=$ contain both positive and Negative occurrences of $=$.

Craig's Lemma. If Φ and ψ are in nne and $F \Phi \rightarrow \psi$, then there exists a θ in nut such that each relation in θ occurs with the same sign in both φ and ψ as in θ for $\theta=T$ or F, and

$$
\begin{aligned}
& \vdash \varphi \rightarrow \theta \\
& \vdash \theta \rightarrow \psi .
\end{aligned}
$$

Proof: Apply the strengthened inconsistency bema to $\Gamma=\{\Phi\}$ and $\Delta=\left\{\psi^{*}\right\}$.

Notes on Henkin's Theorem
We first proved the Inconsistency Lemma and Craig's Lemma for systems with no distinction with respect to the signs of relations. Equality was introduced through equivalence classes. This method requires us to consider the relation ${ }^{\prime}=$ as occurring in both the sets T and Δ of the theorem, for ' =' may have to appear in the interpolating formula even though it does not occur explicitly in both sets. E.g., consider applying Craig's lemma to

$$
1-\left(V _ { x } \left(\beta_{x} \wedge{\underset{x}{ }}_{x}^{\left.P_{x}\right) \rightarrow V_{x, y} x \neq y .}\right.\right.
$$

Operations and constants were then introduced as relations by using additional axioms involving equality.

The stronger theorem for signed relations does not apply in its strong form to languages with operations. For suppose + occurs in Γ and - only in Δ. In the proof of the lemma we would want to show that the model constructed is a model for T, or that for all $\phi \in S_{\Gamma}$, (the language constructed from all terms and positive relations in T^{\prime}), $v(\phi)=T \Leftrightarrow \phi \in \Gamma^{\prime}$. In particular, we need $\hat{\alpha} \phi(\alpha) \in T \Rightarrow v(\Lambda \phi(\alpha))=T$. But our inductive hypothesis only allows us to conclude that $v(\phi(c))=T$ for all terms c of the language of T (eeg., $v(\phi(a+b))=T$; the value $v(\varphi(c-d))$ is undetermined, and hence we cannot conclude that $v\left(\wedge_{\alpha} Q(\alpha)\right)=T$.

Thus, in applying the strong form of the inconsistency lemma, we may not place any restrictions on the occurrence of operation symbols.

Definition. A set r of sentences of a p.l. \mathscr{A} is increasing in a set \& of relation symbols of For any model m of Γ, whenever we replace each of the relations of \& by larger relations to obtain a structure m^{\prime} ', then also $m^{\prime} \in \operatorname{Mod} T$.

For each $R \in \&$ we associate a new symbol R^{\prime} not in \mathcal{L}. Let

$$
c\left(R, R^{\prime}\right) \leftrightarrow x_{1} \wedge_{x_{n}}\left(R x_{1} \cdots x_{n} \rightarrow R^{\prime} x_{1} \cdots x_{n}\right),
$$

and let I be the set of all such sentences $i\left(R, R^{\prime}\right)$ For all $R \in \&$. Finally let T^{\prime} be the set of sentences obtained by replacing R by R^{\prime} throughout T. Then Γ is increasing in 8 of every model of $\Gamma \cup I$ is also a model of Γ^{\prime}; i.e., ff TuI Γ^{\prime}.

Theorem. If T is a set of sentences in niff and all relations in a set \& occur only positively in r, then r is increasing.
Proof: $\begin{aligned} & B \in \Gamma \text {. induction on the length of formulas } \\ & \gamma \in \Gamma \text {. }\end{aligned}$

Let I, \mathscr{d} and $\&$ be as before, and let \& be the set of all R^{\prime} for $R \in \&$. Let Σ, Γ, and Δ be sets of sentences of \mathcal{L}, and define $\Sigma^{\prime}, \Gamma^{\prime}$, and Δ^{\prime} by replacing all relations symbols of s by the corresponding symbols of S^{\prime}. Then we have the following interpolation theorem:

Theorem. If $\Sigma, \Sigma^{\prime}, \Gamma, I \vdash \Delta^{\prime}$, then there exists a set π of sentences π in nu which are positive in all the relation symbols of \& and not containing any symbols of s^{\prime} such that

$$
\begin{aligned}
& \Sigma, \Gamma \vdash \pi \\
& \Sigma, \pi \vdash \Delta .
\end{aligned}
$$

Proof: Suppose first that $\Delta=\{\delta\}$. Then by hypothesis there exist conjunctions $\sigma, \sigma^{\prime}, \gamma$, and i_{0} of sentences of Σ, Σ, Γ, and I respectively such that

$$
\begin{aligned}
& \quad \vdash \sigma \wedge \sigma^{\prime} \wedge \gamma \wedge i_{0} \rightarrow \delta^{\prime} . \\
& \text { or } \quad F \vDash \gamma \rightarrow\left(i_{0} \wedge \sigma^{\prime} \rightarrow \delta^{\prime}\right) .
\end{aligned}
$$

Now no relations in δ^{\prime} occur in $\sigma \wedge \gamma$, and those in $\&$ occur positively in $i_{0} \wedge \sigma^{\prime} \rightarrow \delta^{\prime}$. Hence by Craig's Lemma, there exists a sentence π in nut such that π contains no relations of $\&^{\prime}$ and all relation of $\&$ occur positively in π, and for which

$$
\begin{aligned}
& 1-\sigma \wedge \gamma \rightarrow \pi \\
& \vdash \pi \rightarrow\left(\dot{c}_{\theta} \wedge \sigma^{\prime} \rightarrow \delta^{\prime}\right) .
\end{aligned}
$$

Let \hat{c} be obtained from c by replacing R' by R. Then

$$
\vdash \pi \rightarrow\left(\hat{c}_{0} \wedge \sigma \rightarrow \delta\right),
$$

as can bee seen by modifying the proof of $\pi \rightarrow\left(i_{0} \wedge \sigma^{\prime} \rightarrow \delta^{\prime}\right)$. But \hat{c}_{0} is a theorem of logic, so that $\Sigma, \Gamma \vdash \pi$ and $\Sigma, \pi \vdash \delta$.

Finally, let π be the set of all such π defined in this manner for all $\delta \in \Delta$. Then $\Sigma, \Gamma \vdash \pi$ and $\Sigma, \pi \vdash \Delta$.

Corollary. T is increasing iff there exists a set π of sentences in nf such that $\Gamma V \pi$ and $\pi r \Gamma$.

An algebraic system is one in which there are operations and equality, but no relations. Homomorphic images are obtained by mappings similar to residue claws es in number theory. Regarding these systems, we have the following theorem due to R.C. Lyndon (Bulletin, 1959).

Theorem. Suppose \varnothing and Ψ are sentences containing no relations other than $=$ such that whonever φ holds in an algebraic system a, then ϕ holds in any homomorphic image of α. Then there exists a positive sentence π such that

$$
\leftleftarrows \varphi \rightarrow \pi \quad \text { and } \quad \leftleftarrows \pi \rightarrow \psi \text {. }
$$

Proof: Let $\gamma(\equiv)$ be the conjunction of the conditions expressing the facts that \equiv is an equivalence relation preserving the operations of Q. Eng., if Q is a system of number theory,

$$
\begin{aligned}
& \gamma(\equiv) \longleftrightarrow \hat{x}^{\prime}(x \equiv x) \wedge \wedge^{\wedge} \wedge(x \equiv y \rightarrow y \equiv x) \\
& \wedge \wedge_{x, y}(x \equiv y \wedge y \equiv z \rightarrow x \equiv z) \\
& \wedge x^{\prime}, x^{z}\left(x \equiv x^{\prime} \wedge y \equiv y^{\prime} \rightarrow x+y \equiv x^{\prime}+y^{\prime} \wedge x \cdot y \equiv x^{\prime} \cdot y^{\prime}\right) \\
& x, x^{\prime}, y, y^{\prime}
\end{aligned}
$$

Then the hypothesis of the theorem may be expressed as

$$
\vdash \varnothing(\equiv) \wedge \gamma(\equiv) \wedge \gamma(\equiv) \wedge \dot{ }(\equiv, \equiv) \rightarrow \psi(\equiv),
$$

where s is as before and $O(\equiv), \psi(\equiv)$ denote the sentences obtained from φ and ψ by making the indicated rulastitutions for $=$. Rewriting,

$$
\vdash \varphi(\equiv) \wedge \gamma(\equiv) \wedge \dot{ }(\equiv, \equiv) \rightarrow[\gamma(\equiv) \rightarrow \psi(\equiv)] .
$$

By Craig's Lemma there exists a sentence $\pi(\equiv)$ containing only the relation \equiv positively for which

$$
\begin{aligned}
& \vdash \varnothing(\equiv) \wedge \gamma(\equiv) \wedge \dot{\sim}(\equiv, \equiv) \rightarrow \pi(\equiv) \\
& \vdash \pi(\equiv) \rightarrow[\gamma(\equiv) \rightarrow \psi(\equiv)] .
\end{aligned}
$$

But $F i(=,=)$, so that

$$
\begin{aligned}
& \vdash \phi(=) \cap \gamma(=) \rightarrow \pi(=) \\
& \vdash \pi(=1 \rightarrow[\gamma(=) \rightarrow \psi(=)], \quad \text { or } \\
& F \varphi \rightarrow \pi \\
& =\pi \rightarrow \psi .
\end{aligned}
$$

Higher Order Predicate bogies
Finite Axiomatization

We assume as given
(1) a formal language \mathcal{L} with grammar)
(2) a notion c_{n} of consequence in \mathcal{L}; i.e., a function which correlates with every set of sentences of $\&$ another such set
(3) a mathematical structure.

The problem of finite axiomatizability of the theory of the given structure is the problem of determining whether or not there is a finite set Φ of sentences such that $C_{n}(\Phi)=\Gamma$, where Γ is the set of all true sentences in the given structure.

Examples: \mathcal{L} may be a first order \ogic, a set of existential sentences, etc.; Sn may denote drivability, validity, etc.

The RWS Language
We consider a restricted weak second order language for fields with

Logical symbols: $\Lambda, V, \Lambda, v, \sim_{1}=, \varepsilon$
Relations and constants: $0,1,+$, .
Variables: x, y, z, \ldots ranging over elements of the
X, Y, Z, \ldots ranging over finite sets of ("Restricted" refers to allowing only set variables and not relational variables; "we ki" pertains to the finite restriction.)

Fields finitely axiomatizable in the RoWs theory are the fields of rationals, algebraic numbers, real algebraic numbers, and complex numbers. The real field is not finitely axiomatizable. Indeed, Mastomski has shown that no recursive, re., arithmetic, or even hyperarithmetic set of axioms exists. At present we demonstrate only the partitive results.

In an arbitrary field we may define

$$
\begin{aligned}
& \text { Nat } x \leftrightarrow \frac{\Lambda}{T}\left\{\left[0 \in T \wedge \hat{y}_{y}(y \in T \rightarrow y+1 \in T v y=x)\right] \rightarrow x \in T\right\} \\
& \text { Int } x \leftrightarrow \text { Nat } x \vee \text { Nat -x }
\end{aligned}
$$

With these definitions we may axiomatize the Rus theory of the rational field by adding the following axioms to the field axioms:
(1) Characteristic $0: \sim V_{\hat{x}}^{\hat{x}}\left(\right.$ Nat $\left._{x \rightarrow x \in T}\right)$
(2) All elements rational:

$$
\wedge_{x} v_{y, z}[\text { Nat } \cap \operatorname{lnt} z \wedge x \cdot(1+y)=z] \text {. }
$$

Note that this result implies that there can be no satisfactory deductive apparatus for the RWS theory since the true first order sentences of number theory are not recursively enumerable, but are contained in the consequences of the axioms.

Restricting our attention to fields of characteristic 0 , we define

$$
\text { Alg } x \leftrightarrow \underset{T}{V} V_{y}\left[\text { Nat } y \wedge y \neq 0 \wedge y \in T \wedge \wedge_{z}\left(z \in T \rightarrow \underset{w}{V}\left(\ln \wedge_{x} x \cdot z+w \in T\right)\right)\right.
$$

I.e., x is algebraic iff there is a finite set of polynomials in x with integer coefficients with the closure property noted. For this property to hold,
either some polynomial must have the value 0 , or two polynomid) must have the same value.

To characterize algebraic fields we til need a notion of finite sequences (still char. 0):

$$
\begin{aligned}
\operatorname{Seq}(U, V, m, n) \leftrightarrow & \text { Nat } m n N_{u} n n n^{n} n \neq 0 \\
& \wedge \wedge_{k}\left[0<k \leq n \rightarrow V_{v}(u \in U n \text { u-kmeV) }]\right.
\end{aligned}
$$

Seq $(u, v, m, n) \wedge 0<k \leqslant n \rightarrow$

where

$$
x \leqslant y \leftrightarrow N \text { Nat } x \wedge \text { Nat } y \wedge \underset{z}{V}(\text { Nat } z \wedge x+z=y) \text {. }
$$

The justification of this definition is as
Follows: given a sequence a_{1}, \ldots, a_{n}, ${ }^{\text {let }} V=\left\{a_{1} \ldots, a_{n}\right\}$.
Choose m a positive integer such that $m>\max _{i, j} \backslash a_{i}-a_{j} \mid$, and let $U=\left\{a_{k}+k m: 0<k \leq n\right\}$. The uniquess condition follows since if $a_{j}+j m-k m=a_{l}$, then $\left|a_{j}-a_{l}\right|=(m|k-j|$, which can hold only if $j=k=l$ by the choice of m.
$\frac{\text { Problems }}{\text { RWS theory of }}$ Give finite set of axioms for the
RWS theory of
(1) the field of algebraic numbers
(2) the field of real algebraic numbers
(3) Finite extemion fields of the rationals.

Note that by the above definitions notations may be simplified by introducing small Greek letters as sequences variables and interpreting

$$
\begin{aligned}
& \lambda_{\alpha} \text { as } \hat{u} \hat{v}_{, m, n}[\operatorname{Seq}(u, v, m, n) \rightarrow \ldots] \\
& v \text { as } v\left[\begin{array}{l}
v, v, m, n \\
\alpha \\
x=\alpha_{k} \leftrightarrow x
\end{array}(u, v, m, n) \wedge \ldots\right] \\
& x=k^{i h} \text { term of }(u, v, m, n) .
\end{aligned}
$$

Translation back into the formalism is straight forward, even if somewhat tedious, and considerable clarity is gained by the abbreviated notation.

Tarsi's WS System

References:
Scott, Tarsi, Notices (1958)
Büchi, Logic, Methodology, and Philosophy (stanford) Eeifuchrift (with particular reference to decision problems for WS theories of arithmetic; finite automate)
Mostowski, Essays on Foundations (ed. Bar-Hillel)

Logical symbols: $-n, V_{1}=, I, n^{n}$
Variables: v_{0}, v_{1}, \ldots

$$
V_{0}, V_{1}, \ldots
$$

Relation symbols: "any number, with correlated rank
Atomic sequence terms: $I_{v_{j}}, V_{k}$
Sequence terms: if α and β are sequence terms, then so is $\alpha^{\wedge} \beta$.
Atomic formulas: $v_{i}=v_{j}$
$\pi v_{v_{1}, \cdots} v_{v_{n}}$, where π is an nary relation
Formulas: as usual

As seen, the WS language is a weak second order language with sequence variables. We proceed to the definition of satisfaction, using the following
metalinguistic abbreviations: metalinguistic abbreviations:

Let A be a non-empty set. Then $A^{(\omega)}$ is the set of all sequences a_{0}, a_{1}, \ldots with $a_{i} \in A$ such that for some $k, a_{n}=a_{k}$ for all $n \geqslant k$. A^{*} is the vet of all finite sequences. If $x \in A^{(\omega)}$ and Nat k, then $x(k / a)$ is the sequence obtained From x by substituting a in the isth $^{\text {in }}$ place.

For convenience of notation, we consider structures with one ternary relation. The generalization is obvious.
Definition. (x, x) satisfies a formula \varnothing of \mathcal{Z} in the structure $\mathbb{Q}=\langle A, R\rangle$, where A is a non-empty set, if $x \in A^{\prime(\omega)}, \quad x \in\left(A^{*}\right)^{(\omega)}$, and one of the following holds:

1. φ is of the form $v_{m}=v_{n}$ and $x_{m}=x_{n}$
2. φ is of the form $\rho v_{m} v_{n} v_{p}$ and $R_{x_{m}} x_{n} x_{p}$
3. Φ is of the form $\alpha=\beta$, where α and β are sequence terms, and the corresponding sequences are the same. Ie,, the sequence corresponding to α is obtained by replacing each occurrence of ∇_{m} by x_{m} and each occurrence of $I v_{m}$ by $\left\langle x_{m}\right.$.
4. $\varphi=-\psi$ and (x, x) does not satisfy ψ
5. $\Phi=\psi \cap x$ and (x, x) satisfies ψ and x
6. $\varphi=V_{V_{k}} \psi$ and for some $a \in A$, $(x(1 / a), x)$ satisfies ψ
7. $\varphi=V V_{k} \psi$ and for some $\alpha \in A^{*}$, $(x, x(k / \alpha))$ satisfies ψ.

A sentence σ is true in $R=\langle A, R\rangle$ if every pair (x, x) with $x \in A^{(\omega)}$ and $x \in\left(A^{*}\right)^{(\omega)}$ satisfies σ in R. (Note that we could have as well said "iff some pair" since σ is a sentence.)

Let $R=\langle A, R\rangle$ and $S=\langle B, S\rangle$ be two structures. " $R \leq S^{\prime \prime}$ is defined as before. R and \& are WS-equivalent iff every WS sentence true in R is true in $\&$ rand conversely). I is a WS-extension of R iff $R \leq 8$ and for every formula ϕ and pair (x, x) with $x \in A^{(\omega)}$ and $x \in\left(A^{v}\right)^{(w)}$, if (x, x) satisfies ϕ in R it also satisfies ϕ in \& 8 rand conversely). As before we may prove the following test for WS-extensions:

Theorem. Let $R=\langle A, R\rangle$ and $S=\langle B, S\rangle$ be structures of 2 . Then S is a WS-extension of Q iff
(1) $R \leq 8$
(2) for every formula \varnothing and every pair (x, x) with $x \in \mathbb{A}^{(w)}$ and $x \in\left(A^{*}\right)^{(\omega)}$, if (x, x) satisfies a formula $V_{v_{k}} \varnothing$ in \mathcal{S}, then there exists an $a \in A$ such that $\left(x\left(^{k} / a\right), X\right)$ satisfies \varnothing in δ.

Proof: Necessity is obvious. Sufficiency is shown by a double induction on the number of $2^{\text {nd }}$ order quantifiers and on the length of formulas containing a given number of f these quantifiers. I. Since $R \leq-8$, if (x, x) sativities ϕ in 8 and ρ is one of the forms 1-3, then (x, x) satisfies ρ in R, and conversely.
II. If $\varphi=\sim \psi$ and ψ is not satisfied by (x, x) in 8 , then by the inductive hypothesis, ψ is not satisfied by (x, x) in Q, and hence ϕ is satisfied. Conversely,...
III. If $\varphi=\psi \wedge x$, then...
IV. If $\varphi=V v_{k} \psi$ and (x, x) satisfies ϕ in \mathcal{S}, then by $n y p o t h e s i s$, there is an $a \in A$ such that $\left.\left(x r^{k} / a\right), x\right)$ satisfies ψ in 8 . Hence by the inductive hypothesis, $(x(k / a), x)$ satisfies ψ in R, and hence (x, x) satisfies ϕ in R. Converse is easier.
I. If $\varphi=V \nabla_{k} \psi$ and (x, x) satisfies φ in δ, then there is a $\beta \in B$ such that $(x, x(k / \beta))$ satisfies ψ in 8 . Suppose $\beta=\left\langle b_{1}, \ldots, b_{m}\right\rangle$ and let $V_{N+1} \ldots, V_{N+m}$ be variables not occurring in θ. Let ϕ^{\prime} be obtained from ϕ by replacing the second order quantifier " $V v_{b}$ " by the sequence of first order quantifiers " $V_{V_{W+1}} \ldots V_{V_{N+m}}$ " and by replacing V_{k} wherever it occurs in ψ by $I_{V_{N+1}} I_{N_{N+2}} \cdots I_{V_{N+m}}$. φ^{\prime} is satisfied in \& by (x, x). By the inductive hypothesis. ϕ^{\prime} is satisfied by (a, x) in R, and hence so is φ. The converse is trivial.

Even though we no longer have a completeness theorem, the Downwards Lowenheim-Skolem-Tarsk: Theorem still holds and is proved in the same manner.

Downwards LST Theorem
Let $S=\langle B, S\rangle$ be a structure of cardinality β of the language \mathcal{Z} (with a denumerable number of relation symbols). Let C be a subset of B of cardinality γ, and let a be an infinite cardinal for which $\gamma \leqslant \alpha \leqslant \beta$. Then there is a structure $R=\langle A, R\rangle$ of cardinality α such that $C \subset A$ and s is a ws-extension of R.

Proof: Well order the elements of B by $\left\{b_{\lambda}\right\}_{\lambda<\beta}$. Let A_{0} be a set of elements of B containing c and of cardinality α. bet A_{n+1} be the set of elements of B such that for some pair (x, X) with $x \in A_{n}^{(u)}, \quad X \in\left(A_{n}^{*}\right)^{(\omega)}$, there is a k and a φ for which a is the First
element in the ordering of B such that $(x(k / a), x)$ satisfies \varnothing in δ.
$A_{n} \subseteq A_{n+1}$ (take $\varphi=V_{j}=V_{k}$). Let $A=U A_{n}$, $R=S T A$. card $A=$ gard A_{0} since no step increases the cardinality. Suppose $x \in A^{(w)}, x \in\left(A^{*}\right)^{(w)}$, and (x, x) satisfies $V_{v_{k}} \phi$ in 8 . We need to show that there is an element $a \in A$ such that $(x(k / a), x)$ satisfies θ in 8 . Choose n such that $x \in\left(A_{n}\right)^{(\omega)}$ and $x \in\left(A_{n}^{*}\right)^{(\omega)}$. Since (x, x) satisfies $V_{v_{k}} \varnothing$ in \mathcal{S}, there is a $b \in B$ such that $(x(k / b), x)$ satisfies 0 in \& But one such b is in A_{n+1} and hence in A. Thus 8 is a WS. extension of Q.

The theorem also holds for the RWS language
it is a weaker language than the WS language since it is a weaker language than the WS language. I.e., we can represent she notion of a set by that of being a term in a sequence as follows: Let x represent a finite sequence of the domain.
Then

$$
x \text { is a term of } X \leftrightarrow V V_{, T^{\prime}} T^{\rho} I_{x} T^{\prime}=X \text {. }
$$

(Note that T, T^{\prime} may represent empty sequences).

Problems Does the Downwards LST Theorem hold for restricted 6strongl second order loyics? Show that the Compactness theorem does not hold in the RWS logic.

Axiomatization of the Complex Numbers

We shall give RWS axioms for the theory of the complex numbers based on the following result of Scott and Tarski (Notices, 1958).

Let Q and B be algebraically closed Fields of the same characteristic. Then θ and \mathbb{B} are WS-equivalent iff they have the same Finite degree of transcendence or else each has an infinite degree of transcendence over its prime field.
Using notation developed before, let y stand for the sequence (u, v, m, n). We define

$$
\begin{aligned}
& \text { \ぬ1 = n } \\
& s=\sum \gamma \leftrightarrow \underset{\delta}{V}\left[|\delta|=|\gamma| \wedge \delta_{1}=\gamma_{1} \cap \delta_{|x|}=s\right. \\
& \text { ^ } \left.\hat{k}_{k}\left(1<k<1 d \mid \wedge \text { Nat } k \rightarrow \delta_{k}=\delta_{k-1}+\gamma_{k}\right)\right] \\
& p=\pi \gamma \leftrightarrow \text { (similar definition for product) } \\
& \text { Int } \gamma \leftrightarrow \hat{k}_{k}\left(0<k<1 \gamma \cap \operatorname{Nat} k \rightarrow \text { Int } \gamma_{k}\right) \\
& \text { Dis } \gamma \leftrightarrow \hat{j}_{j, k}\left(0<j k \leqslant \backslash \gamma \mid \cap N \text { at } j \cap N a t k \cap \gamma_{k}=\gamma_{j} \rightarrow k=j\right)
\end{aligned}
$$

Elements $U_{1} \ldots, v_{k}$ are algebraically independent over the rational field of whenever $P\left(u_{1} . . u_{k}\right)=0$, where p is a polynomial with integer coefficients, then all coefficients of P are zero. we proceed to define the notion of a sequence of alg. ind. elements.

$$
x \text { Pow } \leftrightarrow \underset{\gamma}{V}\left[\gamma_{1}=1 \wedge x=\gamma_{|y|} \cap \bigwedge_{k}(|<k \leq|\gamma| \wedge \text { Nat } k\right.
$$

$$
\begin{aligned}
& \left.\beta \text { Pow } \gamma \leftrightarrow|\beta|=|\gamma| \cap \hat{k}_{k}\left(0<k \text { व号 } \cap N a t k \rightarrow \beta_{k} P_{\text {ow }} \gamma_{k}\right)\right] \\
& \text { Ind } \alpha \leftrightarrow \wedge_{\beta, \gamma}\left(\beta \text { Pow } \alpha \wedge \gamma \text { Pow } \alpha \wedge \pi_{\beta}=\pi \gamma \rightarrow \beta=\gamma\right) \\
& \wedge \bigwedge_{\lambda, \mu, \nu}\left\{|\lambda|=|\mu|=|v| \wedge \text { Dis } \lambda \wedge \operatorname{lnt} \mu \cap \sum \nu=0\right. \\
& \wedge \wedge_{k}\left(\operatorname{Oosks}|\lambda| \rightarrow \nu_{\beta}\left(\beta \text { Pow } \alpha \wedge \lambda_{k}=\pi_{\beta}\right) \wedge v_{k}=\lambda_{k} \mu_{k}\right] \\
& \left.\rightarrow \hat{k}^{k}\left(0<k \leq 1 \mu \mid \rightarrow \mu_{k}=0\right)\right\}
\end{aligned}
$$

I.e., the difference of two monomials in the element o of α is zero only if the monomials are identical; and for any polynomial v whose terms arc integral (μ) multiples of distinct monomials $(\lambda), \Sigma v=0$ only if all coefficients are zero.

Hence we may axiomatize the complex numbers by
$\left.\begin{array}{l}\text { (i) the standard field axioms } \\ \text { (ii) characteristic o } \\ \text { (iii) field algebraically dosed }\end{array}\right\}$ as in problems
(iv) infinite degree of transcendence

$$
\hat{\alpha}_{\alpha}\left[\operatorname{lnd} \alpha \rightarrow{\underset{\beta}{ }}^{(}(|\beta|>|a| \wedge \operatorname{lnd} \beta)\right]
$$

Axiomatization of the Real Numbers
We may axiomatize the theory of the real numbers in a RSO logic by Dedekind's Theorem; \therefore.e, take as axioms those for ordered fietch plus

$$
\begin{aligned}
\bigwedge_{S, T}\{ & {\left[\wedge_{x}(x \in S v x \in T) \wedge-\underset{x}{V}(x \in S \wedge x \in T) \wedge{\underset{x, y}{ }(x \in S \wedge y \in T)}^{\wedge}\left(\bigwedge_{v, v}(u \in S \wedge v \in T \rightarrow u<v)\right] \rightarrow \underset{+v, v}{V}(v \in S \wedge v \in T \rightarrow u \leq t \leq v)\right\} }
\end{aligned}
$$

The same result also holds in a language where set variables are restricted to range over denumerable sets. We change the above axiom so that S and T become sets of rationals:

$$
\cdots \quad \hat{x}(x \in S v x \in T \leftrightarrow \operatorname{Rat} x) \ldots
$$

In this case ${ }^{x}$ we must also require that the field be archimedean:

$$
\Lambda_{x} \underset{y, z}{ }(\text { Rat } y \wedge \text { Rat } z \wedge y \leq x \leq z) \text {. }
$$

Note that the possibility of giving RSO axioms
for the real numbers shows that the Downwards LST does not hold in this system, for the reals have no denumerable isomorphic subfield.

As mentioned before, the theory of the reals is not axiomatizable in a RWS theory, We might expect a characterization similar to that of the complex numbers - archimedean real closed fields of infinite degree of transcendence over the rationals. However two such fields are not necessarily woequivalent. The difference is that, whereas in the complex field all transcendental elements may be considered equivalent (via isomorphisms), in the real field particular transcendental numbers may be defined. Hence we would at least have to require that every definable number be in the field cot course such a set of axioms is no longer recursive). Question: \s such a set of axioms sufficient to characterize the reals?

We illustrate two methods of defining particular reals: continued fractions and binary expansions. bet x be an irrational real number $\geqslant 1$ whose unique continued fraction expansion is

$$
\frac{1}{x_{1}+\frac{1}{x_{2}+\frac{1}{x_{3}+}}}
$$

Then we may define (in a RWS theory)

$$
\begin{array}{r}
y=x_{n} \leftrightarrow \gamma_{\gamma_{1} \delta}\left\{0 \leq \delta_{1}<1 \wedge x-\gamma_{1}=\delta_{1} \wedge y=\gamma_{181} \wedge|\gamma|=|\delta|\right. \\
\wedge \wedge_{k}\left[N a t k \wedge|<k \leq \backslash \gamma| \rightarrow \text { Nat } \gamma_{k} \wedge \gamma_{k} \neq 0\right. \\
\left.\left.\wedge \=\delta_{k-1}\left(\gamma_{k}+\delta_{k}\right) \wedge 0<\delta_{k}<1\right]\right\} .
\end{array}
$$

As an example we could define e by $\{2,1,2,1,1,4,1,1,6, \ldots\}$

$$
\begin{aligned}
x=e \leftrightarrow x_{1}=2 \wedge x_{2}=1 \wedge \wedge_{n}(N a t n \wedge n \neq 0 \rightarrow \\
\left.x_{3 n}=2 n \wedge x_{3 n+1}=x_{3 n+2}=1\right) .
\end{aligned}
$$

Alternatively, suppose $x=\hat{x}_{1}, \hat{x}_{2} \ldots$ Then

$$
\begin{aligned}
& y=\hat{x}_{n} \leftrightarrow \underset{\alpha, \beta, \gamma}{V}\left\{|\alpha|=|\beta|=|\gamma| \wedge \beta_{1}=\frac{1}{2} \wedge y=\alpha_{\text {abl }}\right. \\
& \wedge \wedge_{k}\left[\text { O<ks\|r|^Nat } k \rightarrow\left(k=1 \vee \beta_{k}=\frac{1}{2} \beta_{k-1}\right)\right. \\
& \left.\left.\wedge\left(\alpha_{k}=0 \vee \alpha_{k}=1\right) \wedge \gamma_{k}=\alpha_{k} \beta_{k}\right] \wedge \sum \gamma<x<\sum \gamma \neq \beta_{n}\right\}
\end{aligned}
$$

Particular real numbers x are then defined by sets $S_{x}: \quad n \in S_{x} \leftrightarrow \hat{x}_{n}=1$.

It is easily seen that by either of the above two devices the theory of the real numbers may be treated as a part of second order number theory.

RWS Theory of the Natural Numbers
We note various results concerning the Rows Theory of the natural numbers:
a) - may be defined in terms of $0,1,+$ by defining $\quad x \mid y \leftrightarrow \underset{T}{V}[0 \in T \cap \underset{v}{ }(u \in T \rightarrow u+x \in T v v=y)$, and then defining. as in a previous homework problem.
b) + cannot be defined in terms of $0,1,5$ since Büchi has shown the theory of $0,1, s$ to be decidable, and by (a), if + were definable, then i would be also, and the theory would be undecidable. The problem of defining ${ }^{t}$ in terms of $0,1, S$ is will open fur the RSO theory.
c) The RWS theory of the natural numbers is no stronger than the first order theory since we may represent finite sets in this theory, as follows. Let p be a prime and $x \neq 0$; the pair (x, p) shall represent a set

$$
v \in(x, p) \leftrightarrow V_{q}\left(\pi q \wedge q \backslash x \wedge \operatorname{Rem}\left(\frac{q}{p}\right)=u\right) .
$$

Since $0 \leqslant \operatorname{Rem}\left(\frac{q}{p}\right)$ (p, any such set is finite. Conversely, given a finite set $a_{1} \ldots, a_{n}$, choose p to be any prime greater than max\ail. For each a_{i}, we find a prime g_{i} such that $a_{i}=\operatorname{Rem}\left(\frac{q}{p}\right):$ if $a_{i}=0$, take pip; if $a_{i} \neq 0$, then $\left(a_{i}, p\right)=1$, and hence by Dirichlet's Theorem, there is a q such that $q_{i} \equiv a_{i} \bmod p$. Finally, set $x=\prod_{i=1}^{n} q_{i}$. Then $v \in(x, p)$ iff $u=a_{i}$ for some i.
d) As a final example of definability, we define + in terms of S and double $(2 x)$. In order to do this, we make use of a pairing function which maps ordered pairs univalently into the natural numbers. I.e.,

$$
J(x, y)=J(u, v) \leftrightarrow x=u \cap y=v .
$$

The particular function we shall define will be

$$
J(x, y)=2^{x}(2 y+3)
$$

In our definition, we shall also employ the following notions $z \in P_{n} \leftrightarrow y_{y} z=J(n, y)$

$$
\begin{aligned}
& z \in Q_{n} \leftrightarrow V^{x} z=J(x, n) \\
& z \in R_{n} \leftrightarrow \sum^{x, y}[z=J(x, y) \wedge x+y=n] \\
& S(u, v) \leftrightarrow x^{x}[u=J(x, y) \wedge v=J(x+1, y)] \\
& T(u, v) \leftrightarrow x_{x, y}[u=J(x, y) \wedge v=J(x, y+1)] .
\end{aligned}
$$

we define these notions as follows:

$$
\begin{aligned}
& u<v \leftrightarrow{\underset{T}{ }}_{V}\left[u \in T \wedge \bigwedge_{\Delta}(x+1 \in T \rightarrow x \in T) \wedge v \notin T\right] \\
& z \in Q_{n} \leftrightarrow V_{T}\left[2 n+3 \in T \wedge \hat{u}^{\wedge}(u \in T \rightarrow 2 u \in T \vee u=z)\right] \\
& S(u, v) \leftrightarrow V_{n}\left[u \in Q_{n} \wedge v=2 u\right] \\
& T(u, v) \leftrightarrow V_{n}\left[u \in Q_{n} \wedge v \in Q_{n+1} \wedge u<v<2 u\right]
\end{aligned}
$$

I.e., for some $n, \quad v=2^{x}(2 n+3), \quad v=2^{y}(2 n+5)$, and $2^{*}(2 n+3)<2^{y}(2 n+5)<2^{x+1}(2 n+3)$. Since $1<1+\frac{12}{2 n+3}<2$, we mut have $x=y$, and hence $T(u, v)$.

$$
z \in R_{n} \leftrightarrow \bigwedge_{A}\left\{2 n+3 \in A \cap \bigwedge_{v, v, w}[S(u, v) \wedge T(u, w) \wedge w \in A \rightarrow v \in A] \rightarrow z \in A\right\}
$$

I.e., $(0, n) \in A$ and $(x, y) \in A \rightarrow(x+1, y-1) \in A$

$$
z \in P_{n} \leftrightarrow \underset{A}{V}\left\{{\underset{V}{V}}^{V}\left(u \in Q_{0} \cap v \in R_{n} \cap u \in A\right) \cap \bigwedge_{v, v}(U \in A \cap T(u, v) \rightarrow V \in A \cup v=z\}\right.
$$

I.e., $J(n, 0) \in A$ and $J(n, x) \in A \rightarrow J(n, x+1) \in A$. Finally the pairing function may be defined by

$$
z=J(x, y) \leftrightarrow z \in P_{x} \wedge z \in Q_{y} .
$$

Our original object, though was to define + in terms of S and double, and this is accomplished by

$$
a+b=c \leftrightarrow y_{z}\left(z \in P_{a} \wedge z \in Q_{b} \wedge z \in R_{c}\right)
$$

(See R.M, Robinson, Proceedings, 1957)

Non-restrictad theories
Let $W S_{2}$ be a language which allows relations in addition to sets. Then t may be defined in wd, by

$$
a+b=c \leftrightarrow V_{M}\left\{(0, a) \in M_{\wedge} \bigwedge_{x, y}\left[(x, y) \in M \rightarrow(s x, s y) \in M_{Y}(x=b a y=c)\right]\right\} .
$$

Axioms for WS

1. $\hat{\Delta v}_{X} I_{U}=X$
2. $V_{Z} X^{\wedge} Y=Z$
3. $\left(X^{\wedge} Y\right)^{\wedge} Z=X^{\wedge}\left(y^{\wedge} Z\right)$
4. $\quad x^{\wedge} y=x^{\wedge} Z \rightarrow Y=Z$
5. $\quad X^{\wedge} I_{U}=Y^{\wedge} I_{V} \rightarrow U=v$

Note that 6. is on induction principle for sequences. The wS theory may be transformed into a first order theory by introducing a predicate $\sigma(x) \leftrightarrow x$ is a sequence.
The above axioms do not allow for an empty sequence. To obtain pone we introduce a new symbol ϕ and stipulate

$$
\hat{x}^{n} \phi^{n} x=x
$$

Tautologies
We shall give a pros on only of $T{ }^{4}$, thus demonstrating that TH is a theorem. Thereafter, we shall use metaitheorens to establish that T5-T26 arealer theorems. After the first few times, we shall not always refer to every wee of $M 1$ and M3. These meta theorems are:
M1 Any axiom is a theorem.
$M 2$ of $H \phi \rightarrow \psi$ and $\vdash \phi$, then $\vdash \Psi$.
M3 of $F \phi$, then $t \phi\binom{\alpha}{\psi}$.
$M \psi$ of $H \phi \rightarrow \psi$ and $H \psi \rightarrow \theta$, then $H \phi \rightarrow \theta$ proof of M4:

$$
\vdash(\phi \rightarrow \psi) \rightarrow((\psi \rightarrow \theta) \rightarrow(\phi \rightarrow \theta))
$$

by MI on Al (below) and 3 applications of M3. Now assume $\vdash \phi \rightarrow \psi$ and $\vdash \psi \rightarrow \theta$ and apply M2 twice.

Our axioms are $A /-A 3$ below.
A) $(p \rightarrow q) \rightarrow((q \rightarrow r) \rightarrow(p \rightarrow r))$

AR $\quad(a p \rightarrow p) \rightarrow p$
As $p \rightarrow(\neg p \rightarrow q)$
TH $p \rightarrow p$

1. $\left.\left(p \rightarrow q^{2} x(q \rightarrow r) \rightarrow(p \rightarrow r)\right)^{3}\right)^{p \rightarrow p}$ A!
2. $(p \rightarrow q) \rightarrow((q \rightarrow p) \rightarrow(p \rightarrow p)\rangle$ sub in 1
3. $(p \rightarrow(\neg p \rightarrow p)) \rightarrow(((\neg p \rightarrow p) \rightarrow p) \rightarrow(p \rightarrow p) \operatorname{sen} \operatorname{in} 2$
4. $p \rightarrow(\neg p \rightarrow q)$

A 3
5. $\quad p \rightarrow(\neg p \rightarrow p)$ subin 4
6. $\quad((a p \rightarrow p) \rightarrow p) \rightarrow(p \rightarrow p) \quad \operatorname{det} 5$ from 3
7. $(9 p \rightarrow p) \rightarrow p \quad A Z$
8. $p \rightarrow p$ det 7 from 6

T5 $((\neg p \rightarrow q) \rightarrow(\neg q \rightarrow q)) \rightarrow(p \rightarrow(\neg q \rightarrow q))$

$$
\begin{aligned}
& 1 . t(p \rightarrow(\neg p \rightarrow q)) \rightarrow(((\neg p \rightarrow q) \rightarrow(\neg q \rightarrow q)) \rightarrow(p \rightarrow(\neg q \rightarrow q))) \\
& M_{1} \text { on A } A_{1}, M_{3} \text { twices }
\end{aligned}
$$

2.1 $p \rightarrow(7 p \rightarrow q) \quad M_{10 n A}$
$3.1((\neg p \rightarrow q) \rightarrow(\neg q \rightarrow q)) \rightarrow(p \rightarrow(\neg q \rightarrow q)) \quad M_{2 \text { on } 1,2}$
T6 $(7 q \rightarrow 7 p) \rightarrow(p \rightarrow(\neg q \rightarrow q))$

$$
\begin{aligned}
& 1 . t(\neg q \rightarrow \neg p) \rightarrow((\neg p \rightarrow q) \rightarrow(\neg q \rightarrow q)) \quad \text { MionA1, H3 3times } \\
& 2.1+(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow(\neg q \rightarrow q)) \quad \text { M4 on } 1, T 5
\end{aligned}
$$

T7 $(\neg q \rightarrow \neg p) \rightarrow(((\neg q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q))$

$$
1 .+(p \rightarrow(\neg q \rightarrow q)) \rightarrow(((\neg q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q))
$$

$2.1(\neg q \rightarrow \neg p) \rightarrow(((\neg q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q))$ M4on T6, 1

T8 $\quad q \rightarrow(6(\neg q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q))$

1. $1: q \rightarrow(\neg q \rightarrow \neg p)$

A 3
2.t $q \rightarrow(<(\neg q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q))$ Mtan 1. T7

Tq $p \rightarrow((\neg q \rightarrow q) \rightarrow q)$

T10 $((c \neg q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q)) \rightarrow(\neg(p \rightarrow q) \rightarrow(p \rightarrow q))$

$$
\begin{aligned}
& 1 .+(\neg(p \rightarrow q) \rightarrow((\neg q \rightarrow q) \rightarrow q)) \rightarrow \\
&(((c) q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q)) \rightarrow(\neg(p \rightarrow q) \rightarrow(p \rightarrow q)))
\end{aligned}
$$

$2.1-(p \rightarrow q) \rightarrow((\neg q \rightarrow q) \rightarrow q) \quad T q$

$$
\begin{array}{r}
3 . \vdash(((\neg q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q)) \rightarrow(\neg(p \rightarrow q) \rightarrow(p \rightarrow q)) \\
M=\text { on } 1,2
\end{array}
$$

$T \|(((\neg q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q)) \rightarrow(p \rightarrow q)$

$$
1 . t(\neg(p \rightarrow q) \rightarrow(p \rightarrow q)) \rightarrow(p \rightarrow q) \quad \text { Az }
$$

$$
2:((C \neg q \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q)) \rightarrow(p \rightarrow q
$$

$\mathrm{My} \mathrm{on} \mathrm{TlO}_{2} \mathrm{I}$
$T 12 q \rightarrow(p \rightarrow q)$

$$
1 .+q \rightarrow(p \rightarrow q) \quad M 4 \text { on } T 8, T 11
$$

Ti3 $\quad(7 q \rightarrow \neg p) \rightarrow(p \rightarrow q)$

$$
\text { lat }(2, q \rightarrow-p) \rightarrow(p \rightarrow q) \quad M 4 \text { on } T T_{2} T \|
$$

$$
\begin{aligned}
& 225 A \text { Tautp. } 391 \\
& 1 . f((\neg q \rightarrow q) \rightarrow q) \rightarrow \\
& (((\neg((\neg q) \rightarrow q) \rightarrow q) \rightarrow((\neg q \rightarrow q) \rightarrow q)) \rightarrow((\neg q \rightarrow q) \rightarrow q)) \rightarrow \\
& (p \rightarrow((\neg q \rightarrow q) \rightarrow q))) \quad \mathrm{M3} \text { on } T 8 \\
& 2 . f((\neg((\neg q \rightarrow q) \rightarrow q) \rightarrow((\neg q \rightarrow q) \rightarrow q)) \rightarrow((\neg q \rightarrow q) \rightarrow q)) \rightarrow \\
& (p \rightarrow((\neg q \rightarrow q) \rightarrow q)) \quad \text { Mzom1, A2 } \\
& \begin{aligned}
3.1:(\neg((\neg q \rightarrow q) \rightarrow q) \rightarrow(C \neg q \rightarrow q) \rightarrow q) \rightarrow(C \neg q \rightarrow q) \rightarrow q) \\
M 3 \mathrm{om} \mathrm{A2}
\end{aligned} \\
& \text { M3 on A2 } \\
& \text { 4.tp } \rightarrow(C \neg q \rightarrow q) \rightarrow q) \quad \text { M } 2 \text { on } 2,3
\end{aligned}
$$

TIT \quad p $\rightarrow(p \rightarrow q$ ）

$$
\begin{array}{ll}
1 . r_{\neg p} \rightarrow(\neg q \rightarrow \sim p) & \text { T12 } \\
2, t a p \rightarrow(p \rightarrow q) & \text { M4on } 1, T 13
\end{array}
$$

$T 15 \quad$ 17p $\rightarrow p$

$$
\begin{array}{lc}
1 . \vdash \neg \rightarrow p \rightarrow(\neg p \rightarrow p) & \text { T14 } \\
2.1 \rightarrow \neg p \rightarrow p & \text { M4on } 1, A 2
\end{array}
$$

Ti6，p \rightarrow フᄀp

$$
\begin{equation*}
1 . \vdash(\neg \neg \neg p \rightarrow \neg p) \rightarrow(p \rightarrow \neg \neg p) \tag{13}
\end{equation*}
$$

$2, \vdash($ คาา $p \rightarrow$ คp）$T 1 / \$$

$$
\text { 3.tp } \rightarrow \neg \neg p \quad M 2 \text { on } 1,2
$$

T1 $(p \rightarrow \neg p) \rightarrow \neg p$

$$
\begin{aligned}
& 1 . \operatorname{t}(n p \rightarrow p) \rightarrow((p \rightarrow \neg p) \rightarrow(\neg \neg p \rightarrow \neg p)) \\
& 2.1(p \rightarrow \neg p) \rightarrow(\neg a p \rightarrow \neg p) \quad \mathrm{Mzon} 1, \mathrm{~T} 15 \\
& 3 . t(\neg a p \rightarrow \neg p) \rightarrow \neg p \\
& \text { A2 } \\
& 4,1(p \rightarrow a p) \rightarrow \neg p \quad \text { M } 4 \text { on } 2,3
\end{aligned}
$$

T18（ $(p \rightarrow q) \rightarrow p) \rightarrow p$
1． $1((p p \rightarrow(p \rightarrow q)) \rightarrow(((p \rightarrow q) \rightarrow p) \rightarrow(\neg p \rightarrow p))$
2．$+((p \rightarrow q) \rightarrow p) \rightarrow(\neg p \rightarrow p) \quad$ M2onl，T14
3．$卜((p \rightarrow q) \rightarrow p) \rightarrow p \quad M^{4}$ on $2, A 2$
$+19(p \rightarrow(p \rightarrow q)) \rightarrow(p \rightarrow q)$
1．t $(p \rightarrow(p \rightarrow q)) \rightarrow(\langle(p \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q))$
$2 \cdot f((c p \rightarrow q) \rightarrow q) \rightarrow(p \rightarrow q)) \rightarrow(p \rightarrow q) \quad$ T 18
$3.5(D \rightarrow(D \rightarrow a)) \rightarrow(D \rightarrow a) \quad M+\tan 1.2$
$T 20 p \rightarrow((p \rightarrow q) \rightarrow q)$
$1, \vdash p \rightarrow((p \rightarrow q) \rightarrow p)$
$T 12$
2. $\stackrel{F}{ }(p \rightarrow q) \rightarrow p) \rightarrow((p \rightarrow q) \rightarrow((p \rightarrow q) \rightarrow q)$
3. $\mathrm{H} p \rightarrow((p \rightarrow q) \rightarrow(c p \rightarrow q) \rightarrow q)$

н, $1((p \rightarrow q) \rightarrow(C p \rightarrow q) \rightarrow q) \rightarrow(C p \rightarrow q) \rightarrow q)$
5. $\mathrm{t} \boldsymbol{p} \rightarrow((p \rightarrow q) \rightarrow q) \quad M 4$ on 3,4
$T 21(q \rightarrow r) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))$

$$
1.1-((p \rightarrow q) \rightarrow((q \rightarrow r) \rightarrow(p \rightarrow r))) \rightarrow
$$

$$
((((q \rightarrow r) \rightarrow(p \rightarrow r)) \rightarrow(p \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))) \quad \text { Al }
$$

$$
\begin{aligned}
& 2 . t((q \rightarrow r) \rightarrow(((q \rightarrow r) \rightarrow(p \rightarrow r)) \rightarrow(p \rightarrow r)) \rightarrow \\
& ((((((q \rightarrow r) \rightarrow(p \rightarrow r)) \rightarrow(p \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))) \rightarrow \\
& ((q \rightarrow r) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))))
\end{aligned}
$$

T22 $(p \rightarrow(q \rightarrow r)) \rightarrow(q \rightarrow(p \rightarrow r))$

$$
\begin{aligned}
& 1.1(p \rightarrow(q \rightarrow r)) \rightarrow(((q \rightarrow r) \rightarrow r) \rightarrow(p \rightarrow r)) \quad \text { A } \\
& 2 .+(q \rightarrow((q \rightarrow r) \rightarrow n)) \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& 3.1:(q \rightarrow r) \rightarrow(((q \rightarrow r) \rightarrow(p \rightarrow r)) \rightarrow(p \rightarrow r)) \\
& \text { T } 20 \\
& \text { 4.t }((((q \rightarrow r) \rightarrow(p \rightarrow r)) \rightarrow(p \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))) \rightarrow \\
& ((q \rightarrow r) \rightarrow(C p \rightarrow q) \rightarrow(p \rightarrow n))) \quad \text { M } 2 \text { on } 2,3 \\
& 5, f((p \rightarrow q) \rightarrow((q \rightarrow n) \rightarrow(p \rightarrow r))) \rightarrow((q \rightarrow r) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))) \\
& \text { M4oml,4 } \\
& 6.1-(q \rightarrow r) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r)) \quad M 2 \text { on } 5, \mathrm{Al}
\end{aligned}
$$

$$
\begin{aligned}
& 3.1 q \rightarrow((q \rightarrow r) \rightarrow r) \quad T 20 \\
& 4 . t(((q \rightarrow r) \rightarrow n) \rightarrow(p \rightarrow r)) \rightarrow(q \rightarrow(p \rightarrow r)) \quad \text { 172om2,5 } \\
& 5 . t(p \rightarrow(q \rightarrow r)) \rightarrow(q \rightarrow(p \rightarrow r)) \quad \text { M4onl,4 }
\end{aligned}
$$

[Since this does not use $T 21$, an excises demonstration of $T 21$ could be given using $T 22$.]
$T 23(p \rightarrow q) \rightarrow(\neg q \rightarrow 7 p)$
$1 . t(q \rightarrow \neg \neg q) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow 7 \neg q) \quad$ $~(21$
2.t $(p \rightarrow q) \rightarrow(p \rightarrow 77 q) \quad M z$ on $1, T 16$
$3.1-(\neg 7 p \rightarrow p) \rightarrow((p \rightarrow \neg 7 q) \rightarrow(\neg \neg p \rightarrow \neg \neg q))$
$4.1(p \rightarrow \neg 7 q) \rightarrow(\neg 7 p \rightarrow 77 q) \quad$ M 2 on $3, T 15$
5. $1(p \rightarrow q) \rightarrow(\neg \neg p \rightarrow \neg \neg q)$ M4 on 2,4
6. $\vdash(\neg \neg p \rightarrow \neg 7 q) \rightarrow 6 \neg q \rightarrow \sim p) \quad$ TB
7. $F(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$ M4 on 5,6
$T 24 p \rightarrow(\neg q \rightarrow \neg(p \rightarrow q))$

1. $\operatorname{f}(6 p \rightarrow q) \rightarrow q) \rightarrow(-q \rightarrow(\neg p \rightarrow q)$ T23
2. $1-p \rightarrow(\neg q \rightarrow-p \rightarrow q) \quad$ M4 on $T 20,1$

T $25(p \rightarrow(q \rightarrow r)) \rightarrow\left(\left(c_{p} \rightarrow q\right) \rightarrow(p \rightarrow r)\right.$

$$
\begin{aligned}
& 1.1 .(q \rightarrow(p \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow(p \rightarrow r)) \text { T } 19 \\
& 2.1((p \rightarrow(p \rightarrow r)) \rightarrow(p \rightarrow r)) \rightarrow \\
& \quad(((p \rightarrow q) \rightarrow(p \rightarrow(p \rightarrow n))) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r)))
\end{aligned}
$$

3. $\mathrm{F}(p \rightarrow(p \rightarrow n)) \rightarrow(p \rightarrow n) \quad$ Tiq

$$
\begin{array}{r}
\left.4 \cdot \operatorname{L}\left(C_{p} \rightarrow q\right) \rightarrow(p \rightarrow(p \rightarrow r))\right) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r)) \\
M 2 \text { on } 2,3
\end{array}
$$

$\left.5 . \vdash(q \rightarrow(p \rightarrow r)) \rightarrow\left(c_{p} \rightarrow q\right) \rightarrow(p \rightarrow r)\right)$
M4om 1,4
$6.1-(p \rightarrow(q \rightarrow r)) \rightarrow(C p \rightarrow q) \rightarrow(p \rightarrow r))$ M4onT23,5
$T 26(p \rightarrow q) \rightarrow((p \rightarrow(q \rightarrow r)) \rightarrow(p \rightarrow r))$

$$
\begin{align*}
& 1 . H((p \rightarrow(q \rightarrow r))\rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))) \rightarrow \\
& \quad((p \rightarrow q) \rightarrow((p \rightarrow(q \rightarrow r)) \rightarrow(p \rightarrow r)))
\end{align*}
$$

$2 . f(p \rightarrow q) \rightarrow(c p \rightarrow(q \rightarrow r)) \rightarrow(p \rightarrow r))$ M2onl,T25

Arithmeticization of Logic
Results of Godel have shown the sets of sentences, formulas, theorems, etc. of a first order predicate logic to be arithmetically definable, while Tarski has shown that the set of true sentences is not. In order to derive results such as these, we must develop a mechanism, which enables us to tall. about such sets; i.e., we mut encode formulas, etc., by natural numbers sin a manner not unlike the numerical code for English sentences obtained by substituting numbers for letters).

Various classifications of sets will also be defined; namely, HA - hyperarithmetic sets

A - arithmetically definable
RE - recursively enumerable
R - 'general) recursive or computable
$P R$ - Primitive recursive
D - diophantine sets
It will be shown that $H A \supset A \supset R E \supset R \supset P R$ and that $D S R E$. More about the relation of D to the other sets is not known.

Herbrand Oefinability
We shall first consider a method of defining functions from Nat to Nat due to Jacques Herbrand (1908-1931). The functions defined in this manner will eventually turn out to be the hyperarithmetir ones.

Basically the method is to define new functions by functional equations involving composition from a given function. clearly the identity or zero function give nothing now under composition; however the successor function, $5 x=x+1$, is sufficient.

For example, the identity function I is defined by

$$
S I=S .
$$

(Note that IS =S leaves Io undefined). We may also define the double function, $D_{x}=2 x$, and the zero function, $O x=0$, by
$D O=0$

$$
D S=S S D
$$

These equations determine D and O uniquely; for let $D(0)=x$. Then $D(1)=2+x, \ldots, \quad D(y)=2 y+x>y$ unless $x=y=0$. But D has a fixed point by $D O=0$, so that $x=0$, and hence $0_{y}=0$ and $D_{x}=2 x$.

Along these lines we make the following definition:

Definition A function F_{0} is Herbrand definable iff there is a finite system $\frac{\Sigma_{0} \text { of functional }}{0}$ equations in F_{1}, \ldots, F_{k}, F, such that F_{0} is the unique function F for which there are functions F_{1}, \ldots, F_{k} which satisfy Σ_{0}.
(Note that F_{1}, \ldots, F_{k} do not have to be uniquely determined or even Herbrand definable themselves; they must merely exist.)

Erg., Predecessor: $P S=I, \quad P O=0$

$$
T_{x}=2^{x}: \quad T 0=50, \quad T S=D T
$$

To obtain the functions x^{2} or $x+y$, we need to hare a method of encoding functions of two variables in our system. This is accomplished by pairing functions:
Definition. Two functions k and L are associated) pairing functions iff $\wedge_{x, y} \underset{z}{\dot{y}}\left(k_{z}=x \cap L z=y\right)$.

Such functions exist, for let $J(x, y)$ be a 1-1 mapping of ordered pairs of natural numbers onto the natural numbers. Then we may list the pairs $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots$ according to $J\left(x_{n}, y_{n}\right)=n$, and we have $K_{n}=x_{n}$, $L_{n}=y_{n}$. One such function J is the Cantor function

$$
J(x, y)=\frac{(x+y)^{2}+3 x+y}{2}
$$

which lists pairs in the order

$$
(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2), \ldots
$$

Functions may also be paired. Given $F+G$, we can write the function H which pairs F and G $(H=J(F, G))$ by $K H=F, L H=G$. $E . g$,
$(K+L) J(F, G)=F+G$. Note that the meaning of $F(A, B)$ is $F(A, B) x=F(A x, B x)$, and that an equation $H=J(F, G)$ cannot appear in a Herbrand definition, but must be replaced by $K H=F$ and $L H=G$.

At first we shall use the following easily defined pairing functions

$$
\begin{array}{ll}
K D=I & K S D=K \\
L D=0 & L S D=S L .
\end{array}
$$

I.e., $K(2 x)=x$ and $L(2 x)=0$, so that K and L are uniquely determined on the even numbers. Also $K(2 x+1)=k x$ and $L(2 x+1)=1+L x$. so that $2 x$ corresponds to $(x, 0) 4 x+1$ to $(x, 1), 8 x+3$ to $(x, 2)$, etc. K and L are thus determined on the odd numbers by the number of times the operations of taking the predecessor and halving must be applied to obtain an even number. The mapping J is given by

$$
\begin{aligned}
J(x, y) & =(S D)^{Y} D x \\
& =\left(P D_{S}\right)^{-1} S D D_{x} \\
& =P D^{y-1} S S D D_{x} \\
& =P D^{Y} S D x \\
& =2^{Y}(2 x+1)-1
\end{aligned}
$$

since $S D=P D S$
since $P D S P D S=P D^{2} S$, etc.
since $S S D=D S$

Remembering that $J(F, G)=H \Leftrightarrow K H=F \wedge L H=G$, we note $J(I, O)=D$ and $J(K, S L)=S D$.

We may now define particular functions of two arguments:
(i) ADdition: $\quad A D=I, \quad A S D=S A$.
I.e., $A J(I, O)=I$ and $A J(K, S L)=S A$. Note that A is defined as a function of one argument so that $A J(F, G)=(K+L) J(F, G)=F+G$.
(ii) Multiplication: $M D=0$; $M S D=A J(M, K)$, or more precisely, $M S D=A W, K W=M, L W=K$.
(iii) Square Function: $Q=M J(I, I)$
(iv) Factorial: $F O=S O, \quad F S=M J(F, S)$.

Functional equations may also express certain properties of a given function. E.g., for what Functions F does there exist a function G for which $F G=I$? Clearly F must assume all values; that this condition is sufficient is seen by defining $G_{x}=$ least y such that $F_{y}=x$. Conversely, those functions G for which there exists an F satisfying $F G=I$ are precisely the univalent ones. Combining the two conditions ($F G=G F=I$) insures that $F=G^{-1}$ is a permutation.

As we are interested in defining sets of numbers, we may correlate such veto and definable functions in two ways: by characteristic functions and the ranges of functions. We shall employ the second of these methods:

Definition A set $8 \subseteq N a t$ is Herbrand definable iff there is a system Σ of functional equations in F, S, and certain auxiliary functions such that s is the range of F for each F which satisfies \sum.
E.g., the set s of natural numbers which are the sum of two squares is defined as the range of $F=A J(Q K, Q L)$.

Corresponding to the above definition, we may characterize all functions G which have the same range as F by $F X=G$ and $G Y=F$, since $F X=G$ implies $Q F=$ range $F \subseteq R G$, etc. If RF is infinite and has an infinite complement, then we may define a function G in terms of F, S, and auxiliary functions so that $R G=$ complement $Q F$:
$H H^{\prime}=H^{\prime} H=I$
$F X=H D$
$H D Y=F$
$G U=H S D\}$
HSDV=G

- H is a permutation
- F and HD have the same

G range complement of RF
I.e., we define a permutation H to map the partition of the integers determined by the odd and even integers into a partition determined by RF and its complement.

For functions of more than two variables, we could define extended pairings:

$$
J_{0}\left(x_{0}\right)=x_{0}, \quad J_{n+1}\left(x_{0}, \ldots, x_{n+1}\right) \equiv J\left(x_{0}, J_{n}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

Then if $J_{n}\left(x_{0}, \ldots, x_{n}\right)=w$,

$$
x_{0}=k w, x_{1}=k L w, \ldots, x_{i}=k L^{i} w, \ldots, x_{n}=L^{n} w .
$$

Also relations could be defined by
Roxy iff $J(x, y) \in \&$.
Thus, for example, $\quad \begin{aligned} x \backslash y\end{aligned} \leftrightarrow J(x, y) \in R J(k, M)$.

Next we define certain logical functions:
(i) Equality

$$
E J(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y .\end{cases}
$$

We define E by means of a permutation G mapping the even integers into indices of pairs (x, x), and then defining E on $R G$ and its complement:

$$
\begin{aligned}
G G^{\prime} & =G^{\prime} G=I \\
G D & =J(I, I) \\
E G D & =S O \\
E G S D & =0
\end{aligned}
$$

(ii) Inequality

$$
E J(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

Using G as above, we set $\begin{aligned} \bar{E} G D & =0 \\ \bar{E} G S D & =50\end{aligned}$

$$
\bar{E} G S D=s o .
$$

(iii) And

$$
U J(x, y)= \begin{cases}1 & \text { if } x>0 \text { and } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Definition: $U J(k, y)=\bar{E} J(k \cdot L, O)$
(iv) or

$$
V J(x, y)= \begin{cases}1 & \text { if } x>0 \text { or } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Definition: $\quad V J(0,0)=0$

$$
V J(S K, L)=V J(K, S L)=s 0
$$

(Note: For the above functions, I corrapoud to $T, 0$ to F.)

For the arithmeticization of logic we shall use the cantor pairing function, which possesses the properties

$$
k x \leq x
$$

$k x=x$ if
$x=0$
$L_{x} \leq x$
$L x=x$ if
$x=0$ or $x=1$.
Let \mathcal{L} be a predicate logic with logical symbols $\rightarrow, \wedge, v, \Lambda, \nu_{1}=$; variables v_{0}, v_{1}, \ldots; and binary operations t,. We Gödel number the formulas of \mathcal{L} as follows:

$$
\begin{array}{lll}
\varphi_{8 t} & : & v_{k t}=v_{L t} \\
\varphi_{8 t+1} & : & v_{k t}+v_{k L t}=v_{L L t} \\
\varphi_{8 t+2} & : & v_{k t} \cdot v_{k L t}=v_{L L t} \\
\varphi_{8 t+3} & \vdots & -\varphi_{t} \\
\Phi_{8 t+4} & \varphi_{k t} V \varphi_{L t} \\
\varphi_{8 t+5} & : & \varphi_{k t} N \varphi_{L t} \\
\Phi_{8 t+6} & \vdots & V \Theta_{L \ell} \\
\varphi_{8 t+7} & : & v_{k t} \hat{v}_{k t} \varphi_{L t}
\end{array}
$$

In order to define satisfaction of formulas, we will need a function F such that
$F J(n, k)= \begin{cases}1 & \text { if } v_{k} \text { is free in } \theta_{n} \\ 0 & \text { otherwise. }\end{cases}$
We define F in each of the eight residue classes as follows: ν_{k} occurs free in $\Phi_{8 t}$ iff $k=k t$ or $k=$ Lt. Hence.

$$
\begin{aligned}
& F J\left(D^{3} K, L\right)=V J(E J(L, K K), E J(L, L K)) \\
& \text { Similarly, } \quad F J\left(S^{3} K, L\right)=V J(E J(L, K K), V J(E J(L, K L K), E J(L, L L K))) \\
& F J\left(S^{9} D^{3} k, L\right)=F J\left(S D^{3} K, L\right) \\
& F J\left(S^{3} D^{3} K, L\right)=F J(K, L)=F \\
& F J\left(S^{4} D^{3} k, L\right)=V J(F J(K K, L), F J(L K, L)) \\
& F J\left(S^{5} D^{3} K, L\right)=F J\left(S^{4} D^{3} K, L\right) \\
& F J\left(S^{6} D^{3} K, L\right)=\cup J(F J(L K, L), E J(K K, L)) \\
& F J\left(S^{7} D^{3} K, L\right)=F J\left(S^{6} D^{3} K, L\right)
\end{aligned}
$$

That F is uniquely determined may be shown by induction on t.
see p. III, problem 4.

We may now define the set of sentences by means of a permutation C which maps the even integers into Güdel numbers of sentences:

$$
\begin{aligned}
& C C^{\prime}=C^{\prime} C=I \\
& F J(C D K, L)=0 \\
& F J(C S D, z)=S 0
\end{aligned}
$$

I.e., for any $n \in R \subset D$, there is no k for which v_{k} occurs free in ${Q_{n}}_{n}$, and there is a function z giving the index of a variable occurring free in any formula Q_{n} with $n \notin \subset D$. Hence
Q_{n} is a sentence if $n \in \mathbb{R C D}$.
In order to define satisfaction, we need to represent infinite sequences which are ultimately 0 . We say that x represents the sequence

$$
x_{0}=k x, \quad x_{1}=k L x, \ldots, \quad x_{n}=k L^{n} x, \ldots
$$

The sequence is irately 0 since $L x \leq x$ and $k o=k)=0$. Conversely, given any sequence, we can construct x. E.g., $1,2,5,0,0, \ldots$ is represented by $J(1, J(2, J(5,0)))$. - Similarly there is a correspondence between functions and infinite sequences of functions given by $F_{n}=F J(n, x)$. In this manner we may define a function giving the $n^{\text {th }}$ term of a sequence $x_{n}=T J(n, x)$ by

$$
\begin{aligned}
& T J(0, I)=k^{\prime} \\
& T J(S K, L)=T J(K, L L) .
\end{aligned}
$$

I.e., T is defined inductively on n by $T J(n+1, x)=T J(n, L x)$ since the sequence $L_{x} x$ is merely x without its first term.
we shall need three further functions:
si) $H J(x, J(x, y))=\left\{\begin{array}{ll}1 & \text { if } x_{n}=y_{n} \\ 0 & \text { otherwise }\end{array}\right.$ for all $n \neq t$
(ii) $H_{1} J(t, x)=y$, where $y_{t}=S x_{t}$ and $y_{n}=x_{n}$ for $n \neq t$
(iii) $H_{2} J(t, x)=y$, where $y_{t}=P_{x_{t}}$ and $y_{n}=x_{n}$ for $n \neq x$

For (i), $H J(0, J(x, y))=1$ if all terms but the first of x and y are equal; ie., iff $L_{x}=L_{y}$. To define $H J(x+1, J(x, y))$, we renumber terms

$$
\begin{array}{ll}
x_{0}, & \left(L_{x}\right)_{0}=x_{1}, \\
y_{0}, & \left(L_{y}\right)_{0}=y_{1},
\end{array}\left(L_{y}, \ldots, y_{2}, \ldots .\right.
$$

and require $H J(t+1, J(x, y))=1$ if $H J\left(t, J\left(L x, L_{y}\right)\right)=1$ and $k_{x}=x_{0}=y_{0}=k_{y}$. Thus the formal definition is

$$
\begin{aligned}
& H J(0, I)=E J(L K, L L) \\
& H J(S K, J(K L, L L))=U J(H J(K, J(L K L, L L L), \quad E J(K K L, K L L)) .
\end{aligned}
$$

For (ii) and (iii), the definitions follow easily using (i):
(ii) $T J(K, H, B)=S T J(K, L)=S T$

$$
H J\left(K, J\left(H_{1}, L\right)\right)=50
$$

(iii) $T J\left(K, H_{2}\right)=P T$

$$
H J\left(K, J\left(H_{2}, L\right)\right)=S O
$$

Finally we are able to define the satisfaction function

$$
W J(t, x)=\left\{\begin{array}{l}
1 \text { if the seq. } x=\left\langle x_{0}, x_{1}, \ldots\right\rangle \text { satisfies } \varphi_{x} \\
0 \quad \text { otherwise. }
\end{array}\right.
$$

W is defined in each of eight cases. Tue fins six are straightforward; egg.,

$$
\text { wJ }(8 t, x)= \begin{cases}1 & \text { if } x_{k e}=x_{L 2} \\ 0 & \text { otherwise }\end{cases}
$$

For these cases, we have

$$
\begin{aligned}
& W J\left(D^{3} K, L\right)=E J(T J(K K, L), T J(L K, L)) \\
& W J\left(S D^{3} K, L\right)=E J((K+L) J(T J(K K, L), T J(K L K, L)), T J(L L K, L) \\
& W J\left(S^{3} B^{3} K, L\right)=\text { same with } k \times L \text { for } K 1 L \\
& W J\left(S^{3} D^{3} K, L\right)=E J(0, W) \\
& W J\left(S^{4} D^{3} K, L\right)=V J(W J(K K, L), W J(L K, L)) \\
& W J\left(S^{5} D^{3} K, L\right)=V J(W J(K K, L), W J(L K, L))
\end{aligned}
$$

Next we want $W J(8, t+6, x)=\left\{\begin{array}{l}1 \text { if } V_{k t} Q_{L t} \text { is satisfied by } \\ 0 \text { otherwise }\end{array}\right.$. In order to provide a definition in this case, we define a permutation A such that $J(t, x) \in \mathbb{R} A D$ iff x satisfies $V \Phi_{L e}$. This condition is assured (a) by the existence of a function \mathbb{B} such that $J(k, x) \in \mathbb{R} D$ implies $B J(k, x)$ is a sequence differing from x only in the $k x^{+h}$ term and which satinties $\mathcal{O}_{\text {Le }}$, and (b) if $J(f, x) \in$ RASD, then $D_{b \in}$, is not satisfied by x or by any sequence differing from x only in the K eth term. Thus,

$$
\begin{aligned}
& A A^{\prime}=A^{\prime} A=I \\
& \text { WJ }\left(s^{6} D^{3} K, L\right) A D=S 0 \\
& w J\left(s^{6} D^{3} K, L\right) A S D=0
\end{aligned}
$$

(a) $W J(L K, B) A D=50$

$$
H J(K K, J(B, L)) A D=50
$$

(b) $W J(L K, L) A S D=0$

$$
\begin{aligned}
& J\left(K, H_{1} J(K K, L)\right) A S D=A S D C \\
& J\left(K, H_{2} J(K K, L)\right) A S D=A S D F
\end{aligned}
$$

Similarly for $\omega J(8 \ell+E, x)= \begin{cases}1 & \text { if } x \text { satisfies } \hat{u} \phi_{L E}, \\ 0 & \text { otherwise },\end{cases}$ we take

$$
\begin{aligned}
& G G^{\prime}=G^{\prime} G=I \\
& W J\left(S^{7} D^{3} K, L\right) G D=S 0 \\
& W J\left(S^{7} D^{3} K, L\right) G S D=0
\end{aligned}
$$

$$
\text { WJ(LK,L) GD= so } \quad J(x, x) \in R G D \Rightarrow x
$$

$$
J\left(K, H_{1} J(K K, L)\right) G D=G D X\left\{\text { satisfies } Q_{L t}\right. \text {, as do all }
$$

$$
J\left(h, H_{2} J(K K, L)\right) G D=G D Y \text { seq differing only in } k e^{\text {th }} \text { term }
$$

$$
\text { WJ }(L K, M) G S D=0 \quad\{J(t, x) \in R G S D \Rightarrow \operatorname{seq} . M J(x, x)
$$

$$
H J(K K, J(M, L)) G S D=0\left\{\text { does not satisfy } \Phi_{L t},\right. \text { but }
$$ differs from x only in $k e^{\text {ch }}$ tern

This completes the definition of W.

Lemma. W is not arithmetically definable.
Proof: Suppose W were arithmetically definable. Then there would be a formula φ_{n} with free variables v_{0}, v_{1} such that

$$
W\left(v_{0}\right)=v_{1} \leftrightarrow \Phi_{n}\left(v_{0}, v_{1}\right) .
$$

Let $\delta=\{t: \operatorname{WJ}(t, J(t, 0)) \neq 1\} ;$ ie., the set of all t such that the sequence $\langle t, 0,0, \ldots\rangle$ does not satisfy D_{x}. Since the cantor pairing function J is arith. definable, $\&$ is also arith. definable:
(4) $t \in S \leftrightarrow W J(x, J(x, 0)) \neq 1 \leftrightarrow \neg \varphi_{n}(J(x, J(t, 0)), 1)$
Hence there exists a lo such that Q_{k} has v_{0} as its only free variable and $(x+t) \in \& \leftrightarrow \varphi_{k}(t)$.
But then $k e \delta \rightarrow$ wJ($k, J(k, 0))=1$ by ($⿰(幺)$

$$
\begin{aligned}
& \rightarrow k \notin \mathcal{S} & & \text { by }(*) \\
k \otimes S & \rightarrow w J(k, J(k, 0)) \neq 1 & & \text { by }(\forall 4) \\
& \rightarrow k \in S & & \text { by }(*)
\end{aligned}
$$

Thus we have arrived at the contradiction $k \in S \leftrightarrow k \notin S$, and hence our assumption that W is arith. definable must be false.

Note that in the proof of the lemma, we used the following definition of arithmetically definable functions: G is arithmetically definable (A) iff there exists a formula φ_{n} with free variables v_{0}, v_{1} such that $G x=y \leftrightarrow J(x, J(y, 0))$ satirties φ_{n}; i.e.,

$$
G_{x}=y \leftrightarrow W J(n, J(x, J(y, 0))=1
$$

With this definition, we may immediately establish the following theorem:

Theorem $A D C H B$; i.e., the class of arithmetically definable functions sets) is property included in the class of Herbrand definable functions sets).

Proof: if G is arithmetically definable, then $G x=y \leftrightarrow W J(n, J(x, J(y, 0))=1$ for some n. A terbrand definition of G is WJ(sno, J(I, J($G, 0))=$ so.
Hence $A D \leq H D$, and by the lemma, $W \in H D \sim A D$, so that $A D \subset H D$.

As an application of the fact that w is Herboand definable, we show that the set of Godel numbers of true sentences is Herbrand definable. Recalling that the set of Godel numbers of sentences is equal to $R C D$ for the C defined before, we wish $W J\left(c D_{n}, 0\right)=1$ iff $\Phi_{<D_{n}}$ is true. As usual, we define

$$
\begin{aligned}
& A A^{\prime}=A^{\prime} A=I \\
& \text { NJ(CD, }) A D=50 \\
& W J(C D, 0) A S D=0
\end{aligned}
$$

and $\mathbb{Q} C D A D$ is the set of true sentences.

Hyperarithmetic Functions
The class of Herbrand definable functions is more commonly referred to as the ias of hyperarithmetic functions. We shall now establish the equivalence of the two cases, after first defining "hyperarithmetic". We increase our language \mathcal{L} to a language \mathcal{L}^{\prime} by adjoining a symbol F to represent a Unary function. Formulas are G_{o} del numbered as before:

$$
\begin{array}{lll}
\varphi_{q t} & : & v_{k k}=v_{L k} \\
\varphi_{q t+1} & \vdots & v_{k l}=v_{L k} \\
\varphi_{q l+2} & : & v_{k t}+v_{k L z}=v_{l l k} \\
\vdots & & \\
e+c . & &
\end{array}
$$

Definition. A predicate or relation is arithmetic in \mathbb{F} iff it is definable by a formula of \mathcal{L}^{\prime}.

$$
\text { E.g., } Q(x, y, F) \Leftrightarrow F_{y}=x \wedge \bigwedge_{z}\left(F z=x \rightarrow V_{y} y+u=z\right) \text {. }
$$

The satisfaction function W_{F} is defined with F as a parameter: $W_{F} J(n, x)= \begin{cases}1 & \text { if } x \text { satisfies } \varphi_{n}(F) \\ 0 & \text { otherwise. }\end{cases}$
Its formal definition mimics that of w : letting $N O=0, N S=S^{9} N$, we add

$$
W_{F} J(S N K, L)=E J(F T J(K K, L), T J(L K, L))
$$

to the same definitions for the other eight cases. Thus, for each function F, we get a uniquely determined function w_{F}.

Definition. A set s of natural numbers is hyperarithmetica) (HA) if there are predicates $Q(x, F)$ and $B(x, F)$ arithmetical in F such that
$x \in S$ iff there exists an $F \exists Q(x, F)$
$x \notin s$ iff there exists an $F \exists B(x, F)$.
I.e., \& is HA of it is definable in both one function quantifier forms. ($H A=\Sigma_{i} \cap \Pi_{i}$ defined later).

Definition. A function F is hyperarithmetical iff its graph $X=\left\{J\left(x, F_{x}\right)\right\}$ is a hyper -
arithmetical set.

Theorem. A function F cor a nonempty set 8) is Herband definable iff it is hyperarithmetical.

Proof: Suppose \mathcal{B} is a given $1 H A$ set, and let $Q(x, F)$ and $B(x, F)$ be its defining predicates. Then for each x we can choose a function F_{x} such that

$$
(x) \quad Q\left(x, F_{x}\right) \text { v } B\left(x, F_{x}\right)
$$

is true. Now let F be the function that encodes the sequence $\left\{F_{0}, F_{1}, \ldots\right\}: F J(x, y)=F_{x} y$. Then $\quad F_{x y}=z \leftrightarrow{\underset{w}{2}}_{V}\left(F_{w}=z \wedge K_{w}=x \wedge L_{w} r_{y}\right)$

$$
\leftrightarrow \underset{w}{w}\left(F_{w}=z \wedge(x+y)^{2}+3 x+y=2 w\right)
$$

(using the Cantor pairing function). Hence (*) is equivalent to am arithmetical predicate $C(x, F)$. Similarly, $C\left(x, F_{x}\right)$ is equivalent to an arithmetical predicate $Q^{\prime}(x, F)$, and

$$
V\left[\Lambda_{x} C(x, F) \quad \wedge \Lambda_{x}\left(x \in S \leftrightarrow Q^{\prime}(x, F)\right)\right] \text {. }
$$

Since $Q{ }^{F}$ and C^{\prime} are arithmetical, there are k, l such that $C(x, F) \leftrightarrow W_{F} J(k, J(x, 0))=1$

$$
Q^{\prime}(x, F) \leftrightarrow W_{F} J(l, J(x, 0))=1 .
$$

Then we may define the characteristics function R of the set s by

$$
\begin{aligned}
& W_{F}^{J\left(S^{k} 0, J(I, 0)\right)=S 0} \\
& R=W_{F} J\left(S^{2} 0, J(I, 0)\right) .
\end{aligned}
$$

Now to show that \mathcal{S} is $H D$, we construct a function whose range is $\{x: R(x)=1\}$. If s is the sect of all natural numbers, then s is trivially $H D$. If not, we define a permutation G which maps the even integers onto the set of pairs whose first element is in $\&$:

$$
\begin{aligned}
& G G^{\prime}=G^{\prime} G=I \\
& R K G D=S O \\
& R K G S D=0 .
\end{aligned}
$$

Then $\delta=Q K G D$.
If F is a hyperarithmetical function, then its graph \tilde{f} is $H A$ and consequently HD from the above. Hence $\{=R Z$, where z satisfies a system Σ of functional
equations. For a Herbrand definition of F, take Σ plus $F K Z=L Z$.

Conversely suppose S is Herbrand definable. Then there exists a system $\Sigma\left(S, R, U_{1}, \ldots, U_{k}\right)$ of functional equations such that any R satisfying Σ has range 8. Considering K and L as given functions, we can rewrite \sum as $\theta(s, K, L, z)$ by letting $k z=R, K L^{k} z=U_{k}$. Then

$$
x \in \& \leftrightarrow \bigvee[\theta(s, k, L, z) \wedge x \in R k z] \text {, }
$$

or to transform ${ }^{z}$ the right side,

$$
x \in S \leftrightarrow V[\wedge \theta(s, K, L, z) \notin \wedge \quad V=K z y]
$$

(where $\hat{x} \Theta\left(s, K_{1}, L_{z}, z\right)^{\xi} \notin$ means the conjunction of equations of θ holds for all A). The right side is now seen to be equivalent to an arithmetical predicate since

$$
\begin{aligned}
A B x=y & \leftrightarrow y(A z=y \cap B x=z) \\
K x=y & \leftrightarrow y\left(2 x=(y+z)^{2}+3 y+z\right) \\
L x=y & \leftrightarrow y^{2}\left(2 x=(z+y)^{2}+3 z+y\right) .
\end{aligned}
$$

Furthermore,

$$
x \notin S^{\prime} \leftrightarrow V[\wedge \theta(s, k, L, z) \wedge x \notin R \mathbb{Z}] \text {, }
$$

where the right $z_{i d} e_{p}^{t}$ is similarly equivalent to an arithmetical predicate. Hence sis hyperarithmetical.

If F is a Herbrand definable function, then its graph $F=R J(I, F)$ is also HD. By the above, $\{$ is HA, and thus so is F.

References:
Grzegorczyk, Mortowski, et. al., JSL(1958)
Kleene, Bulletin (1955)

Problems

1. Give a Herbrand definition of the $n^{\text {sh }}$ prime function; i.e., $F O=2, F 1=3, F 2=5, \ldots$
2. Show that it M and N can be obtained by composition from I, K, and L, then $J(M, N)$ can be obtained by composition from $J(L K, K L)$ and $J(L, I)$.

In 3 and 4 , do not use the pairing functions previously defined:
3. Write a system \sum of functional equations in F, G, S, and auxiliary functions which defines the class of all pairing functions; ie., for particular functions F and G, there are auxiliary functions which satisfy Σ^{\prime} if F and G are associated pairing functions.
4. Give a Herbrand definition of the Cantor pairing functions; ie., those corresponding to the mapping

$$
J(x, y)=\frac{1}{2}\left[(x+y)^{2}+3 x+y\right]
$$

5. Give a Herbrand definition of a function H which lists all polynomials with natural number coefficients: ie., $H J(n, x)$ is a polynomial in the terms of x for each n, and every such polynomial occurs for some n.
6. Show that there is a system $\sum\left(S, F, G, U_{1}, \ldots, U_{k}\right)$
of functional equations such that
(i) Σ has a unique solution for G, \cup, \ldots, U_{k} for every F with an infinite range and no solution otherwise, and
(ii) whenever $F, G, U_{1}, \ldots, U_{k}$ satisfy Σ, then $R G=R F$ and G is univalent.
7. Snow that there is a system

$$
T\left(S, F, G, U_{1}, \ldots, U_{k}\right)
$$

of functional equations such that for every F whose range is not the set of all natural numbers there is a unique solution for G, U_{1}, \ldots, U_{k} and if RF is the set of all natural numbers there is no solution; furthermore, whenever $F, G, U_{1}, \ldots, U_{k}$ satisfy T, then $R F$ and $R G$ are complementary sets.

Recursive Functions
For the present we will not give a precise definition of recursive functions, but will think of them as being functions which are in some sense effectively computable. Hence, if we attempted to specialize the Herbrand definitions we might be lead to the following equivalent characterizations of recursive functions:

Characterization I. A function F_{0} is recursive of there is a finite system Σ of functional equations in $0, S, F, U_{1}, \ldots, U_{k}$ such that
(i) \sum has a unique solution, and
(ii) For every natural number n, the equation

$$
F S^{n} O=S^{F_{0}{ }^{n}} 0
$$

is derivable from Σ and equations of the form $\alpha=\alpha$ by replacing equals with equals.

Characterization II. A function F_{0} is recursive iff there is a finite system \sum of functional equations in $0, S, F, U_{1}, \ldots, U_{k}$ such that the equation $F S^{k} O^{\prime}=S^{\prime} O$ is derivable from Σ and equations of the form $\alpha=\alpha$ by replacing equals with equals iffy $l=F_{0} k$.

Definition. A set is recursively enumerable (re.) iff it is empty or the range of a rec. function.
Intuitively a re. set is one which be enumerated or listed. Accordingly the following characterization holds since we may list all equations derivable from a system Σ in an effective manner.

Characterization. A set $\&$ is re. iff there is a Finite system Σ of functional equations in $0, S, F, U_{1}, \ldots, U_{k}$ such that $n \in \&$ if some equation of the form $F \alpha=s^{n} O$ is derivable from Σ and equations of the form $\beta=\beta$ by replacing equals with equals.
Definition. A set s is recursive iff its characteristic function is recursive.
characterization. A set is recursive of both it and its complement are re.
Definition. A set is diophantine of it is the set of natural numbers which satisfy a formula of the form

$$
V P\left(x, v_{1}, \ldots, v_{k}\right)=Q\left(x, v_{1}, \ldots, v_{k}\right)
$$

where $P^{v_{1}, \ldots, d^{\prime} k^{k}} Q$ are polynomials with natural number coefficients.

Obviously $D \subseteq R E$ since the values of P and a may be listed for all $(k+1)$-tuples. It is an open question (related to Hilbertis $10^{\text {th }}$ problem) whether $R E \subseteq B$ or not.

Theorem (Davis) A set s is re. iff there is a polynomial P with integer coefficients

$$
x \in S \leftrightarrow \quad y_{y} \wedge_{z s y} u_{u_{1}}, \ldots u_{k} p\left(x, y, z, v_{1}, \ldots, v_{k}\right)=0 .
$$

R.M. Robinson has shown that it is passible to take $k=4$ in the above theorem. At any rate, the theorem shows that $R E \subseteq A D$.

Primitive Recursive Functions
The primitive recursive functions are those which may be defined from certain initial functions by substitution or recursion, as follows: Initial functions:

Identity function: $\quad I_{n k}\left(x_{1}, \ldots, x_{n}\right)=x_{k}, 1 \leq k \leq n$
Zero function:
Successor function:

$$
O_{n}\left(x_{1}, \ldots, x_{n}\right)=0 \quad, 0 \leq n
$$

Substitution Rule
If A_{1}, \ldots, A_{m} are functions of n variables, B a function of m variables, and if $A_{11} \ldots, A_{m}, B$ have already been defined, then a function F of n variables may be defined by

$$
F\left(x_{1}, \ldots, x_{n}\right)=B\left(A_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, A_{m}\left(x_{1}, \ldots, x_{n}\right)\right) \text {. }
$$

Recursion $\frac{\text { Rule }}{\text { If }}$
If A is a function of n variables, B a function of $n \geq 2$ variables, and if A, B have already been defined, then a function F of $n+1$ variables may be defined by

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{n}, 0\right)=A\left(x_{1}, \ldots, x_{n}\right) \\
& F\left(x_{1}, \ldots, x_{n}, s_{y}\right)=B\left(x_{1}, \ldots, x_{n}, y_{1}, F\left(x_{1}, \ldots, x_{n}, y\right)\right) .
\end{aligned}
$$

Examples
(i)

$$
\begin{aligned}
& u+0=I_{11}(u) \\
& u+5 y=S I_{33}(u, y, v+y)
\end{aligned}
$$

Addition
(ii)

$$
\begin{aligned}
& u \cdot 0=0_{1}(u) \\
& u \cdot s_{y}=I_{33}(u, y, u \cdot y)+I_{32}(u, y, u \cdot y)
\end{aligned}
$$

(iii) $u_{s y}^{0}=\$ O_{1}(u)$

$$
u^{s y}=I_{33}\left(u, y, u^{y}\right) \cdot I_{32}\left(u, y, u^{y}\right)
$$

(iv) $P O=O_{0}$

Multiplication

$$
P S_{x}=I_{21}\left(x, P_{x}\right)
$$

Exponentiation
Predecessor
(v)

$$
\begin{aligned}
u-0 & =I_{11}(u) \\
v-S_{x} & =P I_{33}(u, x, u-x)
\end{aligned}
$$

Subtraction
(vi) Let $F_{x}=[\sqrt{x}]$. Then

$$
\begin{aligned}
& F O=0 \\
& F S_{x}=F_{x}+0^{\left(S F_{x}\right)^{2}-S x}
\end{aligned}
$$

I.e., $F S x=F x+1$ if $S x$ is a square, and $F S_{x}=F_{x}$ otherwise.
(vii) $|x-y|=(x-y)+(y-x)$
(viii) Let $R(x, y)=$ remainder of $x \div y$. We define $R(0, y)=0$

$$
\begin{aligned}
& R(0, y)=0 \\
& R(S x, y)=S R(x, y) \cdot 0^{|S R(x, y)-y|}
\end{aligned}
$$

This definition implies that

$$
R(x, 0)=x .
$$

(ix) $\left[\frac{0}{y}\right]=0$

$$
\begin{aligned}
& {\left[\frac{0}{y}\right]=0} \\
& {\left[\frac{S x}{y}\right]=\left[\frac{x}{y}\right]+0^{R(S x, y)}} \\
& \text { Note that }
\end{aligned}
$$

Note that

$$
b=a \cdot\left[\frac{b}{a}\right]+R(b, a)
$$

(x) Let $G x=\sum_{t \in x} F t$. If F is $P R$, then so

$$
\begin{aligned}
& G O=0 \\
& G S x=G x+F x .
\end{aligned}
$$

(xi) Similarly for $G_{A}=\prod_{t<x} F E$,

$$
\begin{aligned}
G O & =1 \\
G S_{x} & =G_{x} \cdot F_{x}
\end{aligned}
$$

Problems
8. Show that the functions k and L corresponding to (a) $J(x, y)=\frac{1}{2}\left[(x+y)^{2}+3 x+y\right]$, and
(b) $J(x, y)=2^{y}(2 x+1)$
are primitive recursive.
9. Show that the characteristic function of the set of primes is primitive recursive.

Other classes of functions may be defined in a similar manner. Kalmar defined the elementary functions as the class of functions obtained from the initial functions, $\left[\frac{x}{y}\right], \sum_{x<x}$, and $\prod_{t<x}$ by composition. All elementary functions are obviously primitive recursive, yet all re. sets may be
obtained as ranges of elementary functions.
R.M. Robinson (Bulletin, 1947) has shown that the recursion rule may be simplified by assuming some primitive recursive J, k, L as initial functions sand eliminating these later if desiredl. We perform this simplification in steps. First the parameters v_{1}, \ldots, v_{k} may be paired. E.g., for the case $k=2$, assume that A and B have been obtained using only one parameter recursion, and

$$
\begin{aligned}
& F(u, v, 0)=A(u, v) \\
& F\left(u, v, S_{x}\right)=B(u, v, x, F(u, v, x)) .
\end{aligned}
$$

Then we may define a function $F^{\prime}(u, x)=F\left(K_{u}, L_{u}, x\right)$ by letting

$$
\begin{aligned}
A^{\prime} u & =A\left(K_{u}, L u\right) \\
B^{\prime}(u, x, y) & =B(K u, L u, x, y) \\
F^{\prime}(u, 0) & =A^{\prime} u \\
F^{\prime}(u, s x) & =B^{\prime}\left(u, x, F^{\prime}(u, x)\right) .
\end{aligned}
$$

F^{\prime} is thereby defined using only one parameter recursion, and F may be recovered by

$$
F(u, v, x)=F(J(u, v), x) .
$$

Next the parameter may be eliminated altogether from the function B. For suppose A and B have been defined using this restricted form of recursion and $\quad F(u, 0)=A u$

$$
F(u, S x)=B(u, x, F(u, x)) .
$$

Then we define a function $F^{\prime}(u, x)=J(u, F(u, x))$ by letting

$$
\begin{aligned}
A^{\prime} u & =J(u, A u) \\
B^{\prime}(x, y) & =J(K y, x, L y) \\
F^{\prime}(u, 0) & =A^{\prime} u \\
F^{\prime}(u, J x) & =B^{\prime}\left(x, F^{\prime}(u, x)\right) .
\end{aligned}
$$

B^{\prime} has no parameter u, and F may be recovered by

$$
F(u, x)=L F^{\prime}(u, x) .
$$

Finally we may eliminate the dependence of B upon x. For suppose A and B have been defined using this form of recursion, and that

$$
\begin{aligned}
& F(u, 0)=A_{u} \\
& F(u, S x)=B(x, F(u, x)) .
\end{aligned}
$$

Then we may define a function $F^{\prime}(u, x)=J(x, F(u, x))$ by letting $A^{\prime} u=J\left(0, A_{u}\right)$

$$
\begin{aligned}
B^{\prime} y & =J\left(S K_{y}, B\left(K_{y}, L y\right)\right) \\
F^{\prime}(u, 0) & =A^{\prime} u \\
F^{\prime}(u, S x) & =B^{\prime}\left(F^{\prime}(u, x)\right) .
\end{aligned}
$$

Hence B^{\prime} does not depend on x, and F may bo recovered by $\quad F(u, x)=L F^{\prime}(u, x)$. Consequently we have shown that by assuming J, K, L as initial functions, the recursion role may be replaced by one of the form

$$
\begin{aligned}
& F(u, 0)=A u \\
& F(u, s x)=B F(u, x) .
\end{aligned}
$$

Whether the same is still true without assuming J, K, and L as initial functions is an open question, since it is not known whether the predecessor function p can be defined by this limited form of recursion.

That the primitive recursive functions are arithmetically definable was shown by Godel in 1931. The key to his result is the representation of finite sequences in first order number theory. This representation in turn is based on the following lemma:

Lemma. If $0 \leq a_{k} \leq m_{k}$ for $0 \leq k \leq n$ and each pair of moduli m_{k} are relatively prime, then for $m=m_{0} m_{1} \cdots m_{k}$ and any c, the conditions

$$
\begin{gathered}
R\left(x, m_{0}\right)=a_{0} \\
\vdots \\
\vdots\left(x, m_{k}\right)=a_{k}
\end{gathered}
$$

have a unique solution for x in $c \leq x<c+m$.

Proof: $\quad R\left(x, m_{k}\right)=R\left(y, m_{11}\right)$ implies $m_{k} \backslash x-y$. Thus if x and y are solutions, $m \mid x-y$, and $c \leq x, y<c+m$ implies $x-y=0$. That the conditions possess a solution follows from the fact that given m_{0}, \ldots, m_{k}, every x in $c \leq x<c+m$ Determines a set a_{0}, \cdots, a_{k} of remainders. But there are only $m=m_{0} \cdots m_{k}$ such sets, so that each one must correspond to a particular x.
Next we ask when m_{0}, \ldots, m_{n} will be relatively prime if $m_{k}=1+(k+1) d$.
Assume plmk and pl me. Then $p \mid m_{k}-m_{l}=(k-l) d$. We cannot have pld, for then also plea. Now choose d so that $k-l \backslash d$. Since $0<1 k-l \leq n$, it suffices to take $n!\backslash d$. Then pt keel, and hence m_{l} and m_{l} are relatively prime. Thus to represent a sequence a_{0}, \ldots, a_{n}, we may choose a, d (with $n!\backslash d$) such that $R(a, 1+(k+1) d)=a_{k}$ for $0 \leq k \leq n$.

Theorem. $P R \subseteq A D$.
Proof: The initial functions are trivially arithmetically definable by

$$
\begin{aligned}
& y=I_{n k}\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow y=x_{k} \\
& y=0\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow y=0 \\
& y=S x
\end{aligned}
$$

For the substitution rule,

$$
\left.\begin{array}{rl}
y & =B\left(A_{1}\left(x_{1} \ldots x_{n}\right), \ldots, A_{m}\left(x_{1} \ldots x_{n}\right)\right) \\
\longleftrightarrow v_{1} \ldots u_{m}
\end{array} u_{1}=A_{1}\left(x_{1} \ldots x_{n}\right) \wedge \ldots \wedge u_{m}=A_{m}\left(x_{1} \ldots x_{n}\right)\right) .
$$

The pairing functions J, k, b are arithmetically definable as before

$$
\begin{array}{lll}
z=J(x, y) & \leftrightarrow & 2 z=(x+y)^{2}+J x+y \\
x=K_{u} & \leftrightarrow & V_{y} u=J(x, y) \\
y=L_{u} & \leftrightarrow & V_{x} u=J(x, y) .
\end{array}
$$

Hence we need show only that a function
F defined by the restricted recursion rule

$$
\begin{aligned}
& F(u, 0)=A v \\
& F(u, 5 x)=B F(u, x)
\end{aligned}
$$

is arithmetically definable. This is done by asserting the existence of Functional values $F(0,0), \ldots, F(0, x)$ with the required properties:

$$
\left.\begin{array}{rl}
y=F(0, x) \leftrightarrow V_{a} d
\end{array}\right\} R(a, 1+d)=A_{0} \cap R(a, 1+(x+1) d)=y
$$

$$
\left.\wedge \wedge_{z}[z \in x \rightarrow R(a, 1+(a+z) d)=B R(a,(1+z) d+1)]\right\} \text {. }
$$

Finally, $<$ and R are arithmetically definable:

$$
\begin{gathered}
z<x \leftrightarrow \underset{\sim}{V}(w \neq 0 \cap z+w=x) \\
R(x, y)=z \leftrightarrow \underset{q}{w}(x=y \cdot q+z \wedge 0 \leqslant z<y) .
\end{gathered}
$$

Primitive Recursive Sets and Relations
Definition. A relation $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is primitive recursive ff there is a primitive recursive Function $F\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
\Phi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow F\left(x_{1}, \ldots, x_{n}\right)=0 .
$$

Examples

$$
\begin{aligned}
& x=y \leftrightarrow \quad|x-y|=0 \\
& x>y \leftrightarrow 0^{x-y}=0
\end{aligned}
$$

The class of $P R$ relations is closed under the boolean operations since if $\Phi \underline{x} \leftrightarrow F_{X}=0$ and $\Psi_{\underline{X}} \leftrightarrow G_{X}=0 \quad$ (where \underline{x} denotes $\left.x_{0}, \ldots, x_{n}\right)$, then

$$
\begin{aligned}
& -\Phi \underline{x} \leftrightarrow F_{\underline{x}}=0 \\
& (\Phi v \Psi) \underline{x} \leftrightarrow F_{\underline{x}} \cdot G_{x}=0 \\
& (\Phi \wedge \Psi) \underline{x} \leftrightarrow F_{\underline{x}}+G_{x}=0 .
\end{aligned}
$$

Problem. 10. Find a polynomial $p\left(x, y, y_{1}, \ldots, y_{k}\right)$ with integer coefficients such that

$$
y=2^{x} \leftrightarrow Q_{1} v_{1} \cdots Q_{k} v_{k} P=0,
$$

where the Q_{i} are suitable quantifiers.

The class of PR relations is also closed under bounded quantification: let $\Phi(x, y) \leftrightarrow F(x, y)=0$ be a PR relation. Then

$$
\begin{aligned}
& V_{y}(y<z \wedge \Phi(x, y)) \leftrightarrow \prod_{y<z} F(x, y)=0 \\
& \hat{y}_{y}(y<z \rightarrow \Phi(x, y)) \leftrightarrow \sum_{y<z} F(x, y)=0
\end{aligned}
$$

The class of PR relations is also dared under the bounded μ operator: $\mu y\{\Phi(\underline{y}, y)\}=$ the least y such that $\Phi(x, y)$. I.e., if $\Phi(x, y)$ is PR, then

$$
G(x, z)=\mu y\{y=z \vee \Phi(x, y)\}
$$

is a PR function. For suppose

$$
F(x, y)= \begin{cases}1 & \text { if } \\ 0 & \text { if } \Phi(\underline{x}, y) \\ \Phi(x, y) .\end{cases}
$$

Then

$$
\begin{aligned}
& \prod_{y \leq t} F(\underline{x}, y)= \begin{cases}0 & \text { if } \underset{y}{V} \Phi(\underline{x}, y) \\
1 & \text { otherwise }\end{cases} \\
& G(\underline{x}, z)=\sum_{t \in z} \prod_{y \leq t} F(\underline{x}, y) .
\end{aligned}
$$

We now define various PR relations and functions for future use
(i) the Cantor pairing functions are defined by noting $J(0,0)=0$

$$
\begin{aligned}
& J(0, y+1)=J(y, 0)+1 \\
& J(x+1, y-1)=J(x, y)+1 . \quad \text { if } y \neq 0
\end{aligned}
$$

Then

$$
\begin{array}{ll}
L O=0 & K O=0 \\
L S x=P L x+[\sqrt{D S x}]_{0}^{L x} & K S_{x}=0^{L^{L x}} S K x
\end{array}
$$

(ii) the pairing function $J(x, y)=2^{y}(2 x+1)-1$ by letting

$$
F_{x}=\sum_{z<x}\left(0^{R\left(x, 2^{2}\right)}-1\right)
$$

and

$$
\begin{aligned}
& L u=F S u \\
& K v=\left[\frac{S u}{0.5 u}\right]
\end{aligned}
$$

(iii) $\nu(x)=\left\{\begin{array}{l}0 \text { if } x=0 \\ \text { number of divisors of } x \text { if } x>0\end{array}\right.$ by

$$
U(x)=\sum_{n=1}^{x} 0^{R(x, n)}
$$

(iv) prime $x \leftrightarrow \nu(x)=2$
(v) $\quad \begin{aligned} \pi(x) & =\text { number of primes less than or equal to } x \\ & =\sum j^{|z(x)-a|} \text { primer }\end{aligned}$
(vi) Pu $\begin{aligned} & =\text { least prime greater than } u \\ & =\text { by } n t y=u l+1\end{aligned}$

$$
=\mu y\{y=u!+1 \quad v \quad(y>u \text { a prime } y)\}
$$

(vii) $\quad p_{0}=2, \quad p_{5 x}=F_{p_{A}}$
(viii)

$$
\begin{array}{ll}
\min (x, y)= & \mu z\{z=x v z=y\} \\
\max (x, y)= & x+y-\min (x, y)
\end{array}
$$

(ix) $\operatorname{LCM}(x, y)=\mu z\{z=x y v(z \neq 0 \wedge x \mid z \wedge y \backslash z)\}$
(x) ex $p_{n}(x)=\mu s\left\{s=x \vee p_{n}^{s+1} \not t x\right\}$

For $x>0$, we have

$$
x=\prod_{n<x} p_{n}^{\text {exp }} p_{n}(x)
$$

(xi) $\operatorname{sgn} z=0^{0^{z}}$
(xii) Euler ϕ - function: $\phi(x)=$ number of integers $<x$ and prime m to e_{n}. Recall that if
then

$$
\begin{aligned}
& x=\prod_{n=1}^{m} q_{n}^{\ell_{n}} \\
& \theta(x)=\prod_{n=1}^{m} q_{n}^{\ell_{n}-1}\left(q_{n}-1\right) \\
&=\prod_{n<x} p_{n} \exp _{n} x-1
\end{aligned}\left(p_{n}-1\right)^{\operatorname{sgn} \exp } x x .
$$

Finally, we may also define functions by "course of values" recursion; i.e., a recursion scheme in which $F(x+1)$ may depend on arbitrary $F(y)$ with $y \leq x$. Given F, let

$$
\tilde{F}(x)=2^{F_{0}} 3^{F 1} \cdots p_{x}
$$

More precisely,

$$
\begin{aligned}
& \tilde{F}_{0}=2_{0} \\
& \tilde{F_{S x}}=\tilde{F}_{x} \cdot p_{S x}
\end{aligned}
$$

Then

$$
F_{x}=\exp _{x} \tilde{F} x .
$$

E.g., $H O=1, H S x=G H\left[\frac{x}{2}\right]$ is defined by

$$
\begin{aligned}
& \tilde{H} O=2 \quad G \exp [y] \tilde{H} x . \\
& \tilde{H} S_{x}=\tilde{H} . p_{S x}
\end{aligned}
$$

Problem 11. Do there exist PR functions A and B such that every primitive recursive function F is given by $F=A G B$ for some primitive recursive permutation G ?

Theorem. Every PR function of one variable may be obtained from $0, I, K, L$ by constructing new functions F from previously obtained functions A and B by the following rules
(i) $F=A B$
(ii) $F=J(A, B)$
(iii) $\left.\begin{array}{ll}F J(I, O)=A \\ F J(K, S L) & =B F\end{array}\right\}$ or $\quad \begin{array}{ll}F D=A \\ & F S D=B F .\end{array}$

Furthermore, if K and L are primitive recursive, then only such functions are obtained.

Proof: We show that if $F\left(x_{1}, \ldots, x_{n}\right)$ is $P R$, then $F\left(K, K L, \ldots, K L^{n-2}, L^{n-1}\right)$ is in the class so generated.
For the' initial functions,

$$
\begin{aligned}
O_{n}\left(K, K L, \ldots, L^{n-1}\right) & =0 \\
S(K) & =S K \\
I_{n k}\left(K, K L, \ldots, L^{n-1}\right) & = \begin{cases}K L^{n-1} & \text { if } k \neq n \neq 1 \\
L^{n-1} & \text { if } k=n \neq 1 \\
k & \text { if } n=1\end{cases}
\end{aligned}
$$

For composition $F(\underline{x})=B\left(A_{1}(\underline{x}), \ldots, A_{m}(\underline{x})\right)$, we tale

$$
F\left(k, \ldots, L^{n-1}\right)=B^{-}\left(k, \ldots, L^{m-1}\right) J\left(A_{1}\left(k, \ldots, L^{n-1}\right), J\left(\pi, \ldots, A_{m}\left(k, \ldots, L^{n-1}\right) \ldots\right)\right)
$$

For recursion, if $F(u, 0)=A u$

$$
F(u, s x)=B F(u, x) .
$$

we let $F^{\prime}=F(K, L)$

$$
\begin{array}{ll}
F^{\prime} J(I, O)=(F(I, O)=) & A \\
F^{\prime} J(K, S L)=(F(K, S L)=) & B F^{\prime}
\end{array}
$$

Using this theorem, we may now show that PR ভR by showing that every PR function of one variable is computable according to characterization I.

Theorem. Every PR function of one variable is recursive.

Proof: We shall construct a system Σ of functional equations from which the values of all $P R$ functions of one variable may be computed. First the initial functions are computable:

$$
\begin{array}{lll}
O O=0 & S=S & I O=0 \\
O S=0 & & I S=S \\
O S=S S D
\end{array}
$$

Also,

$$
K D=I
$$

$$
k s D=k
$$

$$
\begin{aligned}
& L D=0 \\
& L S D=S L
\end{aligned}
$$

pairing fut. $2^{y}(2 x+1)-1$.
E.g., D is computable since $D S^{n} O=s^{2 n} O ; K$ is computable in terms of earlier values since $x<S D x$.

If F is defined by one of the two schemes

$$
\begin{array}{ll}
F=A B \quad \text { or } \quad F J(I, 0)=F D=A \\
& F J(K, S h)=F S D=B F,
\end{array}
$$

then the values of F are computable if the values of A and B are. The difficulty lies in showing that $F=J(A, B)$ is computable. To this end we introduce on operation $\#$ such that

$$
\begin{aligned}
& F \geqslant J(K, F L) \\
& F=L F * J(I, I) .
\end{aligned}
$$

We will show that the of all PR functions is computable, and thus that F is computable upon showing $J(I, I)$ to be computable).

Note that $(A B)^{*}=J(K, A B L)=J(K, A L) J(K, B L)=A^{*} B^{*}$, so that (AB) is computable if A^{*}, B^{t} are. If F is defined by recursion, then $F D=A \Rightarrow F^{*} D^{*}=A^{*}$

$$
F S D=B F \quad F^{2} S^{*} D^{*}=B^{2} F^{2}
$$

F^{*} will be computable from A^{*} and B^{*} in terms of earlier values provided that
(i) $S^{*} D^{*}$ is increasing
(ii) D^{*} and $S^{*} D^{*}$ have complementary ranges.

For (i), we note $O^{*}=J(K, 0)=D K$ is computable.
$S^{*}=J(K, S L)=D$ is also computable and increasing.
Then $D^{*} O^{*}=D^{+} D K=O^{*}=D K$ or $D^{*} D=D$. Also $D^{*} S^{*}=D^{*} S D=S^{*} S^{*} D^{*}$, so that $D^{*} S D=S^{*} S^{*} D^{3}$ is computable and increasing (show by induction). Hence $s^{t} D^{\prime \prime}$ is increasing.

For (ii), observe that if A, B have complementary ranges, then so do $J(K, A L)$ and $J(K, B L)$.

It remains to be shown that $J(A, B)^{*}$ is computable. Now

$$
\begin{aligned}
J(A, B)^{*} & =J(K, J(A L, B L)) \\
& =J\left(K^{3}, J(L, L K)\right) J(J(I, B L), A L) \\
& =J\left(K^{3}, J(L, L K)\right) J(I, A L K) J(I, B L) \\
& =J\left(K^{3}, J(L, L K)\right) A^{*} J(I, L K) B^{*} J(I, L)
\end{aligned}
$$

Hence it suffices to show that

$$
J\left(k^{3}, J(L, L K)\right), J(I, L K), \quad J(I, L), J(I, I), K^{*}, L^{*}
$$

are computable. First

$$
\begin{array}{ll}
K^{*} D^{*}=I^{*}=J(k, L)=I & L^{*} D^{*}=0^{*} \\
k^{*} S^{*} D^{*}=K^{*} & L^{*} S^{*} D^{*}=S^{*} L^{*}
\end{array}
$$

show that K^{*} and L^{*} are computable. Fur the others, we write $J(A, B)=J(A K, B L) J(I, I)$

$$
\begin{aligned}
& =J(A L, K) J(B L, K) J(I, I) \\
& =J(L, K) A^{*} J(L, K) B^{*} J(I, I)
\end{aligned}
$$

This again reduces the task to showing the computability of $J(L, L K)^{*}, J(I, L K), J(I, L), J(I, I), J(L, K)$.
$J(L, L K)^{*}=J(K, L L)^{*} J(L, K)^{*}=L^{* *} J(L, K)^{*}$, and $L^{* *}$ may be shown to be computable as before. Hence we can replace $J(L, L K) *$ by $J(L, K)^{*}$ in the above list.

The remainder of the proof will be sketched, as the details are similar to those already carried out.

$$
\begin{aligned}
& J(S K, S L) J(I, O)=J(S, S O)=S * J(I, O) S=S * D S \\
& J(S K, S L) J(K, S L)=J(S K, S S L)=S * J(S K, S L)
\end{aligned}
$$

Hence $J(S k, S L)$ is computable. $J(S k, S L)^{*}$ is also computable by ting both sides above.

$$
\begin{aligned}
& J(S K, L) D=J(S, O)=D S \\
& J(S K, L) S D=J(S K, S L)
\end{aligned}
$$

Hence $J(S K, L)$ and $J(S K, L)^{\geqslant}$are computable.
Let $\quad U_{0}=0$
$U S=S D U . \quad U$ is computable, and $U_{y}=2^{y}-1$.

$$
\begin{aligned}
& J(L, K) D=J(O, I)=U \\
& J(L, K) S D=J(S L, K)=J(S K, L) J(L, K)
\end{aligned}
$$

Hence $J(L, K)$ and $J(L, K)^{*}$ are computable and may be removed from the list.

$$
\begin{aligned}
& J(I, I) 0=J(0,0)=0 \\
& J(I, I) S=J(S W, S L) J(I, I) .
\end{aligned}
$$

Hence $J(I, I)$ is computable.
Finally $J(I, L K)$ and $J(I, L)$ are computable by $J(A, B)=J(L, K) A^{*} J(L, K) B^{*} J(I, I)$ since $L^{3} K^{*}$ and L^{*} are computable.

This completes the proof of the theorem since we have shown that the \quad of every $P R$ function is computable and hence that every $P R$ function itself is computable.

Recursive Functions
With the aid of primitive recursive functions we are now able to mate more explicit our characterizations of recursive functions and to prove the equivalence of these characterizations.

According to char. II, F_{0} is computable from Σ iff for all m, n, the equation $F m_{0}=s^{n} 0$ is derivable from Σ iff $n=F_{0} m$. Thus the key to computability is the notion of a "derivation" of a functional value. This notion may be formalized in a manner similar to the formalization of a notion of proof, as follows:

Consider a language with finite sequences, and
let Σ be a system of functional equations in $0, S, F, U_{1}, \ldots, U_{k}$ which possesses a unique solution. We shall define the notion that a sequence of equations $E(0), E(1), \ldots, E(x)$ is a derivation from Σ of a value of F_{0}. Let the function letters $0, S, F, U_{1}, \ldots, u_{k}$ be numbered by $0,1,2, \ldots, k+2$, and let $E(t)$ be represented by $\alpha(t) \equiv \beta(t)$, where α and β are sequences of numbers $\leq k+2$, and where \equiv is regarded as a relation on sequences. Then, informally, $E(0), \ldots, E(x)$ is a derivation from, \sum of a value of F_{0} of

$$
\begin{aligned}
& \wedge_{t \leq x}\left\{E(x) \in \sum \quad v \alpha(x)=\beta(t) \quad v \underset{s<x}{V} E(\lambda)=\widetilde{E(s)}\right. \\
& \left.v V_{r, s \leq t} \bigvee_{\gamma, \delta s \alpha(r)}\left[\alpha(r)=\gamma^{\sim} \alpha(s) \delta \wedge \alpha(t)=\gamma \beta(s) \delta \wedge \beta(t)=\beta(r)\right]\right\} \\
& \wedge \alpha(x)_{0}=2 \wedge \wedge_{0<y<l \alpha\left(x_{0}\right) \mid-1}\left[\alpha(x)_{y}=1\right] \wedge \alpha(x)_{|\alpha(x)|-1}=0 \\
& \wedge \wedge_{y<1 \beta(x) \backslash-1} \beta(x)_{y}=1 \wedge \beta(x)_{|\beta(x)|-1}=0
\end{aligned}
$$

I.e., of for all $t \leq x, E(t)$ is an equation in \sum. an identity where $\alpha(x)$ and $\beta(x)$ are the same sequence, the inversion of an earlier equation from $\alpha=\beta$ to $\beta=\alpha$), or the result of a substitution in earlier equations; and $E(x)$ is of the form $\{2,1, \ldots, 1,0\}=\{1, \ldots, 1,0\}$.

In order to provide a more formal definition and to show that the notion so defined is primitive recursive, we mate the following per. definitions:
(i) $\#\left(a_{0}, \ldots, a_{n-1}\right)=2^{1+a_{0}} 3^{1+a_{0}} \ldots p_{n-1}^{1+a_{n-1}}$
\# of empty sequence $(n=0)$ is 1
(ii) $a_{t}=P_{\text {exp }}^{e}$ a
(iii) $M_{a}=\mu k\left\{k=a \vee p_{v} t a\right\}$
(iv) $\quad T_{a}=a_{p M a} \quad p_{k} \quad a_{k} \quad{ }^{n} b=M_{b} b$

In case a is a sequence number, (ii)-(v) assert that a_{e} is the $e^{\text {th }}$ term of a, Ma the length of a, Ta the last term of a, and $a^{m} b$ the concatenation of a and b. The following relations are also per. (vi) e is the number of a sequence

$$
\text { Seq (e) } \leftrightarrow \quad e=\prod_{k<M e}^{a} p_{k}^{\text {expqee }}
$$

(vii) e is the number of a proper sequence all of whose terms are $\leq r$

$$
\operatorname{Seq}^{\prime}(e) \leftrightarrow \operatorname{Seq}(e) \wedge e \neq 1 \wedge \wedge_{e<M_{e}} e_{t} \leqslant r
$$

Now we number the variables occurring
in \sum by $v_{0}=0, v_{1}=S, v_{2}=F, v_{3}, \ldots, v_{r}$. Equations are numbered by

$$
\#\left(v_{a_{0}} \cdots v_{a_{n-1}}=v_{b_{0}} \cdots v_{b_{m-1}}\right)=J(a, b),
$$

where $a=\#\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\#\left(b_{0}, \ldots, b_{n-1}\right)$.

Then we may define a p.r. relation Deriv (e) \leftrightarrow e is the number of a derivation from Σ of a value of F_{0} by

$$
\begin{aligned}
& \text { Derive) } \leftrightarrow S_{\text {eq }}(e) \wedge \bigwedge_{t<M_{e}} \xi_{S_{e q}}\left(\mathrm{Ke}_{f}\right) \wedge S_{\text {eq }}\left(\text { Left }_{f}\right) \\
& \wedge\left[e_{e} \in \sum \text { v } k e_{t}=L e_{e} \text { v } \underset{s<x}{V} e_{x}=J(L, K) e_{s}\right. \\
& \checkmark V_{0, v, e x} V_{c, d}\left(K_{e_{0}}=c^{m}\left(k_{e v}\right)^{n} d\right. \text { a Lees Leu } \\
& \text { a } \left.\left.\mathrm{Ke}_{x}=c^{m}\left(\text { hel }^{\prime}{ }^{-n} d\right)\right]\right\} \\
& \wedge \exp p_{0} k T e=2 \text { a } \wedge_{0<k<p M k T e} \exp _{k} k T e=1 \text { n } T K T e=0
\end{aligned}
$$

where $e_{l} \in \Sigma$ is an abbreviation for the conjunction of terms $e_{e}=f$ for all sequence numbers f of equations in Σ.

Since Derive) is primitive recursive, there exists a primitive recursive function G such that

$$
G e= \begin{cases}1 & \text { if Derives } \\ 0 & \text { otherwise }\end{cases}
$$

and a function (p.r.) It such that

$$
x \in R H \leftrightarrow G_{x}=1 .
$$

Now if e is in fact a derivation of a value of Fo, T_{e} is of the form $F s^{m} 0=s^{n} 0$. Hence Fo PPMKTH = PMLTH, and we have shown that every function recursive p. by char. II satisfies $F_{0} A=B$ for some P. A and B. This leads to a third characterization of recursive functions:

Characterization III. A function F is recursive of there exist per. functions A and B with $\Lambda \vee{ }^{x} y$
such that $A_{y}=x$ and $\Lambda\left(A x=A_{y} \rightarrow B x=B y\right)$
$F A=B$.

As for the equivalence of the three characterizations, rec s res II since if \sum has a unique solution, $F S^{\prime \prime} O=S^{2} O$ is obviously derivable if $l=F_{0} k$. rec II srecIII since, as shown, the relation Deriv (e) is p. r. provided \sum satisfies the conditions of II. Finally, rec III s rec as follows: A and B, being per., are rec I by the preceding theorem. Let Σ_{Σ}, define I and Σ_{2} define I B. Then $\Sigma_{1}, \Sigma_{a}, F A=B$ define I by the conditions imposed on A and B.

Theorem. Every recursive function is arithmetically definable.
Proof: Let $F A=B$ by char. III. A and B are arithmetically definable as shown, and $F_{x}=y \leftrightarrow V_{z}(A z=x \wedge B z=y)$.

Problem 12. Let F be the function of one variable such that $F J(n, x)=F_{n} x$, where

$$
\begin{array}{ll}
F_{0}=0 & F_{3 k+4}=F_{k t} F_{L t} \\
F_{1}=S & F_{3 t+5}=J\left(F_{k t,} F_{L t}\right) \\
F_{2}=K & \left\{F_{3 t+6} J(I, 0)=F_{k t}\right. \\
F_{3}=L & \left\{F_{3 \ell+6} J(K, S L)=F_{L \ell} F_{3 t+6} .\right.
\end{array}
$$

Show that F is recursive but not primitive recursive.

Theorem. If a set s is recursively enumerable and nonempty, then it is the range of a par. function. Proof: By definition, s is the range of some recursive F. Let A, B be per. Such that $F A=B$. Then $\delta=R F=R B$.

Theorem. \& is recursive iff \& and $\bar{\delta}$ are re.
Proof: Let s be recursive with characteristic function G. If $\&=\phi$, \& is trivially re. Otherwise $l_{e} t$ a $\in S$ and set

$$
H_{v}=v \cdot G v+o^{G v} \cdot a .
$$

Then $S=R H$, so that S is re. $\bar{\delta}$ is likewise re. since it is recursive with characteristic function O^{G}.

Conversely, let $\delta=R A$ and $\delta=R B$, where A, B are rec. Then $G A=$ so and $G B=0$ determine a recursive characteristic function G for s.

Recalling our characterization of re. sets, we may define a per. predicate asserting the derivability of an element of ax r.e. set in a manner similar to the definition of Deriv ere). Let Σ_{q} be the system of equations consisting of the sequence of equations with number 9 , provided 9 is the number of a sequence of equations. we set
$\delta_{q}=\left\{k: F \alpha=s^{k} 0\right.$ is derivable from Σ_{q} for some $\left.\alpha\right\}$, in case g is a sequence number,

$$
s_{0}=\{0\}
$$

$\delta_{q}=\varnothing$ otherwise.
The parameter r now depends upon q, so that we redefine seq' by
$\operatorname{Seq}(q, e) \leftrightarrow \operatorname{Seq}(e) \wedge e \neq 1 \wedge \operatorname{Seq}(q) \wedge$

Now we can define the per. relation that e is the number of a derivation from Σ_{y} of a member of $8 q$ by

$$
\begin{aligned}
& \operatorname{Deriv}(q, e) \leftrightarrow \operatorname{Seq}(q) \wedge \operatorname{Seq}(e) \\
& \wedge \wedge_{t<\pi c}\left\{\operatorname{Seq}^{\prime}\left(q, k e_{t}\right) \wedge \operatorname{Seq}^{\prime}\left(q, L e_{t}\right) \wedge \ldots\right\} \\
& \wedge \operatorname{kenp}_{0}^{\text {once }} k T e=2 \text { a } \bigwedge_{k<p H L T e} \exp _{k} T e=1 \text { a } T L T e=0 \text {, }
\end{aligned}
$$

where the remainder of the term in $\{\ldots\}$ is as before. Let H be the per. function of two variables such that

$$
H(e, q)= \begin{cases}1 & \text { if Deriv }(q, e) \\ 0 & \text { otherwise }\end{cases}
$$

and let $U=J(H(K, L) \cdot L, H(K, L) \cdot P M L T K)$.
Then if e is a derivation of $x \in S q$,

$$
U J(e, q)=J(q, x)
$$

and if e is not a derivation from Σ_{q},

$$
U J(e, q)=J(0,0)
$$

Hence $J(q, x) \in R U$ iff $x \in S_{q}$, or equivalently, $x \in \mathcal{S}_{q} \leftrightarrow V U X=J(q, x)$.

The function U allows w to construct a p.r. function with range δ_{g} in case 9 is the number of a non-empty set. For if $a \in \delta q$,

$$
0^{\left|k U_{z}-q\right|} \cdot L U_{z}+0^{\left|k U_{z}-q\right|} \cdot a
$$

has range sq.
We are now able to demonstrate that RE CR; i.e., that there is a re. set which is not recursive. Let $U=\left\{q: q \in S_{q}\right\}$. Then $U=R$ oluk-J(L,L)I.L, so that U is re. But $\bar{u}=\left\{q: q \nless S_{q}\right\}$ cannot be re., for if $\bar{u}=S_{k}$, $k \in S_{k} \leftrightarrow k \not S_{k}$
which is a contradiction.

The set U also serves to demonstrate that arithmetic is not decidable, since there exists a formula ϕ such that $x \in U \leftrightarrow \varphi(x)$, and hence if there were a decision procedure for arithmetic, U would be recursive.

Word problem for semi-grouper
Axel The (1914) proposed the problem of determining a decision procedure for the derivability of functional equations from a given set of equations. The problem was shown to be recursively unsolvable in 1947 independently by post rousing Türing machines) and Marlon (using post normal form). The result is easily detained from our formalization of recursive functions:

Let F be a recursive function such that RF is not recursive, and let Σ be a system of functional equations defining F. Let $\Sigma^{\prime}=\sum \cup\{G F=0\}$, where G is ${ }^{\prime}$ function symbol nat occurring in \sum. Then the equation $G S^{k}=0$ can be derived from Σ^{\prime} iff $k \in R F$. Hence if the word problem were recursively solvable, RF would be recursive, contrary to our assumption.

The generalization of the word problem to groups (where cancellation is allowed as a method of derivation: $A_{B} V_{B}^{\prime}\left(B B^{\prime}=B^{\prime} B=I\right)$) has been shown to be recursively unsolvable by Noviluff.

Another related problem concerns the existence of a decision procedure fur determining when a given system of equations has a solution. Again

$$
\Sigma^{\prime}: \Sigma_{u}\left\{G F=0, \quad G J^{k} 0=50\right\}
$$

then Σ^{\prime} has a solution if $k \notin \dot{R F}$. Hence a decision procedure would imply that RF is recursive.

Characterization IV. A function F is recursive if there exist primitive recursive functions A, B such that $\wedge_{x} V_{y} A_{y}=x$ and $F_{x}=B \mu_{y}\left\{A_{y}=x\right\}$.
Proof: Obviously rec III srecIII. The converse is established by using on ci rule: $i^{\prime x}\{\Phi(x)\}$ is the unique x such that $\Phi(x)$ holds. Now if $G_{x}=\mu_{y}\left\{A_{y}=x\right\}$, then

$$
\begin{aligned}
y\left\{A_{y}\right. & =x\}, \text { then } \\
G x & =i y\left\{A_{y}=x \cap \sum_{z<y} 0^{|A z-x|}=0\right\} \\
& =c y\left\{\left|A_{y}-x\right|+\sum_{z<y} 0^{|A z-x|}=0\right\} \\
& =c y\left\{A_{1}(x, y \mid=0\} .\right.
\end{aligned}
$$

Let C be the per. function $C z=\operatorname{sgn} A_{1}(k z, L z)$. Then $G x=L i z\{C z=0 a k z=x\}$. We define

$$
\begin{array}{ll}
M(2 z)= \begin{cases}2 k z & \text { if } C z=0 \\
2 \sum_{u \leq z} C u+2 z-1 & \text { if } C z \neq 0\end{cases} \\
M(2 z+1)=2 \sum_{u \leq z} C u+2 z+1 .
\end{array}
$$

M is a per. permutation since $\hat{y}_{\dot{y}}^{\dot{y}} A_{1}(x, y)=0$, which insures that the even numbers are covered, while the odd numbers are covered in order by the counting functions $2 \sum_{u: 2} c_{u}+2 z \pm 1$. Now if $H_{x}=\left[\frac{x}{2}\right]$, then

$$
G x=L H M^{-1} O x
$$

since M codes the pairs (x, y) for which $A_{1}(x, y)=0$ into the even integers. G is recursive since L, H, M, D are per., and M^{-1} may be computed from $M^{-1} M=I$. Hence

$$
F_{x}: B G x
$$

is also recursive.

As a corollary to the preceeding proof, we
have still another characterization:
Characterization I. F is recursive of there exist pi.r. A, B, C such that B is a permutation and $F=A B^{-9} C$.
Note that while the inverse of a recursive permutation is recursive, the inverse of a p.r. permutation is not necessarily per.
Question: 1Δ the group of recursive functions generated by all p.r. permutations identical to the group of recursive permutations?

Separability
Definition. Two sets A and B are recursively separable iff there exists a recursive set C such that $A \subseteq C$ and $B \cap C=\phi$.

Problem 13. Show that there exist re. vets A, B which are not recursive but are recursively separable.

Theorem. There exist re. sets A, B which are not recursively separable.

Proof: Let F be the function of Problem 12 such that $F_{n} x=F J(n, x)$ is an enumeration of all per. functions. We define a rec. enumeration of all univalent per. functions as follows:

$$
G J(n, x)=\left\{\begin{array}{l}
J(n, F J(n, x)) \text { if } \neg \underset{v<v \leq x}{V} F J(n, v)=F J(n, v) \\
J\left(n, \max _{v<x} L G J(n, v)+1\right) \text { otherwise }
\end{array}\right.
$$

G is univalent and recursive, and the functions $L G_{n}$ are precisely the p.r. univalent functions.
Lemma. If α, B are disjoint r.e. sets, then there exists an n such that

$$
\begin{aligned}
& x \in Q \leftrightarrow J(n, 2 x) \in R G_{n} D \\
& x \in \mathbb{R} \leftrightarrow J(n, 2 x) \in \mathbb{R} G_{n} S D .
\end{aligned}
$$

Proof: Let $C=R A, B=R B$. If Q and B are nonempty wo define a univalent pie. fat M by

$$
\begin{aligned}
& M D_{x}= \begin{cases}D A_{x} & \text { if } \bigwedge_{\cup<x} A \cup \neq A x \\
S D D x & \text { otherwise } \\
D B_{x} & \text { if } \bigwedge_{\cup<x} B \cup \neq B x \\
S^{3} D^{2} x & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then $M=L G_{n}$ for some n. The obvious modifications are made if c or \mathbb{B} is empty.
Now let $s=R G J(K, D L), ~ \mathscr{T}=\operatorname{RGJ}(K, S D L)$. Since G is per. univalent, s and f are disjoint re. sets. Suppose there exists a recursive U with $\delta \subset Q$ and $\hat{T} \cap U=\phi$. Define $\quad x \in \mathscr{Q}_{n} \leftrightarrow J(n, 2 x) \in \mathcal{U}^{2}$. The U_{n} list all rec. sets: \mathscr{U}_{n} is recursive since \mathscr{U} is, and by the above lemma, if $C l$ is recursive, there exists an n such that $x \in Q \leftrightarrow J(n, 2 x) \in R G_{n} D \rightarrow J(n, 2 x) \in 8$

$$
x \notin Q \leftrightarrow J(n, 2 x) \in R G_{n} \leqslant D \rightarrow J(n, 2 x) \in \lambda
$$

A contradiction is reached by the usual diagonal argument. set $V=\left\{n: n \& U_{n}\right\}$. \mathcal{V} is recursive, and if $V=\mathcal{U}_{n}$, then $n \in V \leftrightarrow n \in V$. Hence s and π must not be recursively separable.

The notion of recursive separability is of importance in questions of decidability in any reasonable theory, the set of theorems is re., as is the set of invalid sentences. If these two vets can be shown to be non. recursively separable, then it follows that the theory is undecidable swinge the vet of theorems is not recursive) and furthermore that no extension of the axioms will give a decidable theory
the class of receding theorem, we showed that However it is res., as will follow from the next two lemmas:

Lemma. Every nonempty recursive set is the range of a non-decreasing recursive function, and conversely, the range of every nun-decreasing res. fat. is a recursive set.

Proof: Let \& be a non-empty recursive vet with $x \in S \leftrightarrow F x=1$. Define

$$
\begin{aligned}
& G O=\mu_{y}\left\{F_{y}=1\right\} \\
& G S_{x}= \begin{cases}S_{x} & \text { if } F S_{x}=1 \\
G_{x} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then G is a non-decreasing recursive function with $s=R G$.

Conversely, if F is non-decreasing and RF is finite, then RF is obriouly recursive. If $R F$ is infinite, then

$$
G_{y}=0^{\left|y-F_{\mu x}\left\{F_{x}, y\right\}\right|}
$$

is a recursive characteristic function for RF.

We cannot list all non-decreasing recursive functions (give diagonal argument), but we san list all non-decreasing per. functions by

$$
G_{n} x=G J(n, x)=\max _{u \leq x} F_{n} u .
$$

Hence by the following lemma, the daws of recursive sets is the class of sets $R G_{n}$:

Lemma To every recursive function F corresponds a p.r. function G such that $R F=R G$ and G assumes its values in the same order as F.

Proof: Let $H_{x}=J\left(x, F_{x}\right)$ and let M be pr. with the same range as H. Then MK is $p . r$. and assumes each value of H infinitely often. Let

$$
\begin{aligned}
& N_{0}=J(0, F 0) \\
& N S_{u}= \begin{cases}N_{u} & \text { if KMKu}=S K N u \\
M K u & \text { otherwise. }\end{cases}
\end{aligned}
$$

N lists the pairs $J(x, F x)$ in order, so that $G=L N$ is the required function.

Problem 14 . Show that every infinite re. set is the range of a recursive univalent function, but is not necessarily the range of a per. univalent function.

Problem 15. Find an arithmetically definable function H such that H_{n} runs through exactly the recursive functions of one variable.

Summary
(i) We have (ii) now established the inclusions $H A \rho A D{ }^{\text {(ii) }} \mathcal{D} G R{ }^{(\text {(iii) }} P R$ for functions. The proper inclusions were demonstrated by
(i) the satisfaction function w
(ii) the function H of Problem 15
(iii) the function F of Problem 12.

For sets, we have $H A \supset A D \supset R E \supset G R \supset P R$.
Each proper inclusion may be demonstrated by means of a universal set

$$
J(n, x) \in \& \leftrightarrow x \in S_{n}
$$

where s is definable on one level and S_{n} runs through all seta of the next lower level. \& cannot belong to this lower level since then a diagonal argument would give a contradiction.
Egg. GRCRE since the claw of recursive sets is re., but not recursive. $P R \subset G R$ since $O^{F_{n}(n)}$ is a recursive characteristic function, but not per. The set $\mathscr{U}=\left\{q: q \notin s_{q}\right\}$ is $A D$ but not $R E$, and the sat of numbers of true sentences is $H A$ but not $A D$.

Problem 16. Show that there is a recursive permutation F which is not equal to $A B^{-1} C$ for any pr. permutations A, B, C. C an this be generalized to answer the question raised presionly about the group generated by the pr. permutations? Hint: List all triples of pr. Fats by $A_{n}=F_{k n}, B_{n}=F_{h L n}, C_{n}=F_{\text {LLD }}$, and define a rec. permutation G such that $G_{n} \neq A_{n} B_{n}^{-1} C_{n}(n)$ in case A_{n}, B_{n}, C_{n} are permutations by

$$
G_{n}=\left\{\begin{array}{l}
A_{n} \mu q\left\{\left(\Lambda_{w<n} G w \neq A_{n} q \wedge B_{n} q \neq C_{n} n\right) \vee q=n+2\right\} \\
\mu t\left\{\underset{w<n}{ } \mathcal{G}_{w} \neq t\right\} \text { otherided wise } \Lambda_{2<n+2}\left(A_{n} w_{1} \neq A_{n} w_{2} \wedge B_{n} w_{1} \neq B_{n} w_{2}\right)
\end{array}\right.
$$

Davis Normal Form

Theorem. A relation R is re. iff there is a polynomial P with integer coefficients such that $\quad R \underline{x} \leftrightarrow V_{y} \wedge_{z \leqslant y} v_{1} \ldots u_{k} P\left(\underline{x}, y, z, u_{1}, \ldots, u_{k}\right)=0$.

Lemma. Every p.r. function is definable carithmetically) by a predicate of the form $Q_{1} \ldots Q_{n} \Phi$, where Φ is diophantine and $Q_{1} \ldots Q_{n}$ are either existential or bounded universal quantifiers.

Proof: Recall that every p.r. function of one variable is definable from $0, S, K, L$ by the operations

$$
\begin{aligned}
& F=A B \\
& F=J(A, B)
\end{aligned} \quad\left\{\begin{array}{l}
F J(I, O)=A \\
F J(K, S L)=B F .
\end{array}\right.
$$

Define $T_{n} x=R(K x, 1+(n+1) L x)$. $T_{n} x=y$ is a diophantine relation since

$$
\begin{aligned}
T_{n} x=y & \leftrightarrow V_{V}\left\{V x=[1+(n+1) L x] u+y \cap y \leq(n+1) L_{x}\right\} \\
& \leftrightarrow V_{u, v, w, z}^{V}\left\{w=[1+(n+1) z] u+y \wedge y+v=(n+1) z \cap(w+z)^{2}+3 w+z=2 x\right\}
\end{aligned}
$$

O, S, K, L are all definable by diophantine predicates.

$$
\begin{aligned}
A B x=y & \leftrightarrow \underset{y}{V}\left(B x=u \cap \Lambda_{u}=y\right) \\
J(A, B) x=y & \leftrightarrow \underset{v, v}{ }\left(A x=u \wedge B x=v \wedge \quad(u+v)^{2}+3 u+v=2 y\right)
\end{aligned}
$$

both of which are of the required form if A and B are definable by suitable predicate. Finally,

$$
F J(x, y)=z \leftrightarrow \bigvee_{v}\left\{T_{0} u=A x \wedge \bigwedge_{v=y}\left(T_{s v} v=B T_{v} u\right) \wedge z=T_{y} u\right\}
$$

which again is of the proper form after all quantifiers have been moved to the front.

Recursively enumerable sets are expressible by a predicate of the form $V_{y} \Phi$, where $\Phi=Q_{1} \ldots Q_{n} \Phi^{\prime}$ as in the lemma: if $\&$ is empty, $x \in \& \leftrightarrow Y Y Y=0$; if $\delta=R F$ for some p.r. F, then $x \in S \leftrightarrow V_{y} Y_{F y}=x$. Now by induction on the number of quantifiers in $\Phi=Y Q_{1} \ldots Q_{n} \Phi^{\prime}$, we show that Φ is equivalent to a predicate of the form required: i.e., $\Phi \leftrightarrow \bigvee_{y} \bigwedge_{z y} \Phi^{\prime \prime}$, where $\Phi^{\prime \prime}$ is diophantine.
$\Phi \Phi^{\prime}$ is diophantine by definition. Let r, s be variables not occurring in Φ. Then $\mathbb{Q} \leftrightarrow \vee Q_{1} \ldots Q_{n} \vee \wedge \wedge_{s s \Phi^{\prime}} \Phi^{\prime}$. The proof is completed by showing that each of the quantifiers $y_{y}, Q_{1}, \ldots, Q_{n}$ can be "absorbed::
(i) Let $C(x, u, y, z)$ be diophantine. Then

$$
\begin{aligned}
\vee_{z} \vee \sum_{v \leq y} C(\underline{x}, v, y, z) & \leftrightarrow \bigvee_{w} \bigwedge_{u \leq k w} C\left(\underline{x}, u, k w, b_{w}\right) \\
& \leftrightarrow \vee_{w} \bigwedge_{u \leq w}\left\{C\left(\underline{x}, u, k w, L_{w}\right) v v>k_{w}\right\} .
\end{aligned}
$$

Since the expression in $\}$ is diophantine, the quantifier Y has been absorbed.
(ii) For bounded universal quantifiers, we need an intermediate result. Let $C(\underline{x}, u, v, y, z)$ be diophantine.

$$
\begin{array}{r}
\begin{aligned}
& v \\
& y \wedge_{v \leq z} \\
& \wedge_{v \leq y} C(x, v, v, y, z) \leftrightarrow
\end{aligned} \underset{w}{v} \wedge_{t \leq w}\left\{\left[C\left(\underline{x}, k_{l}, L_{k}, k_{w}, L_{w}\right) v k_{t}>k_{w} v L_{t}>L_{w}\right]\right. \\
\left.\wedge L_{w}=z\right\}
\end{array}
$$

Now
I.e., the quantifiers $\bigwedge_{u \leq z} v$ are interchanged by having w be the number of $u \leq z$ sequence of the appropriate y^{\prime} ' for each $u \leq z$. By these two equivalences, the quantifier $\bigwedge_{U \leq z}$ may be abuorbed. This completes the proof of the theorem.

A stronger version of the Davis normal form holds in which all but the first quantifier are bounded:

$$
\begin{aligned}
& \underset{y}{V} \bigwedge_{z \leqslant y} v_{u_{1}} \cdots v_{k} z_{i} P\left(\underline{x}, y, z, v_{1}, \ldots, v_{k}\right)=0 \\
& \leftrightarrow \vee_{w} \bigwedge_{z \leqslant w} V_{u_{1} \ldots v_{k} \leqslant w}\left\{P\left(\underline{x}, k w, z, u_{1}, \ldots, v_{1}\right)=0 \vee z>k w\right\} \\
& \leftrightarrow \underset{w}{V} \sum_{z \leq w} V_{u_{1} \ldots u_{v} \leqslant w} V_{q, y, v \leq w}^{V}\left\{(y+v)^{2}+3 y+v=2 w n\right. \\
& \left.\left[P\left(\underline{x}, y, z, v_{1}, \ldots, v_{k}\right)=0 \vee z=y+1+q\right]\right\} \text {. }
\end{aligned}
$$

Hence any pee. relation is arithmetically definable by a predicate of the form

$$
{\underset{w}{v}}_{\sum_{z \leqslant w}{\underset{u}{1} \ldots}^{v} v_{k} \leqslant w} P\left(\underline{x}, w, z, u_{1}, \ldots, u_{k}\right)=0 .
$$

As for the number of auxiliary variables $v_{1} \ldots v_{k}$ required, it is known that four are sufficient, but that one is not.

Turing Machines
The first expositions on the theory of functions computable by Turing machines were by Turing in the Proc of the London Math. Society (1936-37) and Past, JSL (1936).

We shall consider a Turing machine which operates on a tape infinitely long to the right.

Each square of the tape is either printed (a) or blank (b). The machine scans one square of the tape at a time, and its action depends upon its internal state plus the symbol scanned. Four actions are possible: print (P), erase (E), move left (L), move right (R). (Note that R means the machine moves right, or, equivalently, the tape moves left.) A machine with k active states $0,1, \ldots, k-1$ and one terminal state ∞ will be rallied a machine of rank k. The machine is started in state 0 with a given input tape, and its actions are then determined by a table of instructions: E.g., consider the machine a of rank 1

Q	a	b
0	R_{0}	p_{0}

If C scans a printed square, it moves right and stays in state 0 ; if it sans a blank square, it prints and enters its terminal state.

The action of a machine may be described by listing the tape configuration following each atomic act. The symbols on the tape roe relevant portion of the tape) are listed; e.g., aababbb..., or more concisely, $a^{2} b a b^{\infty}$. The scanned square and internal state are indicated by a symbol 9 i to the right of the scanned square; eng., $a^{2} b a b q_{0} b^{\infty}$. The
action of the machine Q may be described by

$$
a: b q_{0} \rightarrow a_{q_{\infty}}
$$

$a q_{0} a^{m} b \rightarrow a^{m+2} q_{\infty}$
I.e., Q prints the first $b l a n l$ square to the right. In the description of a machine by listing configurations, the subscripts $0, \infty$ will often be omitted, it being understood that the 9 to the left of the \rightarrow sign is 90 , and the 9 to the right goo. (The machines being introduced in this exposition will eventually be used to show that all recursive functions are computable on Turing machines.
Exercise List the successive tape configurations for the machine

B	a	b
0	$L 0$	$L 1$
1	$R 2$	$R 4$
2	$R 3$	$R 3$
3	$R 3$	$L \infty$
4	$P 5$	$P 5$
5	$R 5$	$L 6$
6	$E 6$	LO

starting with input tape abbaagob. Show that B "clares the gap" proceeding a scanned block of printed squares:

$$
\text { B: } a b^{m+1} a^{n+1} q b \rightarrow a b a^{n+1} q b^{m+1}
$$

Two Turing machines may bo "composed" to form a new machine via the following procedure: if x is a machine of rank. r and ψ of rank s, then the table for the machine $x y$ is obtained by changing ∞ to r in the table for K and adding r the number of each state in the table for Y., E.g., let

$$
C: a b^{2} \rightarrow \text { abaq }
$$

C	a	b
0	R	$R 1$
1	-	ρ_{00}

$$
D: a b^{m+1} a^{n} q \rightarrow a q b^{m+1} a^{n}
$$

D	a	b
0	$L 0$	$L 1$
1	$P \infty$	$L 1$

Then $C D: a q b^{2} \rightarrow a q b a$

$C D$	a	b
0	$R O$	$R 1$
1	-	$P 2$
2	$L 2$	$L J$
3	$P \infty$	$L 3$

As a particular case of composition, we may, define powers of one machine: $Q^{2}=Q Q$, e.g., prints the first two blank squares to the right. The "infinite" power is denoted by $[1$. E.g.,

$$
\begin{array}{c|c|c}
{[a]} & a & b \\
\hline 0 & R O & P_{0}
\end{array}
$$

[Q] is of $\backslash i t t l e$ interest since the machine does not stope but the infinite power will prove useful in connection with two terminal machines, to bo defined later. To form the table for $[x]$, change ∞ to O in the table for X.

A two terminal machine has two terminal states: ∞ and ∞. E.g.,

$$
\begin{aligned}
\varepsilon: b a q & \rightarrow \operatorname{baq}_{\infty} \\
\text { aq } & \rightarrow \operatorname{aaq}_{\infty^{\circ}}
\end{aligned}
$$

E	a	b
0	$L 1$	-
1	$R \infty$	$R \infty$

Two terminal machines may aldo be composed. If x is a two-terminal machine of rank r and Y, Z are one terminal machines of ranks s, l, then $Y X$ is a two terminal machine and $X\{Y$ is the two terminal machine whose table is given by changing ∞ to r 'a the table for x, x to ∞^{\prime} adding r to the states in the table for Y, and adding E ats to the states in the table for z. E.g.,

$$
\begin{aligned}
\varepsilon\left\{e^{a}: \quad\right. & \text { baqb } \rightarrow \text { baaq } \\
& a a b^{2} \rightarrow a a b a q
\end{aligned}
$$

	a	b
0	$L 1$	-
1	$R 3$	$R 2$
2	$R 2$	$P \infty$
3	$R 3$	$R 4$
4	-	$P \infty$

situations ${ }^{\text {The }}$ like notation may now be used in

$$
[x\{\underset{z}{y}
$$

where table is formed from the table for $x\{\bar{Y}$ by changing ∞ in the table for Y to 0 .
wo need three more basic machines:
f: $\mathrm{aaq} \rightarrow$ aqb

$$
\mathrm{baq} \rightarrow \mathrm{bgb}
$$

T	a	b
0	$E O$	$L \infty$

\&: $a q b^{m} a^{n+1} b \rightarrow a b^{m} a^{n n 1} q^{b}$

α	a	b
0	$R 1$	$R 1$
1	$R 2$	$R 1$
2	$R 2$	L_{0}

94: $a q b^{m+1} a \rightarrow a^{m+1} q b a$

$*$	a	b
0	$R 1$	-
1	$L 2$	$P O$
2	$E 2$	$L \infty$

In summary the basis machines act as follows:
Q: prints the first bank to the right
B: moves printed block left to close gap
C: starts new block of one square to the right
\&: moves to the end of proceeding printed block.
ε : discriminates between ba and aa
F: erases and moves left
s: moves right and continues to end of next block
qp: fills in gap so the right

In order to have a Turing machine compute a function, we encode the n-tuple $\left(k_{1}, \ldots, k_{n}\right)$ on tape by

$$
b a^{k_{1}+1} b \ldots b a^{k_{n}+1} q b^{\infty} .
$$

Then $F\left(x_{1}, \ldots, x_{n}\right)$ is computable by a machine m_{F} iff g_{F} has the action

$$
\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(F\left(x_{1}, \ldots, x_{n}\right)\right)
$$

for all n-tuples of natural numbers.
We now define two "book-keeping" machines. The machine ℓ_{m} has the action

$$
\left(k_{1}, \ldots, k_{m}\right) \rightarrow\left(k_{1}, \ldots, k_{m}, k_{1}\right)
$$

and is defined by

$$
e_{m}=C\left[D^{m} \varepsilon\left\{\begin{array}{l}
\mathscr{H}^{m} \\
\mathscr{H}^{m} C
\end{array}\right] .\right.
$$

e_{m} acts as follows: $\left(\right.$ takes the tape $\left(k_{1}, \ldots, k_{m}\right)$ into $\left(k_{1}, \ldots, k_{m}, 0\right)$. Dm sawer the machine to scan the last digit of k_{1}. If k_{1} is not 0 , then x^{2} subtracts 1 from k_{1}, δ^{m} moves the machine to the end of the tope, and a adds, 1 to 0 giving $\left(k_{1}-1, \ldots, k_{m}, 1\right)$ with an extra bank between $k_{k_{1}-1}$ and k_{2}. This cycle is repeated, each time erasing a symbol from the block k_{1} and adding one to the last block. When k_{1} is finally racked to zero, os restores k_{1} and b^{m} moves the machine to the end of the tape giving $\left(k_{1}, \ldots, k_{m}, k_{1}\right)$.

Next we define "erasing" machines g_{i}.

$$
\begin{aligned}
& g_{1}:\left(k_{0}, k_{1}\right) \rightarrow\left(k_{0}\right) \quad \delta_{1}=\left[\varepsilon \left\{\begin{array}{l}
\pi, 0 \\
\pi
\end{array}\right.\right. \\
& m \geqslant 2, f_{m}:\left(k_{0}, k_{1}, \ldots, k_{m}\right) \rightarrow\left(k_{0}, k_{2}, \ldots, k_{m}\right) \\
& \\
& \left(k_{1}, \ldots, k_{m}\right) \rightarrow\left(k_{2}, \ldots, k_{m}\right)
\end{aligned}
$$

A first try at defining gm might be $D^{m-1}\left[E\left\{\begin{array}{l}\hat{N}(\& B)^{m-1} \\ \text { 个 } 1\end{array}\right.\right.$ which goes back and erases the moth block from the end and then closes the gap left. However
if there are only m blocks on the tape, trying to close the first gap will cause the tape to fall out of the machine. Hence we use the definition

$$
f_{m}: D^{m-1}\left[\varepsilon \left\{\begin{array}{l}
\& B D C \& A^{2}(\otimes B)^{m-2} \\
\tilde{F}]
\end{array}\right.\right.
$$

dm acts by erasing all but one symbol from the $m^{\text {sh }}$ block from the end and then performing m

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{\rightarrow} b a q b a^{n} b^{m} \xrightarrow{\infty} b a^{n+2} g b^{m} \xrightarrow{\rightarrow} b a^{n} q b^{n} b^{m+2}
\end{aligned}
$$

and then closing all later gaps.
A machine p to add may be defined by

$$
\begin{aligned}
& p:(x, y) \rightarrow(x+y) \\
& p=\Delta<d x^{-2}
\end{aligned}
$$

I.e., P overprints the blank between x and y and erases two squares from the end of the tape: $b a^{x+1} b a^{y^{+1}} b \rightarrow b a^{x+1} a a^{y+1} b=b a^{x+y+3} b \rightarrow b a^{x y+1} b$.

The "inverse" of addition . -. is computable by the machine

$$
\begin{aligned}
& Q:(x, y) \rightarrow \begin{cases}(x-y, 0) & \text { if } x, y \\
(0, y-x) & \text { if } y, x\end{cases} \\
& Q=\left[\& \left\{y D \varepsilon \left\{\begin{array}{l}
\infty \rightarrow Q B] \\
x \& B
\end{array}\right.\right.\right.
\end{aligned}
$$

Q erases one symbol alternately from x and y until one of the two numbers is zero.

Combining P and Q, the absolute value of the difference of two numbers may be computed by

$$
Q P:(x, y) \rightarrow(|x-y|)
$$

Theorem. All recursive functions are computable.
Proof: By characterization $\bar{\nabla}$, it suffices to show that all per. fats. of one variable are computable and that the inverses of computable permutations are computable. Also from an earlier result, it suffices to show that O, S, K, L are computable, and that if A, B are computable, then so is F defined by $F=A B$

$$
\text { or } \quad\left\{\begin{array}{l}
F=J(A, B) \\
F J(I, 0)=A \\
F J(K, S L)=B F
\end{array}\right.
$$

and if B is onto, then $B^{-1} x=\mu_{y}\left\{B_{y}=x\right\}$ is computable.
Now $m_{0}:(x) \rightarrow(0)$ is the machine
$\left[\varepsilon\{\pi] .{m_{s}}_{s}\right.$ is simply the machine $C:(x) \rightarrow(x+1)$.
To compute the Cantor pairing functions, we define the k th triangular number
and note that $T_{k}=\sum_{j=1}^{k} j=\frac{k(k+1)}{2}=T_{k-1}+k$

$$
J(x, y)=T_{x+y}+x .
$$

$K Z$ is thus the excess over a triangular number and is computed by $e\left[a \ell_{2}^{2} Q \in\left\{\begin{array}{l}\left.d_{1} \ell_{2} d_{3}^{2}\right] \\ d_{1}^{3}\end{array}\right.\right.$

$$
\begin{aligned}
& \text { Ide., }(x) \xrightarrow{e}(x, 0)=\left(x-T_{0}, 0\right) \text { and } \\
& {\left[\begin{array}{rl}
\left(x-T_{k}, k\right) \\
\xrightarrow{\xrightarrow[Q]{Q}}\left(x-T_{k}, k+1\right) \\
\left.\xrightarrow{Q}\left(x-T_{k+1}, k+1\right)\right] \\
d_{1}\left(x-T_{k}, k+1, k+1,\right. & \left.x-T_{k}, k+1\right) \\
\left.e_{k+1}, 0\right) & \text { if } x \geqslant k+1+T_{k}=T_{k+1}
\end{array}\right.} \\
& \xrightarrow{\stackrel{\text { d.3 }}{\longrightarrow}}\left(x-T_{k}, k+1,0, T_{k+1}-x\right) \text { if } x: T_{k+1}
\end{aligned}
$$

which is the desired result.

Problem 17. Find Turing machines m_{L} and $m_{J(A, B)}$ given m_{A} and m_{B}.

For $g_{L_{L}}$, note that $J(x, y)=T_{x+y}+x=T_{x+y+1}-(x+y+1)+x$ and hence $y=T_{x+y+1}-J(x, y)-1$. From the above computation for \mathscr{M}_{k}, we see immediately that

$$
m_{L}=C\left[Q l _ { 2 } ^ { 2 } Q \& \left\{\begin{array}{l}
\left.g_{1} \Omega_{2} d_{3}^{2}\right] \\
g_{2}^{3} g_{2}^{3}
\end{array}\right.\right.
$$

For $M_{j(A, B)}$ we first define a machine r to compute $\int^{-1} T_{k}$ by $l_{1}\left[D E\left\{\begin{array}{l}\infty g_{2} \\ \left.\text { ri s } B l_{2} P\right]\end{array}\right.\right.$
I.e., $(k) \xrightarrow{e_{1}}(k, k)$ and $(j, x) \rightarrow(j-1, x+j-1)$ if $j=0$ in the loop. $m_{J(A, B)}$ is then given by

$$
m_{J(A, B)}=e_{1} m_{A} e_{2} m_{B} g_{3} e_{2} p \pi p
$$

$$
m_{A B}=m_{B} m_{A}
$$

If A and B are computable and $F J(I, 0)=A$, $F J(K, S L)=B F$, then

$$
\begin{aligned}
& =B F \text {, then } \\
& m_{F}=e_{1} m_{L} \ell_{2} m_{K} f_{3} m_{A}\left[D \varepsilon \left\{\begin{array}{l}
\phi \delta^{2} \\
\left.\boldsymbol{N}_{\delta} B m_{B}\right]
\end{array}\right.\right.
\end{aligned}
$$

$$
\text { I.e., } \begin{aligned}
(x) & \rightarrow(x, x) \rightarrow\left(x, L_{x}\right) \rightarrow\left(x, L_{x}, x\right) \rightarrow\left(x, L_{x}, k_{x}\right) \rightarrow \\
& \rightarrow\left(L_{x}, K_{x}\right) \rightarrow\left(L_{x}, A k_{x}\right) \rightarrow\left(L_{x}-1, B A K x\right) \\
& \rightarrow \ldots \rightarrow\left(0, B^{-x} A K_{x}\right) \rightarrow\left(F_{x}\right) .
\end{aligned}
$$

Finally, if B is onto,

$$
\begin{aligned}
& \text { nally, if } B \text { is onto, } \\
& m_{B-1}=C\left[\ell _ { 2 } ^ { 2 } m _ { B } Q P \& \left\{\begin{array}{l}
d_{1} d_{2} \\
\left.d_{1} C \in\right]
\end{array}\right.\right.
\end{aligned}
$$

$$
\text { I.e., } \quad\left(x, \stackrel{C}{\rightarrow}(x, 0) \xrightarrow{Q_{2}^{2}}(x, 0, x, 0) \xrightarrow{M_{B}}(x, 0, x, B 0) \xrightarrow{Q P}(a, 0,|x-B 0|)\right.
$$

$$
\rightarrow(0) \text { if }|x-B O|=0
$$

$\rightarrow(x, 1)$ if $|x-B O| \neq 0$ and cycles until a y is found for which $|x-B y|=0$.

The same result also holds for recursive functions of more than one variable. E.g., a function F of two variables is defined by

$$
F(x, y)=F^{\prime} J(x, y)
$$

for some recursive function F^{\prime}. Then $F^{\prime}=F(K, b)$ and $m_{F}=m_{J} m_{F^{\prime}}:(x, y) \rightarrow(J(x, y)) \rightarrow\left(F^{\prime} J(x, y)\right)$.

The converse of the theorem also holds, so that the recursive functions are identical with the computable functions.

Problem 18. Show that every function computable by some Turing machine is recursive.

Hint: Define the weight of a square of $\begin{array}{ccc}\text { tape by lace content } & \frac{\text { Weight }}{0} \\ b & 1 \\ a & b q_{i} & 2 i+2 \\ a q_{i} & 2 i+3\end{array}$
The state of the tape may then be represented by wo finite sequence of weights or by $p_{0}^{w_{0}} p_{1} w_{1} \ldots p_{e}^{w_{e}}$ if ln writing the table for a machine of rank r, replace ∞ by r.

Universal Turing Machines
Turing showed the existence of a universal machine Q which, given the input (n, x), computed the action of the nit Turing machine sin some fixed enumeration) with input (x). We shall prove a similar result much more economically by using the above identification of "computable" and "recorsive."

We know that every rec. function F may be represented as $F_{x}=A \mu_{y}\left\{B_{y}=x\right\}$ for some per. A and B, where B is onto. let $B^{-1} x=\mu y\{B y=x\}$. If F is the enumerating function for the claws of pie. functions rif. problem 12) such that $F J(n, x)=F_{n} x$, then all recursive functions are contained in the enumeration

$$
G_{n} x=F_{k n} F_{L_{n}-1} \text {. }
$$

If $F_{\text {ln }}$ is not onto, G_{n} is not recursive, but each recursive function is G_{n} for some n.
we wish to construct a machine Ul which has the action $(n, x) \rightarrow\left(G_{n} x\right)$ in case n is the index of a recursive function. I.e., Z_{1} is a universal machine for functions of one argument. Let

$$
H J(n, x)=J(n, F J(n, x)) .
$$

Then $L H^{-1} J(n, y)=\mu t\left\{F_{n} \ell=y\right\}=F_{n}^{-1} y$ if it is defined, Define

$$
u_{1}=e_{2} m_{K} l_{3} m_{L} e_{3} \delta_{4}^{2} m_{J} m_{H-1} m_{L} m_{J} m_{F} .
$$

U_{1} is the desired machine since if G_{n} is recursive

$$
\begin{aligned}
(n, x) & \rightarrow(n, x, n) \rightarrow\left(n, x, k_{n}\right) \rightarrow\left(K_{n}, x, K_{n}, n\right) \rightarrow\left(n, x, K_{n}, L_{n}\right) \\
& \rightarrow\left(n, x, K_{n}, L_{n}, x\right) \rightarrow\left(K_{n}, \operatorname{Ln}_{n}, x\right) \rightarrow\left(k_{n}, J\left(L_{n}, x\right)\right) \\
& \rightarrow\left(K_{n}, H^{-1} J\left(L_{n}, x\right)\right) \rightarrow\left(K_{n}, L_{H}^{-1} J\left(L_{n}, x\right)\right)=\left(K_{n}, F_{L_{n}}^{-1} x\right) \\
& \rightarrow\left(J\left(K_{n}, F_{L n}^{-1} x\right)\right) \rightarrow\left(F_{K_{n}} F_{L_{n}}^{-1} x\right)=\left(G_{n} x\right)
\end{aligned}
$$

We may also construct a universal machine
for functions of an arbitrary number of arguments; ie., a machine U which takes $\left(n ; x_{1}, \ldots, x_{k}\right)$ into ($\left.G_{n} J_{k}\left(x_{1}, \ldots, x_{n}\right)\right)$, where the ";" signifies two blank. spares on the tape. T_{0} construct such a machine we first define a machine

$$
\begin{array}{ll|l|l}
R: a b a^{k} q & \rightarrow a_{q \infty} b a^{\prime \prime} & R & a \\
b b a^{k} q & \rightarrow b_{q_{0}} b a^{k} & 1 & 1
\end{array}
$$

Now Vet

$$
u=\left[R \left\{\begin{array}{l}
\left.\infty m_{J}\right] \\
w_{1}
\end{array}\right.\right.
$$

ae has the action

$$
\begin{aligned}
\left(n ; x_{1}, \ldots, x_{k}\right) & \rightarrow\left(n ; x_{1}, \ldots, x_{k-2}, J\left(x_{k-1}, x_{k}\right)\right) & & \text { by } R \rho m_{J} \\
& \rightarrow \ldots\left(n ; J_{k-1}\left(x_{1}, \ldots, x_{k}\right)\right) & & \\
& \rightarrow\left(n, J^{\prime}\left(x_{1}, \ldots, x_{k}\right)\right) & & \text { by } \mathbb{B} \\
& \rightarrow\left(G_{n} J_{k-1}\left(x_{1}, \ldots, x_{k}\right)\right) & & \text { by } U_{1} .
\end{aligned}
$$

The equivalence of recursive and computable functions and the existence of such universal machines lends further weight to the argument that the recursive functions are those which are, in some sense, effectively computable.

Arithmetical Predicates and the Arithmetical Hierarchy

All arithmetical predicates may be written as $Q_{1} x_{1}, \cdots Q_{k} x_{k} R\left(x_{1}, \ldots, x_{k}, y\right)$ or $Q_{1} x_{1} \cdots Q_{k} x_{k} F\left(x_{1}, \ldots, x_{k}, y\right)=0$, where R is a recursive relation and F a recursive function. Adjacent quantifiers of like lind may be "collapsed" by pairing, Eng.,
$\Lambda_{x} \Lambda_{x_{2}} R\left(x_{1}, x_{2}, y\right) \leftrightarrow \Lambda_{x}, R\left(k_{x}, L_{x}, y\right)$.
Thus all arithmetical predicates occur somewhere in the arithmetical hierarchy
other hierarchies may be obtained by considering bound variables of higher type (egg., function quantifiers). A superscript on a \sum or Π indicates the variable of highest type. From above, $\Sigma_{i}^{0}=\Sigma_{i}$, etc.
$\Sigma_{0}=\pi_{0}$ is the class of recursive relations. Σ_{1} is the class of re. relations. Since the negation of any predicate in Σ_{1} is in Π_{1}, have, by an earlier result. $\Sigma_{0}=\Sigma_{1} \cap \pi_{1}$." Pout has shown that, in general, $\Sigma_{k} \cap \Pi_{k}$ is the class of relations recursive in \sum_{k-1} for, equivalently, in π_{k-1}), where " A is recursive in B " is taken to mean essentially that membership in A is recursive if a list of the elements of B is available.

The hierarchy is a true hierarchy by virtue of the following proper inclusions:

$$
\begin{aligned}
& \Sigma_{0}=\pi_{0} \subset \pi_{1} \subset \pi_{2} \subset \pi_{3} \subset \ldots \\
& \\
& \Sigma_{1} \subset \Sigma_{2} \subset \Sigma_{3} \subset \ldots
\end{aligned}
$$

These inclusions are obtained by noting that $\Sigma_{k} \cup \Pi_{k} \subseteq \Sigma_{k+1} \cap \pi_{k+1}$ by adding superfluous quantifiers, and then showing that for $k \neq 0, \Sigma_{k} \nsubseteq \pi_{k}$ and $\pi_{k} \nsubseteq \Sigma_{k}$. Thus, for example, since $\Sigma_{1} \subseteq \Pi_{2} \cap \Sigma_{2} \subset \Sigma_{2}, \Sigma_{1} \neq \Sigma_{2}$. To show that $\Sigma_{k} \neq \pi_{k}$, recall that every recursive function G may be represented as

$$
G x=A i y\{B(x, y)=0\}
$$

where A and B are primitive recursive. I.e.,

$$
G x=0 \leftrightarrow V_{y}\left(A_{y}=0 \cap B(x, y)=0\right) \longleftrightarrow V_{y}\left(A_{y}+B(x, y)=0\right) .
$$

Hence every recursive relation R may be represented as

$$
R(\underline{x}) \leftrightarrow \underset{y}{V} C(x, y)=0
$$

where C is primitive recursive. Now let F be the enumerating function for the class of per. functions and define

$$
G_{k}\left(n, a_{1}, x_{1}, \ldots, x_{k}\right)=F J\left(n, J_{k}\left(a, x_{1}, \ldots, x_{k}\right)\right) .
$$

$G_{k}(n, \ldots)$ enumerates all p.r. functions of $k+1$ variables as n runs through the natural numbers.

Let $H\left(a, x_{1}, \ldots, x_{k}\right)$ be a recursive function: Then, as shown, there exists a prese p.r. function D such that

$$
\begin{aligned}
H\left(a, x_{1}, \ldots, x_{k}\right)=0 & \leftrightarrow V_{y} D\left(a, x_{1}, \ldots, x_{k}, y\right)=0 \\
V & \leftrightarrow V_{x_{k}} \\
V\left(a, x_{1}, \ldots, x_{k}\right)=0 & \leftrightarrow\left(a, x_{1}, \ldots, x_{k-1}, K x_{k}, L x_{k}\right)=0 \\
& \leftrightarrow \sum_{x_{k}} E\left(a, x_{1}, \ldots, x_{k}\right)=0
\end{aligned}
$$

where E is the p.r. function obtained from D as indicated. E, being p.r., is $G_{r}(n, \ldots)$ for some n by the above enumeration. Hence for any recursive function H, there exists an n such that

$$
\underset{x_{k}}{V} H\left(a, x_{1}, \ldots, x_{k}\right)=0 \leftrightarrow \underset{x_{k}}{V} G_{k}\left(n, a, x_{1}, \ldots, x_{k}\right)=0 .
$$

Now G_{k} is a recursive function, and if there existed a recursive function H such that

$$
\ldots \vee_{x_{k-1}} \bigwedge_{x_{k}} G_{k}\left(a, a, x_{1}, \ldots, x_{k}\right) \neq 0 \leftrightarrow \ldots \wedge_{x_{k-1}} \vee_{x_{k}} H\left(a, x_{1}, \ldots, x_{k}\right)=0 \text {, }
$$

then for some n,

$$
\ldots \vee_{x_{k-1}} \bigwedge_{x_{k}} G_{k}\left(a, a, x_{1}, \ldots, x_{k}\right) \neq 0 \leftrightarrow \ldots \bigwedge_{x_{k-1}} \vee_{x_{k}} G_{k}\left(n, a_{1}, x_{1}, \ldots, x_{k}\right)=0 .
$$

which gives rise to a contradiction for $a=n$. This establishes one of the relations $\pi_{k} \not \otimes \Sigma_{k}$ and $\Sigma_{k} \not \& \Pi_{k}$ (depending on whether k is even or odd), and a similar argument establishes the other.

For future reference, we prove the following lemma (a special case of Kleenex's S_{n}^{m} Theorem).
Lemma. To every re. relation $R(x, y)$ there corresponds a per. fat. Q such that for all k,

$$
R(x, k) \leftrightarrow x \in \mathcal{S}_{Q_{k}} .
$$

Proof: By definition, $t \in S_{q}$ iff $F \alpha=s^{t} 0$ is derivable from \sum_{q} : Since $R(x, y)$ is re., for some q. $J(x, y) \in 8 q \leftrightarrow R(x, y)$. We add to the equations of \sum_{q} the equations

$$
\begin{aligned}
H(S D)^{\prime} D & =I \\
F^{\prime} & =H F
\end{aligned}
$$

and consider which values of F^{\prime} are derivable. $H(s 0)^{k} D=H J(K, S L)^{k} J(I, 0)=H J\left(I, s^{k} 0\right)=I$, so that $F^{\prime} J(x, x)=x$ iff $J(x, k) \in R F=\delta_{q}$. The index for the new system of equations $\Sigma_{g^{\prime}}$ depend e primitive $\frac{1}{4}$ recursively on 9 , and hence $R(x, x) \leftrightarrow J^{\prime}(x, k) \in \delta_{q} \leftrightarrow x \in \delta_{q^{\prime}}^{\prime}=\delta_{Q k}$.

Arithmeticization of Tarski's Predicate Logic with 1 identity

In the arithmeticization of Tarski's PL with Identity (see p.14), we shall use the following per. functions relating to finite sequences:
(i) \#<t, $\left.t_{0}, \ldots, t_{n-1}\right\rangle=p_{0}^{1+t_{0}} \ldots p_{n-1}^{1+l_{n-1}} ;$ empty seq. $=1$
(ii) $t_{k}=P_{\text {exp }} t$
(iii) length $t=\mu n\left\{n \leq t \wedge\left(p_{n} \neq t\right.\right.$ 聿 $\left.\left.\vee t=0\right)\right\}$
(iv) end $t=t_{p \text { length }} t$
(v) root $t=\mu \cup\left\{0 \leq u \leq t \wedge \hat{} \quad \hat{k}\left(k+1<\right.\right.$ length $\left.\left.t \rightarrow u_{k}=t_{k}\right)\right\}$
(vi) incr $t \leftrightarrow t \neq 0 \wedge \hat{k}_{k}\left(k+1<{ }^{k}\right.$ length $\left.X \rightarrow t_{k} \times t_{k+1}\right)$

Tarski's predicate logic has the following
symbols : $\Lambda_{0}, \rightarrow_{1} \rightarrow=$

$$
\begin{aligned}
& V_{0}, v_{1}, \ldots \\
& R_{0}, R_{1}, \ldots
\end{aligned}
$$

We associate $=$ with R_{0} and require the existence of a per. function ρ such that $p(n)$ is the rank of R_{n} : $E_{\cdot} \cdot g ; \rho(0)=2$.

All formulas of the logic may be Gödel numbered
by

$$
\begin{array}{lll}
\Phi_{4 n} & : & R_{k_{n}} V_{(L n)} \cdots \\
\Phi_{4 n+1} & \vdots & \overrightarrow{\Phi_{n}} \\
\Phi_{4 n+2} & \vdots & \Phi_{k_{n}} \rightarrow \Phi_{L_{n}} \\
\varphi_{4 n+3} & \wedge_{k_{n}} \Phi_{L_{n}} .
\end{array}
$$

Next we define a per. function F_{r} which Nests the free variables of a formula Φ_{n}. I.e., $F_{Y}(n)=\#\left\langle i_{0}, \ldots, i_{k-1}\right\rangle$, where φ_{n} has exactly $v_{i_{0}}, \ldots, v_{i_{k-1}}$ as free variables and $\dot{c}_{0}<c_{1}<\ldots<i_{k-1}$. $F_{r} c_{0}$ is c_{k-1} defined in four cases corresponding to the above numbering of formulas:

$$
\begin{aligned}
& F_{r}\left(H_{n}\right)=\mu t\left\{t \leq P_{p K_{n}}^{n} n \text { incr } t \wedge \bigwedge_{k<\rho k_{n}} \bigvee_{j<\text { length } t} t_{j}=\left(L_{n}\right)_{k}\right\} \\
& F_{r}\left(H_{n+1}\right)=F_{r}(n)
\end{aligned}
$$

$F_{r}\left(H_{n}+2\right)=\mu t\left\{t \leq\right.$ Plength $_{n}^{n} k_{n}$ +length $L_{n} \wedge$ incr t
^ $\underset{k<\text { length }}{\wedge} F_{r}\left(k_{n}\right) \quad \underset{j<\text { length } e}{V} t_{j}:\left[F_{r}\left(K_{n}\right)\right]_{k}$

$F_{r}\left(4_{n}+3\right)=\mu t\left\{t \leq\right.$ length $F_{r}\left(L_{n}\right) a$ incr t

$$
\left.\hat{k}_{\text {krength } \operatorname{Ln}_{n}}\left(F_{r}\left(L_{n}\right)_{k}=k_{n} v_{j<l_{\text {length }} l}^{V} F_{r}\left(L_{n}\right)_{v}=A_{j}\right)\right\}
$$

Using the function F_{r}, we may define a function Q giving the $G \ddot{d} d$ l number of the Quine closure of a formula. I.e.,

$$
\begin{aligned}
Q_{n} & =Q_{\text {vine }} \text { closure of } \Phi_{n} \\
\Phi_{Q_{n}} & =\left[\Phi_{n}\right] .
\end{aligned}
$$

Let $H J(t, n)=J($ root, $4 J($ end $t, n)+3)$. Then

$$
Q_{n}=L H^{\text {length }} \operatorname{Fr}(n) \quad J\left(F_{r}(n), n\right) .
$$

We now define 19 sets of natural numbers corresponding to the sets of Godel numbers of instances of axioms $B 1, \ldots, B Q$:

$$
\begin{aligned}
& n \in B 1 \leftrightarrow V_{k, l, m \leq n}^{V} n=Q(4 J(4 J(k, l)+2,4 J(4 J(l, m)+2,4 J(k, n)+2)+2) \\
& n \in \mathbb{Z} \leftrightarrow V_{k \leq n}^{V} n=Q(4 J(4 J(4 k+1, k)+2, k)+2) \\
& n \in B J \leftrightarrow \underset{k, l \leq n}{V} n=Q(4 J(k, 4 J(4 k+1, l)+2)+2)
\end{aligned}
$$

$$
\begin{aligned}
& n \in B H \leftrightarrow V_{k, l, m \leq n} n=Q(4 J(4 J(k, 4 J(l, m)+3)+3,4 J(l, 4 J(k, m)+3)+3)+2) \\
& n \in B S \leftrightarrow \underset{k, l, m \leq n}{V} n=Q(4 J(4 J(k, 4 J(l, m l+2)+3,4 J(4 J(k, l)+3,4 J(k, m)+3)+2)+2) \\
& n \in B G \leftrightarrow V_{k, l \leq n} n=Q(4 J(4 J(k, l)+3, l)+2) \\
& n \in B 7 \leftrightarrow \vee_{k, l \leq n}\left\{j<\hat{j e n g t h} F_{r}(l) \quad k \neq F_{r}(l)_{j} \wedge n=Q(4 J(l, 4 J(k, l)+3)+2)\right\} \\
& \left.n \in B 8 \leftrightarrow V_{k, l \leq n}\left\{k \neq \ell \text { n } n=Q\left(16 J\left(k, 16 J\left(0,2^{1+k} 3^{1+\ell}\right)+1\right) \cdot 3\right)+1\right)\right\} \\
& \left.n \in \mathbb{B}^{9} \leftrightarrow, j k, k_{n} \leq n\right\} n=Q\left(4 J\left(4 J\left(0,2^{1+j} 3^{1+k}\right), 4 J(4,4 m)+2\right)+2\right) \\
& \wedge k l=k m \\
& \wedge_{t<\rho K l}^{V}\left[(L l)_{l}=j \wedge\left(L_{m}\right)_{\ell}=k\right. \\
& \left.\left.\wedge \wedge_{q<\rho k e}\left(q=t \vee(L \ell)_{q}=(L m)_{q}\right)\right]\right\}
\end{aligned}
$$

Primitive recursive relations for "axiom" and "proof" may be defined in which Proof (a, b) holds if a is the number of a sequence of formulas which is a proof of 0_{b} :
$A x(n) \quad \leftrightarrow n \in B \backslash v \ldots v n \in B q$
$\operatorname{Proot}(a, b) \leftrightarrow$ end $a=b a$ length $a \geqslant 1$

$$
\wedge_{k<l e n g t h}^{\wedge}\left\{A_{x}\left(a_{k}\right) v_{l, m<k}^{V} a_{m}=4 J\left(a_{l}, a_{k}\right)+2\right\}
$$

Since "Proof" is per., the set of theorems defined by \quad Theorem $(b) \leftrightarrow \underset{a}{V} \operatorname{Proof}(a, b)$ is recursively enumerable. In a general theory, if the set of axioms is re., then so is the set of theorems.

Arithmeticization of Arithmetic
We consider a language \mathcal{L}_{0} of arithmetic with Logical Symbols: $\quad \Lambda_{1} \rightarrow, \rightarrow$, $=$

Constant:
Operation Symbols: $\quad t, \cdots, s$
Variables: $\quad v_{0}, v_{1}, \ldots$
Terms in $\mathcal{L} 0$ are constructed and Godel numbered

$$
\begin{array}{lll}
\varepsilon_{2 n} & S^{n} 0 & \left(=\Delta_{n}\right) \\
r_{8 n+1} & \varepsilon_{1 n} & v_{n} \\
\varepsilon_{8 n+1} & \varepsilon_{K_{n}}+\varepsilon_{L n} & \\
r_{8 n+5} & \varepsilon_{K_{n}} \cdot r_{L n} & \\
\varepsilon_{8 n+7} & S \varepsilon_{2 n+1} &
\end{array}
$$

Note that each term has a unique Godel number. Formulas of \mathscr{L}_{0} are likewise numbered:

$$
\begin{array}{lc}
\Phi_{4 n} & \varepsilon_{k n}=\epsilon_{l n} \\
\varphi_{4 n+1} & \neg \varphi_{n} \\
\varphi_{4 n+2} & \varphi_{k n} \rightarrow \varphi_{l n} \\
\varphi_{4 n+3} & \wedge_{k n} \varphi_{l n}
\end{array}
$$

As in the arithmeticization of Tarski's logic, we may define a per. function F_{r} and show that the relations "axiom" and "prof" are primitive recursive. In doing this, we change axioms B8 and B9 as foll oms:

R8': $[\neg \Lambda a \rightarrow \alpha=\beta]$, where α is any variable and
$B 9^{\prime}:[\alpha=\beta \rightarrow(\phi \rightarrow \psi)]$, where ψ is an atomic formula obtained from ∞ by replacing an occurrence of α by un occurrence of β, where α, β are terms
I.e., in $B 9^{\prime}, ~ \infty$ is either $\alpha=\gamma$ or $\gamma=\alpha$ and ψ is $\beta=\gamma$ or $\gamma=\beta$ respectively, where α, β, γ are terms.

We shall show that the set of true sentences of \mathcal{L}_{0} is not arithmetically definable with the aid of the following "fixed point" theorem. For any formula σ_{n}. let ${ }^{~} \oplus_{n}{ }^{1}$ be the term $\Delta_{n}=\Sigma_{2 n}$ of \mathcal{L}_{0}.
Theorem To every formula θ with one free variable v_{0} there corresponds o sentence φ of \mathcal{L}_{0} such that $\varnothing \leftrightarrow \theta\left(\Phi^{7}\right)$ is true in \mathcal{L}_{0}.
Proof: The number of the formula

$$
\Delta v_{0}\left(v_{0}=\Delta_{m} \rightarrow \varphi_{m}\right)
$$

is $4 J(0,4 J(4 J(1,2 m), m)+2)+3$, which is a polynomial value $P(m)$. Let $P_{0}(m)$ be a term obtained from m and 0 by $t, j s$ such that $P_{0}(m)=P(m)$ for all numbers m.

Suppose θ is the formula φ_{k}. Let ϕ_{t} be the formula obtained from ω_{k} by replacing each free occurrence of v_{0} by the term $P_{0}\left(v_{0}\right)$.
Now consider the formula

$$
\varphi_{P(x)}: \quad \Lambda_{\nu_{0}}\left(\nu_{0}=\Delta \Delta_{\infty}\right)
$$

By the nature of the substitution made.

$$
\varphi_{P(t)} \leftrightarrow \Lambda_{v_{0}}\left(v_{0}=P_{0}(\Delta t) \rightarrow \varphi_{k}\right)
$$

holds in \mathcal{L}_{0}. Bot in arithmetic $P_{0}\left(\Delta_{z}\right)$ and $\Delta P(x)$ have the same valve, so that

$$
\begin{aligned}
\Phi_{P(x)} & \leftrightarrow \Lambda v_{0}\left(v_{0}=\Delta p(x) \rightarrow \Phi_{k}\right) \\
& \leftrightarrow \theta\left(\Delta_{P(x)}\right) .
\end{aligned}
$$

Let $\varphi=\varphi_{P(x)}$. Then $\varphi \leftrightarrow \theta\left(r \phi^{7}\right)$, as required.
Corollary The set $Q=\left\{n: Q_{n}\right.$ is a true sentence of $\left.\mathscr{L}_{0}\right\}$ is not arithmetically definable.
Proof: If C is a.d., then so is $\sim Q$. Let θ be a formula with one free variable v_{0} such that $\theta\left(\Delta_{n}\right)$ holds iff θ_{n} is either false or not a sentence, and let Q_{k} be the formula corresponding to θ via the fixed point theorem. Then $\theta\left(\Delta_{k}\right) \leftrightarrow \Phi_{k}$ by the theorem and $\theta\left(\Delta_{k}\right) \leftrightarrow-Q_{k}$ by the definition of θ, which is a contradiction. Hence b is not ard.

The corollary establishes the undecidability of arithmetic, for the set of theorems of \mathcal{L}_{0} is re. and hence cannot possibly be equal to the set of true sentences which is not even add. In order to establish more general results, we first strengthen the previous theorem.
Fixed Point Theorem To every formula θ of \mathcal{L}_{0} with one free variable corresponds a sentence \otimes of \mathscr{L}_{0} such that

$$
\alpha \vdash \varphi \leftrightarrow \theta\left(\varnothing^{-1}\right),
$$

where Q is any set of sentences such that Q yield all true equalities of the forms $\Delta_{m}+\Delta_{n}=\Delta_{p}$ and $\Delta_{m} \cdot \Delta_{n}=\Delta_{p}$ for all m, n, p.
Proof: Let $P(m)$ be a number of the formula

$$
\Lambda v_{0}\left(v_{0}=\Delta_{m} \rightarrow \Phi_{m}\right)
$$

and let $P_{0}\left(v_{0}\right)$ be a term of \mathscr{L}_{0} such that

$$
\alpha \vdash p_{0}\left(\Delta_{m}\right)=\Delta_{p(m)}
$$

for all natural numbers m . As before let t be the number of the formula obtained from θ by replacing each free occurrence of v_{0} by $P_{0}\left(v_{0}\right)$. Then

$$
\begin{aligned}
& \vdash \Lambda_{v_{0}}\left(v_{0}=\Delta_{t} \rightarrow \Phi_{t}\right) \leftrightarrow \Lambda_{v_{0}}\left(v_{0}=P_{0}\left(\Delta_{f}\right) \rightarrow \theta\right) \\
& Q \vdash \lambda_{v_{0}}\left(v_{0}=p_{0}\left(\Delta_{t}\right) \rightarrow \theta\right) \hookrightarrow \Lambda_{v_{0}}\left(v_{0}=\Delta p(x) \rightarrow \theta\right)
\end{aligned}
$$

since $P_{0}\left(\Delta_{m}\right)=\Delta_{P(m)}$ is provable, and hence

$$
\alpha \vdash \varphi_{p(x)} \leftrightarrow \Theta^{\circ}\left(\Delta_{p(x)}\right)
$$

$\alpha \vdash \quad \omega \leftrightarrow \Theta\left(\Gamma \Phi^{\prime}\right)$.
Note that given the number of θ we may compute the number of φ since t and P may be computed.

Undecidability
Let a be a theory of arithmetic, and denote by Theorems (a) the set of theorems of a. Let λ_{Q} be the set of numbers of theorems of Q; i.e., $n \in T_{\alpha} \leftrightarrow ब_{n}$ e Theorems ($c e$). Similarly, let R_{a}^{\prime} be the set of numbers of disprovable (refutable) statements of a.

We illustrate the nature of the results to be proved by the following example:
Definition A vet s is definable in a theory al iff there exists a formula θ of one free variable such that

$$
\begin{array}{ll}
n \in s & \text { iff } \\
n \not a r \theta\left(\Delta_{n}\right) \\
\text { iff } & a r-\theta\left(\Delta_{n}\right) .
\end{array}
$$

Theorem. If a satisfies the hypothesis of the fixed Point Theorem, then there is no definable set \& of natural numbers such that $R_{a} \subset \&$ and $s \cap \lambda_{\alpha}=\phi$.

Proof: Suppose θ defines \& in Q, and let Q_{n} be given by the Fixed Point Theorem so that Qr $\varphi_{n} \leftrightarrow \theta\left(\Delta_{n}\right)$.
Then $n \in S \Rightarrow Q F \theta\left(\Delta_{n}\right) \Rightarrow Q \vdash \varphi_{n} \Rightarrow n \in P_{\infty}$

$$
n \otimes s \Rightarrow a r-\theta\left(\Delta_{n}\right) \Rightarrow Q r-Q_{n} \Rightarrow n \in R_{a},
$$

which in any case is a contradiction.
Corollary if Q satisfies the hypothesis of the FP Theorem and if every recursive set is definable in a, then T_{a} and R_{a} are not recursively separable. I.e., (ff. p. 138), e, and every consistent extension of ∞, is undecidable.

In order to generalize this result, we define the following notions:
essentially undecidable - all consistent extensions are undecidable (e.u.)
hereditarily undecidable - all subtheories are undecidable (h.u.)
essentially hereditarily undecidable - all compatible
theories are undecidable (e.h.u.)
The notion of definability may also be generalized by considering the following relations between sets s and formulas θ with one free variable:

1. $n \in S \Rightarrow \forall \in\left(\Delta_{n}\right)$
2. $n \in \& \Rightarrow Q \vdash \in\left(\Delta_{n}\right)$
3. $n \in \& \Rightarrow$ not $Q \vdash \sim \theta\left(\Delta_{n}\right)$.

A set δ is said to be (a, b) definable iff there exists a formula e with one free variable such that the relation (a) holds between 8 and θ and the relation (b) between $\sim \delta$ and $\rightarrow \theta$. The definability introduced before corresponds to $(2,2)$ definability, and by the corollary above, we have seen that if a theory Q satisfies the hypothesis of the FP Theorem, then $(2,2)$ detinability of recursive sets implies the. essential undecidability of $c e$. In general, we shall establish the following correspondances between detinability of recursive seth and undecidability, with no restriction on C :

Theorem if every recursive set 8 is $(2,3)$ definable in a theory T, then T is undecid able.
Proof: For every recursive set \& there exists a formula θ of one free variable such that $n \in s$ iff $T \vdash \Theta\left(\Delta_{n}\right)$.
If θ_{k} has one free variable, let

$$
\delta_{k}=\left\{n: \mathscr{T} \vdash \Phi_{k}\left(\Delta_{n}\right)\right\}_{;}^{\prime}
$$

otherwise let $\delta_{k}=\Phi$. Now let $D=\left\{n: n \notin \delta_{n}\right\}$.
If A is decidable, then D is recursive. But by $(2,3)$ definability, all recursive sets are δ_{k} for so me k, and we have the usual contradiction.

Corollary 1. $(1,3) \Rightarrow$ hi.
Proof: Suppose $\boldsymbol{T}^{\prime} \leq \pi$. Then every recursive set is $(1,3)$ definable in π^{\prime} and hence also $(2,3)$ definable in X^{\prime}. Thus \mathscr{F}^{\prime} is undecidable.

Corollary 2. $\quad(2,2) \Rightarrow$ e. u.
Proof: Suppose $\boldsymbol{T} \leq \boldsymbol{g}^{\prime}$. Then every recursive set is (2,2) definable in X^{\prime} and hence also $(2,3)$ definable in x^{\prime}.

Corollary 3 .

$$
(1,2) \Rightarrow \text { e.h.v. }
$$

Proof: Suppose $T^{\prime} \subseteq T^{\prime}$ and $T^{\prime \prime} \subseteq g^{\prime}$. Then every recursive set is $(1,2)$ definable in g^{\prime}, $(1,3)$ definable in $y^{\prime},(1,3)$ definable in $x^{\prime \prime}$, and hence $(2,3)$ definable in \boldsymbol{T}."

Note that in the above theorems the only property which we require of $\left\{\Delta_{n}\right\}$ is that it forms a r.e. set of terms. Using the above theorems, we may establish undecidability results for various theories of arithmetic by proving the appropriate definubility results.

A Sentence Undecidable in Arithmetic

Let $c e$ be a recursive set of true sentences of arithmetic which satisfies the hypothesis of the Fixed Point Theorem and such that every recursive relation of natural numbers is definable in C_{j} ie., to every recursive relation $R(x, y)$ there corresponds a formula Q such that if $R\left(\Delta_{m}, \Delta_{n}\right)$ hold in arithmetic, then $Q R \varphi\left(\Delta_{m}, \Delta_{n}\right)$ and if $\sim R\left(\Delta_{m}, \Delta_{n}\right)$ holds, then $C R \sim Q\left(\Delta_{m}, \Delta_{1}\right)$.

As shown above the relation Proof (a, b) is P.r., and furthermore is arithmetically definable by a formula "Profit" with the properties (i) CerProof $\left(\Delta_{m}, \Delta_{n}\right)$ iff m is the number of a proof of ϕ_{n} and
(ii) $\alpha \vdash \neg \operatorname{Proof}\left(\Delta_{m}, \Delta_{n}\right)$ ff m is not the number
of a proof of Θ_{n}.
Now consider the formula $\Lambda_{v_{1}} \rightarrow \operatorname{Proof~}^{\left(v_{1}, v_{0}\right)}$.
By the FP Theorem there exists a sentence \varnothing such that $Q \vdash \varnothing \leftrightarrow \Lambda_{v_{1}} \sim P_{r o o f}\left(v_{1},{ }^{r} \Phi^{\top}\right)$.
we claim that φ is true but not provable. For suppose ϕ is provable in C and let k° be the number of a proof. Then

$$
\begin{aligned}
& a \vdash \text { Proof }\left(\Delta_{k}, \Gamma \phi^{\top}\right) \\
& a \vdash V_{v_{1}} P_{\text {roof }}\left(v_{1}, \nabla^{\Gamma}\right)
\end{aligned}
$$

$$
a \vdash \neg \varnothing
$$

which is a contradiction. Hence Q is unprovable.
By (ii) we have

$$
\alpha \vdash-\operatorname{Proof}\left(\Delta_{k}, r \phi^{-1}\right)
$$

for every k. Thus $-\operatorname{Proof}\left(\Delta_{k},\left(\phi^{-1}\right)\right.$ is true for every, k and so is $A v_{1}$-Proof $\left(v_{1},{ }^{r} \Phi^{\wedge}\right)$ by the definition of truth. Hence \varnothing is true.

Note that the formula "proof" may be written out explicitly by retracing previous
definitions.

Undecidability in Arithmetic
We now apply our theorems concerning undecidability to various theories of arithmetic. In particular we consider the theories R_{0} and Q defined in Tarslisis Undecidable Theories:

Theory $R_{0} \quad \Delta_{m} * \Delta_{n}=\Delta_{m+n} \quad(m, n$ natural numbers)

$$
\begin{aligned}
& \Delta_{m} \cdot \Delta_{n}=\Delta_{m n} \quad \text { for } m \neq n \\
& \Delta_{m} \neq \Delta_{n} \quad \text { for } \quad \Delta_{m} \rightarrow x=\Delta_{0} v \ldots v x=\Delta_{m}
\end{aligned}
$$

where $\alpha \leq \beta \leftrightarrow \underset{w}{ }(w+\alpha=\beta)$. Note that R_{0} has an infinite number of axioms;i.e., all instances of the above schemata.

Theory Q

$$
\begin{aligned}
S x=S y & \rightarrow x=y \\
0 & \neq S x \\
x \neq 0 & \rightarrow V_{y} x=S y \\
x+0 & =x \\
x+S_{y} & =S(x+y) \\
x \cdot 0 & =0 \\
x \cdot(S y) & =x \cdot y+x
\end{aligned}
$$

Thus Q is finitely axiomatizable, and as shown in Tarsi, Q is stronger than R_{0}; ie., every model of Q is a model of R_{0}.

Theorem. Every recursive set is $(2,2)$ definable in R_{0}.

Proof: Let \& be a recursive set and \et F_{1}, F_{2}, G_{1}, G_{2} be the polynomials corresponding to \& and is by Davis' Theorem; ie., $n \in S$ of ${\underset{x}{x}}_{y} \sum_{y=x} \bigcup_{n, u_{n} \leq x} F_{1}(n, x, y, \underline{u})=F_{2}(n, x, y, \underline{u})$
$n \notin s$ if $\sum_{x} \bigwedge_{y \leqslant x} \bigcup_{1} V_{v \leq x} G_{1}(n, x, y, y)=G_{2}(n, x, y, y)$.

Set

$$
\begin{aligned}
& \theta_{1}(t, x) \leftrightarrow \Lambda_{y \leq x} v_{1} \ldots V_{k} \leq x \quad F_{1}(t, x, y, \underline{y})=F_{2}(t, x, y, y) \\
& \theta_{2}(t, x) \leftrightarrow \bigwedge_{y \leq x} v_{v_{1}} V_{v_{k} \leq x} G_{1}(t, x, y, \underline{y})=G_{2}(t, x, y, y),
\end{aligned}
$$

and let $\psi(t)$ be the formula

$$
\bigwedge_{x}\left\{\left(\left(\theta_{1}(t, x) \vee \theta_{2}(t, x)\right) \wedge \bigwedge_{x^{\prime}}\left(\theta_{1}\left(t, x^{\prime}\right) \vee \theta_{2}\left(t, x^{\prime}\right)\right) \rightarrow-x^{\prime}<x\right) \rightarrow \theta_{1}(t, x)\right.
$$

ψ asserts that the least bound for which we can determine membership in s by the Davis Normal form will give the result that $t \in S$. Suppose $n \in S$ and let m be the least natural number for which $\theta_{1}\left(\Delta_{n}, \Delta_{m}\right)$ holds.

$$
R_{0} t z \leq \Delta_{m} \rightarrow z=\Delta_{0} \vee \ldots \vee z=\Delta_{m}
$$

Hence

$$
R_{0} r \theta_{1}\left(\Delta_{n}, \Delta_{m}\right)
$$

since all combinations of bound variables may be checlied by the axioms of Re. Similarly

$$
R_{0} r-\theta_{2}\left(\Delta_{n}, \Delta_{k}\right)
$$

$$
R_{0} \vdash \sim \theta_{1}\left(\Delta_{n}, \Delta_{k}\right)
$$

for $k<m$, again by checking the computation. Thus Rot $\psi\left(\Delta_{n}\right)$.

Similarly we may show that if n\&S,
then $R_{0} \vdash-r^{\prime}\left(\Delta_{n}\right)$. These two results
show that s is $(2,2)$ definable by ψ :

$$
\begin{aligned}
& n \in \& \Rightarrow R_{0} r \psi\left(\Delta_{n}\right) \\
& n \otimes \& \Rightarrow R_{0} r-\psi\left(\Delta_{n}\right) .
\end{aligned}
$$

Corollary R_{0} is essentially undecidable.

Theorem Every recursive set is $(1,2)$ definable in Q.

Proof: Let $\theta(x)$ be the formula $Q \rightarrow \psi(x)$, where Q is the conjunction of the axioms of Q and ψ is the formula corresponding to o recursive set S by the previous theorem. if $n \in \mathcal{S}$, then $\forall Q \rightarrow \psi\left(\Delta_{m}\right)$ since Q is stronger than R_{0}. If $n \otimes s$, then $R_{0} t \sim \psi\left(\Delta_{n}\right)$, $F Q \xrightarrow{\sim} \sim \psi\left(\Delta_{n}\right)$, and hence

$$
Q \vdash \rightarrow\left(Q \rightarrow \psi\left(\Delta_{n}\right)\right)
$$

Thus \& is $(1,2)$ definable by θ in Q.
Corollary. Q is essentially hereditarily undecidable.
Corollary Every recursive set is $(1,3)$ definable in R_{0}, and hence R_{0} is hereditarily undecidable.
Proof: Given δ, θ as above, we have

$$
n \in s \Rightarrow 1-\theta\left(\Delta_{n}\right)
$$

$n \notin \delta \Rightarrow$ not $R_{0} t \in\left(\Delta_{n}\right)$, since $Q r \rightarrow \Theta\left(\Delta_{n}\right)$ and Q is stronger than R_{0}.
We may actually show that every recursive set is $(1,2)$ decidable in R_{0} and hence that R_{0} is e.h.u. To do this we introduce Dana Scott's Theory Ω of arithmetic:

1. $0 \leq x$
2. $x \leq y \wedge y \leq x \rightarrow x=y$
3. $x \leq y \cap y \leq z \rightarrow x \leq z$
4. $x \leq S x$
5. $y \leq x \vee S x \leq y$
6. $\quad x=5 x \rightarrow y \leq x$
7. $x+0=x$
8. $\quad x+S y=S(x+y)$
9. $\quad x \cdot 0=0$
10. $x \cdot 5 y=x \cdot y+x$
Ω has as models

$$
\begin{aligned}
& \eta=\langle N a t ., \quad 0, S,+, \cdot \leq\rangle \\
& \eta_{n}=\left\langle\{0,1, \ldots, n\}, 0, S_{n}, t_{n}, \cdot_{n}, \leq n\right\rangle,
\end{aligned}
$$

where $x t_{n} y=\min \{n, x+y\}$

$$
x \leq n y \leftrightarrow x \leq y \leq n \text {, etc. }
$$

In fact all finite models of Ω are isomorphic to η_{n} for some n : for suppose in is a finite model of Ω with mil elements. Let l be the least natural number such that there exists a natural number $k<l$ for which $s^{k} 0=s^{l} 0$.

$$
\begin{align*}
s^{k} 0 & \leq s^{k+1} 0 \leq \ldots \leq s^{l-1} 0 \leq s^{l} 0 \\
s^{k+1} 0 & \leq s^{l} 0=s^{k} 0 \\
s^{k+1} 0 & =s^{k} 0
\end{align*}
$$

$$
\text { by } 2 \text {. }
$$

Hence, by our choice of $l, l=k+1$.

$$
y \leq s^{k-1} 0 \text { y } s^{k} 0 \leq y
$$

$$
y \leq s^{\prime \prime} 0
$$

$$
\text { by } 6 \text {. }
$$

Thus

$$
y=s^{k-1} 0 \text { y } y=s^{k} 0
$$

Continuing in this manner we obtain

$$
\begin{aligned}
& y \leq 0 \quad v y=s 0 \quad v \ldots v y=s^{k-1} 0 \vee y=s^{k} 0 \\
& y=0 \quad \vee y=s 0 \quad v \ldots v y=s^{k-1} 0 \vee y=s^{k} 0 \text { by } 1 .
\end{aligned}
$$

Hence g is isomorphic to \prod_{k}.
The above argument aldo shows that all infinite model have a submodel isomorphic to N, for if $s^{k} 0=s^{l} 0$ for $k \neq l$, then the model is finite.

Lemma. If P is a polynomial with natural number coefficients, then the value of $p\left(x_{0}, \ldots, x_{k}\right)$ in the model η_{n} is the minimum of n and the value of $P\left(x_{0}, \ldots, x_{k}\right)$ in the model r.
Proof: By induction on the formation of P.

Theorem (Scot) To every re. set S of natural numbers there corresponds a formula Q with one free variable vo such that (i) $m \in s$ iff $\varphi\left(\Delta_{m}\right)$ is true in some finite model of Ω; and
(ii) $m \in \&$ iff $\varphi\left(\Delta_{m}\right)$ is true in all infinite models of Ω.

Proof: Let \& be re. By the Davis Normal Form there exist polynomials P, Q such that $m \in \mathcal{S}$ ff $V \prod_{v \leqslant u w_{1} v w_{v} \leqslant u} P(m, u, v, v)=Q(m, v, v, \underline{v})$.
Let $\phi(x)$ be the formula

$$
\begin{aligned}
& x \neq S x \wedge \sum_{v}^{V} \sum_{v} v_{1} . . w_{k} \leq u\{P(x, u, v, \underline{w})=Q(x, u, v, \underline{w}) \\
&
\end{aligned}
$$

Suppose $m \in 8$. Then $O\left(\Delta_{m}\right)$ holds in all infinite models by the Davis Normal Form. By choosing $n>m$ and also greater than all relevant values of P and Q occurring in the evaluation of φ, we also have $\varphi\left(Z_{m}\right)$ holding in R_{n}.

Conversely, if $m \notin \delta$, then $\varphi\left(\Delta_{m}\right)$ does not hold in the standard infinite model, and likewise o(Δ_{m}) cannot hold in any finite model.

Corollary 1. The set of finitely satisfiable sentences erie., thous having finite models) is not recursive.

Proof: Let $\&$ be re. but not recursive, and let $\&$ correspond to \& by Scot's Theorem. Then $\Omega \cap \varphi\left(\Delta_{m}\right)$ has a finite model iff $m \in S$, and hence the set of finitely satisfiable, sentences cannot be recursive.

Corollary 2. The set of sentences valid in all finite models is not re.

Proof: Let s and Q be as in Corollary 1. Then $m \notin S$ iff $\Omega \wedge \varphi\left(\Delta_{m}\right)$ is not true in any finite model, and hence mes iff $-\left(\Omega_{\wedge} \varphi\left(\Delta_{m}\right)\right)$ is true in all valid models. Since $\sim s$ is not re., the set of sentences valid in all finite models cannot be re.

Corollary 3. (Trachténbrot, Doklady, 1953)
The set of universally valid sentences is not recursively separable from the set of finitely refutable sentences.

Proof: Let S and T be two disjoint re. sets which are not recursively separable, and let \varnothing, ψ be the formulas corresponding to s, x respectively by Scott's Theorem. Let $\theta(x)=\Omega \wedge \psi(x) \rightarrow \phi(x)$. If $m \in \&$, then $F \theta\left(\Delta_{m}\right)$ by the completeness theorem since $\varphi\left(\Delta_{m}\right)$ holds in all infinite models of Ω and $\psi(\Delta m)$ holds in no finite model of Ω. if $m \notin S$, but $m \in X$, then there is a finite model η_{n} in ' which $\psi\left(\Delta_{m}\right)$ holds and $\varphi\left(\Delta_{m}\right)$ is false. Hence $\Theta\left(\Delta_{m}\right)$ is finitely refutable.

Now it the set $2 e$ of universally valid sentences and the set R of finitely refutable sentences were recursively separable by a set B, then we could define a recursive set a by $m \in Q$ iff $\theta\left(\Delta_{m}\right) \in \mathbb{B}$. From the above, a would recursively separate s and π, which is contrary to our assumption. Hence $2 e$ and R are not recursively separable.

Corollary 4. (Problem 20). All recursive rets are $(1,3)$ definable in Ω, and hence Ω is hereditarily undecidable.

Proof: Let s be recursive and let ψ, ψ^{\prime} be the formulas corresponding to $\&, \sim s$ respectively by Scott's Theorem. Let $\varphi(x) \leftrightarrow \psi(x) v+\psi^{\prime}(x)$. If $m \in S$, then $\vdash \Omega \rightarrow \Phi\left(\Delta_{m}\right)$ by the completeness theorem. If $m \notin \delta$, suppose $\Omega \vdash \Omega \rightarrow \varphi\left(\Delta_{m}\right)$.
Then $\Omega \vdash \psi\left(\Delta_{m}\right) \vee \sim \psi^{\prime}\left(\Delta_{m}\right)$, and since $\psi^{\prime}\left(\Delta_{m}\right)$ holds in some finite model $\eta_{n}, \neg \psi^{\prime}\left(\Delta_{m}\right)$ does not hold in η_{n}, and hence $\psi\left(\Delta_{m}\right)$ does; ie., $m \in 8$. But this is a contradiction, so that if $m \otimes \delta$, we cannot hove $\Omega \sqcap \Omega \rightarrow \varphi\left(\Delta_{m}\right)$. Thus $\&$ is $(1,3)$ definable by $\Omega \rightarrow \varphi(x)$.

The result of Corollary 4 is in fact the best result possible: if all recursive sets were $(2,2)$ definable in Ω, then Ω would be essentially undecidable. But this cannot be since the theory of a given finite model of Ω is a decidable extension of Ω.

The theory Ω was introduced to show that every recursive set is $(1,2)$ definable in R_{0}. In order to complete this demonstration, we first introduce a slight modification of R_{0} :
Theory R,

$$
\begin{aligned}
\Delta_{m}+\Delta_{n} & =\Delta_{m+n} \\
\Delta_{m} \cdot \Delta_{n} & =\Delta_{m \cdot n} \\
\Delta_{m} & \neq \Delta_{n} \quad \text { for } m \neq n \\
x \leq \Delta_{n} \leftrightarrow x & =\Delta_{0} v \ldots v x=\Delta_{n}
\end{aligned}
$$

The only differences between R, and R o is that in the last axiom schema, \rightarrow has been replaced by \leftrightarrow, and that \leq is taken as a primitive symbol rather than
being defined by ${\underset{w}{x}}_{V}(w+x=y) \leftrightarrow x=y$. $\quad \ln R_{o}$ if $k \leq l$, then $\Delta_{k} \leq \Delta_{l}$ since $V_{w}\left(w+\Delta_{k}=\Delta_{l}\right)$; i.e., $w=\Delta \ell-k$. Hence every model of R_{0} is a model of R_{1}. The converse is not true since the axioms of R, do not specify any relation between t and s onthe nonstandard part of a model.

Now to show that every recursive set is $(1,2)$ definable in R_{0}, it suffices to establish the result for the weaker theory R_{1}.

Theorem (Cobham) Every recursive set is $(1,2)$ definable in R_{1}.

Proof: We define relatarized operations corresponding to S, t, by

$$
\begin{array}{rll}
S_{a} x=y & \leftrightarrow & (S x \leq a \wedge S x=y) \vee(\neg S x \leq a \wedge y=a) \\
x+a y=z & \leftrightarrow & (x+y \leq a \wedge x+y=z) \vee(\neg x+y \leq a \wedge z=a) \\
x \cdot a y=z & \leftrightarrow & (x \cdot y \leq a \wedge x \cdot y=z) \vee(\neg x \cdot y \leq a \wedge z=a) .
\end{array}
$$

Let $\varphi^{(a)}$ be the formula in the language with $0, s, t, \dot{,}$ obtained from ρ by relatarizing all quantifiers to $\leq a$ and by replacing the operations S, t_{1}. by the definitions of S_{a}, t_{a}, a. By the definitions, we have

$$
\vdash \quad a \leq a \rightarrow S_{a} x \leq a \wedge x t_{2} y \leq a \cap x \cdot a \leq a
$$

Let M be any model of the language \mathcal{L} with $0,5, t, \cdots, 5$, and let $a \in M$ be an element with $0 \leq a$ and $a \leq a$. Consider the set $S=\{x: x \leq a\}$. S_{a}, t_{a}, a are operations on ∞, and $m_{a}=\left\langle\infty, 0, S_{a}, t_{a}, a_{1} \leq\right\rangle$ is a model of \mathscr{L}. Furthermore, M_{a} is a model of a sentences ϕ if M is a model of $\varphi^{(a)}$.

If $\Omega r \varphi$, then $\vdash 0 \leq a \wedge a \leq a \wedge \Omega^{(a)} \rightarrow \phi^{(a)}$.
For if m_{l} is a model of $\Omega^{(a)}$, then m_{a} is a model of Ω and hence of θ, so that m is a model of $\theta^{(a)}$, and the result follows from the completeness theorem.

For every $n, R_{1} \vdash \Omega^{(\Delta n)}$, as can be verified by checking the axioms of Ω. E.g., the relativization of $x \leqslant S x$ is

$$
\bigwedge_{x \leq \Delta_{n}}\left\{\left(S x \leq \Delta_{n} \wedge x \leq S x\right) \vee\left(\neg S x \leq \Delta_{n} \wedge x \leq \Delta_{n}\right)\right\}
$$

which is verifiable by the axioms of R_{1}. If σ is a sentence which is true in η_{n}, then $R_{1} \vdash \sigma\left(\Delta_{n}\right)$: For let R be any model of R_{1}. Then $R_{\Delta n}$ is a model of Ω with $n+1$ elements, and hence is isomorphic to R_{n}. $R_{\Delta n}$ is then a model of σ, so that R is a model of $\sigma(\Delta n)$.

Now let s be any recursive set and choose D, ψ by Scott's Theorem to correspond to S, \sim respectively. For $n \in S$,

$$
\Omega \vdash \psi\left(\Delta_{n}\right) \rightarrow \varphi\left(\Delta_{n}\right)
$$

as in Corollary 4. By the completeness theorem and the above remarks,

$$
\vdash \wedge \hat{a}\left(0 \leq a \wedge a \leq a \wedge \Omega^{(a)} \rightarrow\left[\psi^{(a)}\left(\Delta_{n}\right) \rightarrow \phi^{(a)}\left(\Delta_{n}\right)\right]\right)
$$

If $n \notin \hat{\delta}$, let m be such that $\psi\left(\Delta_{n}\right)$ holds in R_{m}. Then $R_{1} \vdash \psi^{\left(\Delta_{m}\right)}\left(\Delta_{n}\right)$ and hence

$$
R_{1} \vdash V_{a}\left(0 \leq a \cap a \leq a \wedge \Omega^{(a)} \wedge \psi^{(a)}\left(\Delta_{n}\right) \wedge-\theta^{(a)}\left(\Delta_{n}\right)\right) \text {. }
$$

Thus s is $(1,2)$ definable in R, by

$$
\wedge_{a}\left\{0 \leq a \wedge a \leq a \wedge \Omega^{(a)} \rightarrow\left[\psi^{(a)}(x) \rightarrow \phi^{(a)}(x)\right]\right\}
$$

Corollary (Cobham) R_{1} is essentially hereditarily undecidable.

We note that we may loosen the requirements on t, i, S in the theory R, by requiring them to be operations only on numerals and relations elsewhere. I.e., the proof given above is also valid for the theory R_{2} in which t_{1}, S are relations and the axioms are

Theory R_{2}.

$$
\begin{aligned}
& \Delta_{m} \cdot \Delta_{n}=\Delta_{p} \\
& \Delta_{m}+\Delta_{n} \neq \Delta_{p} \\
& \Delta_{m} \Delta_{n}=\Delta_{p} \\
& \Delta_{m} \cdot \Delta_{n} \neq \Delta_{p} \\
& \Delta_{m} \neq \Delta_{n} \\
& x \leq \Delta_{n} \leftrightarrow \quad x=\Delta_{0} \vee \ldots \vee x=\Delta_{n} \\
& \text { for mini } \\
& \text { for } \min 7 p \\
& \text { for } m \cdot n=p \\
& \text { for } m \cdot n \neq p \\
& \text { for } m \neq n
\end{aligned}
$$

We may furthermore omit the first axioms concerning t and still have an e.h.u. theory, for t is definable in terms of and S. Hence the theory involving such a definition is stronger than R_{1} (or R_{2}) and is consequently e.h.u. Thus we have an example of o theory with one unary relation (s) and one binary relation (.) which is e.h.u.

Finally, we note still another corollary to Scott's Theorem: For every re. set s there exists a formula φ with one free variable such that $m \in \mathcal{B}$ iff $\Omega \vdash \varphi\left(\Delta_{m}\right)$. For if ψ is the formula corresponding to S by Sot's Theorem, we may tale $\Phi(x) \leftrightarrow \psi(x) \cup \underset{y}{ }(y=S y)$

The Theory of Groups
We shall show that the theory Q is interpretable in the theory of groups, and that consequently the theory of groups is undecidable.

Consider the theory of $1,+1,1$, and the integers. " may be defined in this theory by first definining

$$
n=k(k+1) \leftrightarrow \Lambda_{m}(n|m \leftrightarrow k| m n k+1|m \cap 2 k+1| 2 n-k)
$$

and then

$$
n=k \cdot l \leftrightarrow(k+l) \cdot(k+l+1)=k(k+1)+l(l+1)+2 n .
$$

The first definition is justified since the condition on the right guarantees that $n=1 \mathrm{~cm}(k, k+1)= \pm k(k+1)$, with the -1 being excluded by $2 k+1 \backslash 2 n-k$.

Q may therefore be interpreted in this theory, since the natural numbers may be defined as those integers which are the sum of four squares. Hence every recursive set is $(1,2)$ definable in the theory, and the theory is e.h.u.

We now proceed to interpret this theory of $1, t, 1$, int. in the theory of a particular group G of all permutations of the integers. Let S be a constant of G corresponding to the successor function and define

$$
\begin{array}{ll}
\text { Int } X & \leftrightarrow \\
X=Y+Z & \leftrightarrow \\
x=S=S \circ S \circ X \\
X=1 & \leftrightarrow \\
X \backslash Y & \leftrightarrow \\
& \\
& \\
& \wedge \bigwedge_{Z}(X \circ S=S \circ Z \circ X \rightarrow Y \circ Z=Z \circ Y) .
\end{array}
$$

From the above definitions, we conclude that the interpretation "Int" of the integers is the set of powers of S; for if $x \circ s=s 0 x$, let $x(0)=a=s^{n} 0$. Then $x(1)=x \operatorname{ses}(0)=S 0 x(0)=S^{n+1}(0)$ $=s^{n}(1)$, and by induction $x=s^{n}$.

The interpretation preserves the properties of + and 1, when acting on the integers. For + this is obvious. For 1, suppose that $X=s^{m}$ and $Y=S^{n}$. if m / n and $S^{m} \cdot Z=Z \circ \mathrm{~s}^{m}$, then

$$
\begin{aligned}
S^{n} \circ Z & =S^{n-m} \circ\left(S^{m} \circ Z\right)=S^{n-m} \cdot\left(Z \cdot S^{m}\right) \\
& =\left(S^{n \cdot m} \circ Z\right) \cdot S^{m}=\cdots=Z \circ S^{n},
\end{aligned}
$$

so that $x \backslash Y$. Conversely, if $m \nmid n$, we define

$$
H(u)=\left\{\begin{array}{cl}
u+m & \text { if } m \mid u \\
u & \text { if } m \not x u .
\end{array}\right.
$$

H is a permutation which displaces multiples of m. Now

$$
S^{m} \circ H(u)= \begin{cases}u+2 m & \text { if } m l u \\ u+m & \text { if } m f_{u}\end{cases}
$$

and hence $s^{m} \circ H=H_{0} \circ \mathrm{sm}^{m}$. But

$$
\begin{aligned}
& S^{n} \circ H(u)=\left\{\begin{array}{l}
u+n+m \text { if } m l u
\end{array}\right. \\
& H \circ S^{n}(u)= \begin{cases}u+n+m & \text { if } m \text { m } u+n \\
u+n & \text { if } m \neq u+n .\end{cases}
\end{aligned}
$$

Thus $S^{n} 0 H(0)=n+m \neq n=H_{0} S^{n}(0)$ if $m \neq 0$ and $m \neq n$, so that $S^{n} \circ H \neq H \cdot S^{n}$ and $x+Y$. Thus if $\alpha=\langle\ln t ., 1, t, 1\rangle$ and
$\mathcal{B}=\langle G, S, 0\rangle$, we can interpret θ in S.
Corresponding to every formula \varnothing in the language \mathcal{L} with $1, t, 1$, there is a formula $\phi(s)$ in the langrage \mathcal{L}^{\prime} with $S, 0$ which is the interpretation of 0 Since Q is interpretable in the theory of D, there exists 0 sentence Δ of \mathcal{Z} which is true in D but is essentially undecidable (eeg., take Δ to be the interpretation of the axioms of, Q).
$V_{S} \Delta^{(s)}$ is consistent since it is true by choosing S to be the success or function as above). If $\Delta N \varnothing$, then

$$
\text { (*) } \bigvee_{s} \Delta^{(s)} \vdash \Lambda_{s}\left(\Delta^{(s)} \rightarrow \phi^{(s)}\right)
$$

The set of sentences \varnothing of \mathscr{L} for which ($\$$) holds form a consistent extension of Δ, and consequently must be undecidable. Thus $V_{s} \Delta^{(s)}$ is also essentially. undecidable.

Furthermore the theory of $\mathrm{V}_{\mathrm{g}} \Delta^{(s)}$ is e.h.u.: Let T be any compatible theory. Then

$$
\left\{\varnothing: \lambda \vdash v \Delta^{(0)} \rightarrow \varnothing\right\}
$$

is an extension of the theory of $Y_{y} \Delta^{(s)}$ and hence is undecidable. But then λ is also undecidable. Finally, the theory of groups is compatible with the theory of $\underset{v}{ } \Delta^{(s)}$ since S is a common model. Hence the theory of groups is undecidable.

We note that the above proof collapses for the theory of abelian groups since the interpretation of D is no longer valid. In fact Wand szmielew has show that the theory of abelian groups is decidable.

Note that our result does not mean that every non-abelian grape is undecidable, nor does szmielew's result mean that every abelian group is decidable.

Cobham has shown that the theory of finite grapes is undecidable.

Method of Rabin and Scott
We shall illustrate a method developed by Rabin and scott for establishing undecidability which proceed by defining every model of o theory known to be undecidable in a model of the theory in question.

Let \mathcal{L} be a predicate logic with identity and relation symbols R_{1}, R_{2}, \ldots of ranks r_{1}, \ldots, and suppose \mathcal{L} is known to be undecidable. ($E \cdot g j$ \mathcal{L} may be a language of arithmetic). Then if \mathscr{L}^{\prime} is the predicate logy with identity and one binary relation R^{R}, $\mathcal{L}^{\text {we }}$ know that undecidable the set of since \mathscr{X} is compatible with $V \Delta^{(s)}$. This result may also be obtained in the ${ }^{5}$ following manner: we define (in the language \mathcal{L}^{\prime})

$$
\begin{aligned}
x R^{\prime} y & \leftrightarrow x R_{y} \\
x R^{k+1} y & \leftrightarrow y\left(x R_{y} y^{k} z\right),
\end{aligned}
$$

so that $X R^{k} y$ means that x is "connected" to y by a chain of k element. Also

$$
\begin{aligned}
& \operatorname{Dom}(x) \leftrightarrow V V R_{y_{1}} \\
& \left.R_{i}\left(x_{1}, \ldots, x_{r_{i}}\right) \leftrightarrow \gamma^{y} \cup R^{f_{i}} \cup \wedge R^{\prime} x_{1} \wedge \ldots \wedge \cup R^{r_{i}} x_{r_{i}}\right) .
\end{aligned}
$$

Now every formula ϕ of \mathcal{L} may be translated into a formula Q^{*} of \mathcal{L}^{\prime} by relativizing. all quantifies s to Dom and using the above interpretation of the relation symbols.

Corresponding to every model af \mathcal{L} wo may construct a mode) B of \mathcal{L}^{\prime} in which this interpretation is "faithful:" To each element in the domain of Q corresponds an element of B satisfying Dom (x); ie., which is a "terminal" element of the relation R. Then for each relation R_{i} we include cycles of
length pi with "pointers" to the element in the relation R_{i}. EGg., suppose a_{1}, a_{2}, a_{3} are elements of the domain of Q and that $R_{2}\left(a_{1}, a_{2}\right), R_{2}\left(a_{3}, a_{1}\right)$ $R_{5}\left(a_{2}, a_{5}, a_{3}\right)$ hold in a. Then, letting, $x \leftrightarrow y$ fond for $x R_{y}$. part of the diagram of B would be

Conversely, to every model of \mathcal{L}^{\prime} corresponds a model (possibly empty) of \mathcal{L} whose elements are the terminal states of the relation R and whose relations are determined by the cycles and chains of elements of the model of \mathcal{L}^{\prime}. Hence if \varnothing is a sentence of \mathcal{Z} and \varnothing^{*} the corresponding sentence of \mathcal{L}^{\prime}, then $\vdash_{\mathscr{L}} \varphi$ iff ${ }^{\prime} \mathcal{Z}^{\prime} \times{ }_{x}$ Dom $(x) \rightarrow \Phi^{\star}$. Thus if \mathcal{L}^{\prime} is ${ }^{\alpha}$ decidable, ${ }^{2}$ \& would also be decidable, contrary to hypothesis.

My hill employs a still different technique to prove the undecidability of a predicate logic with equality and one binary relation: he interprets arithmetic in the language with one relation by the definition

$$
x R_{y} \leftrightarrow x \neq 0 \wedge x-1 \mid y .
$$

- Finite Associative Systems

Finite associative systems are models of the sentence $\quad(x \circ y) \circ z=x \circ(y \circ z)$ in the language with one binary operation. The theory of such systems may be shown to be undecidable using a modification R^{+}of R_{0}. Instead of operations, R^{t} has the relations
$\Delta_{1}(x)$, Sue (x, y), $\operatorname{Prod}(x, y, z)$, Less (x, y)
and, upon defining
$\Delta_{n+1}(x) \leftrightarrow V_{y}\left(\Delta_{n}(y) \wedge \operatorname{Sus}(y, x)\right)$, R^{+}has as axioms

1. $Y_{x} \Delta_{m}(x)$
for $m \geqslant 1$
2. $\Delta_{m}(x) \rightarrow \neg \Delta_{n}(x)$ for $m \neq n$
3. $\Delta_{m}(x) \wedge \Delta_{n}(y) \rightarrow \wedge_{z}\left(\operatorname{Prod}(x, y, z) \leftrightarrow \Delta_{m \cdot n}(z)\right)$
4. $\Delta_{n}(y) \rightarrow\left[\operatorname{Less}(x, y) \rightarrow \Delta_{1}(x)\right.$ v... v $\left.\Delta_{n}(x)\right]$

Any theory compatible with R^{+}is also compatible with R_{0}, so that R^{+}is e.h.u.

Now let M_{n} be the model whose domain is the set of all functions mapping $\{0,1, \ldots, n\}$ into itself, and let o be the operation of composition. We can interpret the relations of R^{+}in this model via the definitions

$$
\begin{aligned}
& \Delta,(F) \leftrightarrow \hat{G}_{G} F G=F \\
& \operatorname{Prod}(F, G, H) \leftrightarrow V_{K, L}^{G} \bigwedge_{U, v}\left\{u \in R F \cap \quad v \in R G \rightarrow \dot{V}_{x}\left(x \in R H \cap K_{x}=U_{n} L_{x}=v\right)\right. \\
& \text { ค } \left.\wedge\left(x \in R H \rightarrow k_{x}^{x} \in R F \wedge L_{x} \in R G\right)\right\} \\
& \text { Less }(F, G) \leftrightarrow \underset{U, V, W}{V}\left(U F^{*}=G V \wedge U W=I\right) \\
& \operatorname{Suc}(F, G) \leftrightarrow \bigwedge_{H}(\neg \operatorname{Less}(G, H) \cap \operatorname{Less}(H, G) \rightarrow \operatorname{Less}(H, F)) \text {. }
\end{aligned}
$$

I.e., $\Delta_{1}(F)$ expresses the fact that F is a constant function, and in the subsequent definitions small letters stand for such constant functions. The
numerals Δ_{m} are thereby represented by a class of functions whose range has m elements for $m \leq n)$. The definition of "Prod (F, G, H) " gives the desired result if the product of the number of elements in the range of F times the number of elements in RC is less than n. "Less" is defined by saying that RF may be mapped biuniguely into the singe of G (I is the identity function). "suc" is then defined from "bess" in the normal manner.

In a model ${M_{N}}_{N}$ instances of axiom (1) are satisfied for all $m: N$ under the given interpretation; (2) is satisfied for all m, n; (3) for $m \cdot n \leq N$; and (4) for $n \leq N$. Hence all axioms of R^{t} are satisfied in some model m_{N}, and thus the theory of finite associative systems is compatible with R^{t}. Since R^{t} is e.h.u., the theory of finite associative systems is undecidable.

Godel's Second Theorem
Godel's second Theorem roughly states that the consistency of any sufficiently strong theory of arithmetic cannot be proved within that theory. in terms of our notion of proof we may define

$$
\pi\left(\Delta_{n}\right) \leftrightarrow \text { y proof }\left(y, \Delta_{n}\right) \text {. }
$$

Then Good's result may be obtained by showing that not $Q b \square \pi\left(r-0=0^{r}\right)$.
the forme remarks concerning the theory a and the formula "proof" are in endere If k is the number of a proof of φ_{n}, then we would like to bo able to prove ar proof $\left(\Delta_{k}, \Delta_{n}\right)$. This can be done in the theories we have considered, and in fact can be done in any theory where Q is sufficiently strong and the formula defining the set of axioms is "nice:". Feferman, Kreisel, Moutowski, and others, have isolated the following requirements on the formula
I. if ar θ, then $a r \pi\left(r \phi^{\prime}\right)$.
II. $\quad Q \vdash \pi\left(r \varphi \rightarrow \psi^{1}\right) \rightarrow\left(\pi\left(r \phi^{1}\right) \rightarrow \pi\left(r \psi^{\prime}\right)\right)$
III. $\left.\quad Q \vdash \pi\left(r \varphi^{n}\right) \rightarrow \pi\left(r \pi\left(r \phi^{1}\right)\right)^{7}\right)$
(Feferman has shown that III is not an essential requirement, though it does simplify the proof.) The theorem may then be stated by saying that if CP satisfies I- III and the hypothesis

Another problem connected with the theorem is the meaning of the term "consistency." We can give a number of metamathematical definitions, but there is no reason to believe that the translations
of these definitions into arithmetic are equivalent since arithmetic is incomplete). In fact we can formulate a definition of consistency which is provable in arithmetic:

If C is a consistent theory, then we may define a predicate proof as follows:

Ie., proof' (x, y) holds iff x is the number of a proof of Φ_{y} and no inconsistency occurs among the procts with numbers less than ore equal to x. Then

$$
Q \vdash \wedge_{x, y, z}-\left[\operatorname{proof}^{\prime}(x, y) \cap \operatorname{proof}^{\prime}\left(z, r-\infty_{y} \tau\right)\right]
$$

is a provable statement of consistency.
Godel's Second Theorem holds for Beano's arithmetic P and for all consistent extensions of P. Using this result Feferman has shown that P is not finitely axiomatizable as follows:

A consistent system \& containing Q is reflexive iff for every finite subset h of axioms of \& S \& Cong, where Cons is the formula $\rightarrow \pi_{f}\left(r-0=0^{7}\right)$ in which $\pi \tilde{f}$ is the notion of proof deriving from using $F_{\text {I }}$ as the set of axioms. I.e., in a reflexive system the consistency of any finite subset of axioms is provable.

Mostowski has shown that P is reflexive and that so is any consistent extension of P with the same constants. Thus neither P nor any consistent extension of P is finitely axiomatizable for otherwise the reflexivity of P would contradict Godel's Second Theorem.).

Existential Definability
We shall work towards proving that every re. set is existentially definable from the operation of exponentiation.
Definition. A relation $R\left(x_{1}, \ldots, x_{1}\right)$ is exponential diophantine iff there is an existential formula θ whose matrix is a conjunction of equations of the form $\alpha^{\beta}=\gamma$, , here α, β, δ are variables or particular positive integers, and $R\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow \theta\left(x_{1}, \ldots, x_{k}\right)$
Addition and multiplication are exponential diophantine relations:

$$
\begin{aligned}
& \begin{array}{l}
x \cdot y=z e \quad V_{v}, v\left(2^{x}=u \wedge \quad u^{y}=v \wedge z^{z}=v\right) \\
x+y=z
\end{array} \leftrightarrow \quad 2^{x} \cdot 2^{y}=2^{z}
\end{aligned}
$$

Hence, as before, the matrix of on exponential diophantine predicate may be expressed as a single equation with integer roftlicients. Egg.
$x \cdot y=z \leftrightarrow$$V_{\left.\left(2^{x}-u\right)^{2}+\left(u^{2}-v\right)^{2}+\left(2^{z}-v\right)^{2}=0\right) \text {. }}$

$$
J_{x \cdot y}^{\prime}=z \leftrightarrow V_{v, v}\left(\left(2^{x}-u\right)^{2}+\left(u^{y}-v\right)^{2}+\left(2^{z}-v\right)^{2}=0\right) \text {. }
$$

Definition. $E\left(x_{1}, \ldots, x_{k}\right)=0$ is an exponential diophantine equation ifs $E\left(x_{1}, \ldots, x_{n}\right)$ is a linear combination with integer sort α^{β}.

Thus an exponential diophantine relation may be expressed as a quantified (existentially) exponential diophantine equation. This equations are of interest to number theorists in themselves. Egg., some problems concern solutions to the equations

$$
\begin{array}{ll}
x^{x} y=z^{z} & 2^{x}+11 y=5^{z} \\
2^{y}-7=x^{2} & x^{n}+y^{n}=z^{n} .
\end{array}
$$

In order to facilitate later definitions, we show that the binomial coefficient $\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!}$,
where $\alpha>k$ and α is rational, is exponentially definable. I.e., we define a relation

$$
R(p, q, k, x, y) \leftrightarrow\binom{p / q}{k}=\frac{x}{y} \wedge(x, y)=1 \wedge \frac{p}{q}>k .
$$

By the binomial theorem with the Lagrange estimate for the remainder, we have

$$
(1+x)^{\alpha}=\sum_{j=0}^{k}\binom{\alpha}{j} x^{j}+\binom{\alpha}{k+1}\left(1+\theta_{x}\right)^{\alpha-k+1} x^{k+1}
$$

for some $0 \leq \theta \leq 1$. Hence

$$
a^{2 k+1}\left(1+\frac{1}{a^{2}}\right)^{\alpha}=\sum_{j=0}^{k}\binom{\alpha}{j} a^{2 k-2 j+1}+\binom{a}{k+1}\left(1+\frac{\theta}{a^{2}}\right)^{\alpha-k-1} a^{-1} .
$$

An upper estimate for the value of the last term of the sum is $\alpha^{k+1} 2^{\alpha-k-1} a^{-1}$, so that by letting

$$
S_{k}^{(\alpha)}(a)=\sum_{j=0}^{k}\binom{j}{j} a^{2 k-2 j+1},
$$

we have

$$
a^{2 k+1}\left(1+\frac{1}{a^{2}}\right)^{\alpha}=S_{k}^{(\alpha)}(a)+\theta^{\prime} a^{k+1} 2^{\alpha-k-1} a^{-1}
$$

$$
\binom{\alpha}{k}=\frac{1}{a} S_{k}^{(\alpha)}(a)-a S_{k-1}^{(\alpha)}(a) .
$$

Case 1. α an integer
We may choose a large enough so that the remainder in the above expansion is less than one. I.e., for $\quad \alpha>2^{n-k-1} n k+1, ~$

$$
S_{k}^{(n)}(a)=\left[a^{2 k+1}\left(1+\frac{1}{a}=1\right)^{n}\right]
$$

$$
\begin{aligned}
& S_{k}^{(n)}(a)=\left[a^{2 k+1}\left(1+\frac{1}{a^{2}}\right)^{n}\right] \\
& S_{k-1}^{(n)}(a)=\left[a^{3 k-1}\left(1+\frac{1}{a^{2}}\right)^{n}\right] .
\end{aligned}
$$

$\left[\frac{x}{y}\right]$ may be defined by

$$
\left[\frac{x}{y}\right]=z \leftrightarrow \underset{v}{V}(z y=x \vee(z y=x+u \wedge u<y)),
$$

so that an exponential diophantine definition for (k) is

$$
\begin{aligned}
& (\hat{k})=t \leftrightarrow \quad{ }_{a}\left(a>2^{n-k-1} n k+1\right. \\
& \left.\quad a t=\left[a^{2 k+1}\left(1+\frac{1}{a^{2}}\right)^{n}\right]-a^{2}\left[a^{2 k-1}\left(1+\frac{1}{a^{2}}\right)^{n}\right]\right)
\end{aligned}
$$

Case 2. $\alpha=P_{1}$
definitions first make some more preliminary
definitions. For a sufficiently large, we have

$$
n!=\left[\frac{r^{n}}{\left(n_{n}\right)}\right] \text {. }
$$

as follows:

$$
\begin{aligned}
\frac{r^{n}}{(n)} & =n!\frac{r \cdot r \cdots \cdot r}{r(r-1) \cdots(r-n+1)} \\
& =n!\left(1 \cdot \frac{1}{1-\frac{1}{r}} \cdots \frac{1}{1-\frac{n}{r}}\right) \\
& \leq n!\left(\frac{1}{\left.1-\frac{n}{r}\right)^{n} \quad \text { for } r>n .}\right.
\end{aligned}
$$

But $\frac{1}{1-\theta} \leq 1+2 \theta$ for $0 \leq \theta \leq \frac{1}{2} \quad\left(\operatorname{sincs} \frac{1}{1-\theta}=1+\frac{\theta}{1-\theta}=1+2 \theta\right.$) and hence

$$
\frac{r^{n}}{(n)} \leq n!\left(1+\frac{2 n}{r}\right)^{n} \quad \text { for } r>2 n
$$

Also $(1+\theta)^{n} \leq 1+2^{n} \theta$ since 2^{n} is the sum of the binomial coefficients and θ is the largest value of $\theta, \theta^{2}, \theta^{3}, \ldots$ for $\theta<1$. Hence

$$
\frac{r^{n}}{(\bar{r})} \leq n!\left(1+2^{n+1} \frac{n}{r}\right)=n!+\frac{2^{n+1} n n!}{r}
$$

Consequently we may define

$$
\left.x=n!\leftrightarrow{\underset{r}{V}}^{V}(r\rangle(2 n)^{n+1} \wedge x=\left[\frac{r^{n}}{(n)}\right]\right) .
$$

In terms of n ! we define

$$
\text { prime }(x) \leftrightarrow x \nmid(x-1)!^{2} .
$$

Now if $q^{k} k!\backslash a$, then $S_{k}^{\left(\frac{p}{q}\right)}(a)$ is an integer, so that

$$
\begin{aligned}
\binom{p / q}{k}=\frac{x}{y} \leftrightarrow & V_{a}\left\{q^{k} k!\mid a \wedge a>p^{k+1} 2^{p-k-1}\right. \\
& \wedge a x=y\left[a^{2 k+1}\left(1+\frac{1}{a^{2}}\right)^{p / q}\right] \cdot a^{2} y\left[a^{2 k-1}\left(1+\frac{1}{a^{2}}\right)^{p / 4}\right] \\
& \wedge(x, y)=1 \wedge \rho>q k\} .
\end{aligned}
$$

Thus ($\left.\begin{array}{c}p / q \\ k\end{array}\right)$ is exponential diophantine.
Next we may define rational powers of integers by

$$
\left[x^{p / q}\right]=z \leftrightarrow z^{q} \leqslant x^{p}<(z+1)^{q} .
$$

Definition $T(u, v, x)=\prod_{x=1}^{x}(u+v x)$
T is exponential diophantine since

$$
\binom{\frac{u}{v}+x}{x}=\frac{(u+v)(u+2 v) \cdots(u+x v)}{v^{x} x!}
$$

and hence

$$
T(u, v, x)=\binom{\frac{u}{v}+x}{x} v^{x} x!.
$$

Lemma. Let $F\left(x, y, k, z_{1}, \ldots, z_{m}\right)$ be any polynomial of degree $n>0$ with integer coefficients, and let $G(x, y)$ be any polynomial such that

$$
\begin{aligned}
& \text { (i) } G(x, y) \geqslant y \\
& \text { (ii) } \bigwedge_{k \leqslant y} z_{1} \ldots z_{m} \leq y
\end{aligned}\left|F\left(x, y, k, z_{1}, \ldots, z_{m}\right)\right| \leq G(x, y) \text {. }
$$

Then

$$
\begin{aligned}
& \sum_{k \leq y}^{h e n} \sum_{z_{1}-z_{m} \leq y} F\left(x, y, k, z_{1}, \ldots, z_{m}\right)=0 \\
& \longleftrightarrow V_{c, t, a_{1}, \ldots, a_{m}}\{ t=G(x, y)!\wedge 1+c t=\prod_{k=1}^{y}(1+k t) \\
& \wedge 1+c t \mid F\left(x, y, c, a_{1}, \ldots, a_{m}\right) \\
&\left.\wedge \bigwedge_{i \leq m}\left[a_{i}>y-1 \wedge 1+c t \mid \prod_{j=1}^{y}\left(a_{i}-j\right)\right]\right\} .
\end{aligned}
$$

Theorem. Every re. set is exponential diophantine.
Proof: By the Davis Normal Form there exists a polynomial F^{\prime} with integer coefficients such that

$$
x \in S \leftrightarrow \bigvee_{y} \bigwedge_{k \leqslant y}{\underset{z}{1}, \cdots z_{m} \leqslant y}^{V} F\left(x, y, k, z_{1} \ldots, z_{m}\right)=0 \text {. }
$$

The ranges of the quantifiers may be changed from natural numbers to positive integers by substituting y^{-1} for y, esr., so that the normal form holds for polynomials F over the integers.

For any F we can find a G satisfying
(i) and (ii) of the Lemma by taking $G(x, y)=c x^{n} y^{n}$, where c is the sum of the absolute values of the coefficients of F and n is the degree of F. That \& is exponential diophantine follows From the Lemma. (see note later)

Proof of Lemma
(\Leftarrow) Assume $c, t, a_{1}, \ldots, a_{m}$ satisfy the condition in $\}$.
(a) $(1+k t, 1+l t)=1$ for $k, l \leq y$ and $k \neq l$

Proof: If $p \mid 1+k t$ and $p \mid 1+l t$, then $p \mid(k-l) t$. $k-l \mid t$ since $t=G(x, y)!$ and $G(x, y) \geqslant y \geqslant k-l$. Therefore $p \mid t$, which contradicts $p t i+k t$.
Let p_{k} be any prime which divides like.
Then $P_{k}>G(x, y) \geqslant y$ and

$$
\begin{aligned}
F\left(x, y, c, a_{1}, \ldots, a_{m}\right) & \equiv 0 \quad \bmod c t+1 \quad \text { by } h y p o t h e s i s \\
& \equiv 0 \quad \bmod 1+k t \quad \text { since } 1+b t \mid 1+c t \\
& \equiv 0 \quad \bmod p_{k} \quad \text { since } p_{k} \mid 1+k t .
\end{aligned}
$$

Let $z_{i k}=\operatorname{Rem}\left(a_{i}, p_{k}\right)$. Since $1+c \in \mid \prod_{j=1}^{y}\left(a_{i}-j\right)$, there exists a j such that $1 \leq j \leqslant y$ and si

$$
a_{i}-j \equiv 0 \quad \bmod p_{k} .
$$

Since $p_{t} \geqslant y \geqslant j \geqslant 1, j=\operatorname{Rem}\left(a_{i}, p_{k}\right)$, and hence $1 \leq z_{i k} \leq y$.

$$
\begin{array}{rlrl}
1+c t & \equiv 1+k t \quad \bmod 1+k t & & \text { since } 1+k t \mid 1+c t \\
c t & \equiv k t & \bmod 1+k t \\
c & \equiv k & \bmod 1+k t & \\
c & \equiv k & \bmod p_{k} &
\end{array}
$$

Thus

$$
\begin{aligned}
& F\left(x, y, c, a_{1}, \ldots, a_{m}\right) \equiv F\left(x, y, k, z_{1 k}, \ldots, z_{m k}\right) \bmod p_{k} \\
& F\left(x, y, k, z_{1 k}, \ldots, z_{m k}\right) \equiv 0 \quad \bmod p_{k}
\end{aligned}
$$

But $\left|F\left(x, y, k, z_{1 k}, \ldots, z_{m k}\right)\right| \leqslant G(x, y)<p_{k}$, so that $F\left(x, y, k, z_{k}, \ldots, z_{m k}\right)=0$.
(\Rightarrow) Set $t=G(x, y)!, 1+c t=\prod_{k=1}^{y}(1+k t)$.
By the Chinese Remainder Theorem, and by (a) above, there exist a_{i} such that $a_{i} \equiv z_{i}$ mod $\operatorname{mol} t$
for all key. (Note that the a_{i} may be bounded by $1+c t$, so that we could strengthen the Lemma.)

Then

$$
\begin{aligned}
& 1+k t \mid a_{i}-z_{i} \\
& 1+k t \mid \prod_{i=1}^{y}\left(a_{i}-j\right) \quad \text { since } \quad 1 \leq z_{i} \leq y
\end{aligned}
$$

Hence $1+c t \mid \prod_{i=1}^{y}\left(a_{i}-j\right)$ since the factors $(1+k t)$ are relatively prime by (a). As above,

$$
F\left(x, y, c, a_{1}, \ldots, a_{m}\right) \equiv F\left(x, y, k, z_{1 k}, \ldots, z_{1 m}\right) \bmod 1+k t
$$

$$
\equiv 0
$$

Thus $1+k, t \mid F\left(x, y, c, a_{1}, \ldots, a_{m}\right)$

$$
1+c l \mid F\left(x, y, c, a_{1}, \ldots, a_{m}\right)
$$

and the proof is completed.
Note: The expression in $\}$ is actually exponential diophantine since the quantifier Λ may be me replaced by a conjunction, and them last product defined by

$$
\prod_{j=1}^{y}\left(a_{i}-j\right)=\prod_{n=1}^{y}\left(a_{i}-y-1+n\right) .
$$

Reference: Davis, Putnam, o Robinson, Annals of Mathematics (1961)

From the previous theorem we conclude that there is no effective method of determining whether or not a given exponential diophantine equation is solvable in positive integers. In fart. given any proposed decision procedure, we can actually produce an equation for which the procedure fails: we number all exponential diophantine equations in some effective manner and ret E_{i} be the $i^{\text {th }}$ equation. For the particular variable x, we let $E_{i}(u)$ be obtained from E_{i} by sulatituting u for x. By the proposed decision procedure, we may list the "unsolvable" equations in a sequence F_{1}, F_{2}, \ldots Let
$V=\left\{V: E_{v}(v)\right.$ is F_{s} for some $\}$.
V is re., and hence by the preceding theorem there exist's an n such that
$v \in V$ if $E_{n}(v)$ is solvable.
The equation $E_{n}(n)$ is therefore solvable iff it is unsolvable, which is a contradiction, so that the proposed procedure fails for $E_{n}(n)$.

In an axiomatized system of arithmetic we can list the equations which can be proved to be unsolvable. By the above argument we may construct on equation which is unsolvable but cannot be proved to be unsolvable.

Various other results see next section) may also be proved concerning the existential definability of re. sets in arithmetic. These results will hopefully prove useful in answering Hilbert's Tenth Problem whether there exists a decision procedure for solving diophantine equations) and in determining whether every re. set is in fact diophantine.

We shall now establish the following two theorems:

Theorem 1. The relation $x^{y}=z$ can be defined existentially in terms of t, \dot{y}, and any infinite set of primes.

Theorem 2 . The relation $x^{y}=z$ can be defined existentially in terms of t, , and any binary relation θ satisfying
(i) $\sum_{n} \bigwedge_{u, v}(\varnothing(u, v) \rightarrow v<u * n)$,
(ii) $-\sum_{n}^{n} \Lambda_{u, v}^{u, v}\left(\varphi(u, v) \rightarrow v<u^{n}\right)$, where $u * n^{n}$ is defined recursively by

$$
\begin{aligned}
& u * 0=1 \\
& u *(n+1)=u^{U * n} \text {. (I.e., } u * n=u^{u * v} \text { times). }
\end{aligned}
$$

Combining these results with the preceding theorems, we obtain two further types of definability for re. sets. Theorem 1 gives two directions in which we may precede: We may try to show that some infinite set of primes is diophantine in order to show that every re. set is diophantine and hence that Hilbert's Tenth Problem is unsolvable; or we may try to produce a set which is re. but not diophantine.

Theorems 1 and 2 are proved using properties of Rel's Equation

$$
x^{2}-a y^{2}=1
$$

which has solutions if a is not a square. We will be interested in the case where a is one less than a square.

Lemma 1. $x^{2}-\left(a^{2}-1\right) y^{2}=1 \leftrightarrow V_{n}\left[x+y \sqrt{a^{2}-1}=\left(a+\sqrt{a^{2}-1}\right)^{n}\right]$.
Proof: If u, v is a solution of Polis equation, then $\left(u+v \sqrt{a^{2}-1}\right)\left(u-v \sqrt{a^{2}-1}\right)=1$.
If w, z is also a solution, then the pair r, s determined by

$$
\operatorname{mines}_{r+s}^{a^{2}-1} y=\left(u+v \sqrt{a^{2}-1}\right)\left(w+z \sqrt{a^{2}-1}\right)
$$

is also a solution. Hence "powers" of a given solution are themselves solutions. The pair $a, 1$ is obviously a solution, and the o all pairs x, y determined by

$$
x+y \sqrt{a^{0}-1}=\left(a+\sqrt{a^{2}-1}\right)^{n}
$$

are solutions.
Conversely suppose u, v is a solution which is not a power" of $a+\sqrt{a^{2}-1 . ~ T h e n ~}$ there exists an n for which

$$
\begin{aligned}
& \text { exists } \left.{ }^{a n}<\sqrt[n]{a^{2}-1}\right)^{n}<\sqrt{a^{2}-1} \text { which } \\
& \left(a+\sqrt{a^{2}-1}\right)^{n+1}
\end{aligned}
$$

or $\quad 1<\left(u+v \sqrt{a^{2}-1}\right)\left(a-\sqrt{a^{2}-1}\right)^{n}<a+\sqrt{a^{2}-1}$.
Let $s+A \sqrt{a^{2}-1}=\left(u+v \sqrt{a^{2}-1}\right)\left(a-\sqrt{a^{2}-1}\right)^{n}$.
As above, s, t is a solution of Polis equation. Since for solutions x, y, $x-y \sqrt{a^{2}-1} \leqslant x+y \sqrt{a^{2}-1}$, we conclude that $t>0$. Since $s+t \sqrt{c^{2-1}}<a+\sqrt{a^{2}-1}, \quad s-t \sqrt{a^{2}-1}>a-\sqrt{a^{2}-1}$, and hence $k<1$, which is impossible. Therefore all solutions of Pol's equation are "powers" of $a+\sqrt{a^{2}-1}$.
From Lemma 1, we may number all solutions of Polis equation for $a>1$ by setting

$$
a_{n}+a_{n}^{\prime} \sqrt{a^{2}-1}=\left(a+\sqrt{a^{2}-1}\right)^{n}
$$

Thus $\quad a_{0}=1 \quad a_{0}{ }^{\prime}=0$

$$
a_{1}=a \quad a_{1}^{\prime}=1 \text {, }
$$

and a recursive definition may be given for the remaining a_{n}, a_{n}^{\prime}.

Lemma 2.

$$
\begin{aligned}
& a_{n+2}=2 a a_{n+1}-a_{n} \\
& a_{n+2}^{\prime}=2 a a_{n+1}^{\prime}-a_{n}^{\prime}
\end{aligned}
$$

Proof: (i) $a_{n+1}=a a_{n}+\left(a^{2}-1\right) a_{n}{ }^{\prime}$
(ii)

$$
\begin{aligned}
a_{n+1}^{\prime} & =a n+a \cdot a_{n}^{\prime} \\
a_{n+2} & =a \cdot a_{n+1}+\left(a^{2}-1\right) a_{n+1}^{\prime} \\
& =a \cdot a_{n+1}+\left(a^{2}-1\right) a_{n}+a\left(a^{2}-1\right) a_{n}^{\prime} \quad \text { by (ii) } \\
& =a a_{n+1}+\left(a^{2}-1\right) a_{n}+a\left[a_{n+1}-a a_{n}\right] \text { by (i) } \\
& =2 a_{n+1}-a_{n}
\end{aligned}
$$

The other formula is proved similarly.
Example For $a=2$, the solutions of $x^{2}-3 y^{2}=1$ are

$$
\begin{array}{ccccccc}
x: & 1 & 2 & 7 & 26 & 97 & \cdots \\
y: & 0 & 1 & 4 & 15 & 56 & \ldots
\end{array}
$$

Lemma 3. $\quad a_{n}-a_{n}^{\prime}(a-y) \equiv y^{n} \bmod 2 a y-y^{2}-1$
Proof:

$$
\begin{aligned}
a_{0}-a_{0}^{\prime}(a-y) & =1 \equiv y^{0} \\
a_{1}-a_{1}^{\prime}(a-y) & =a-a+y=y \\
a_{n+2}-a_{n+2}^{\prime}(a-y) & =2 a\left[a_{n+1}-a_{n+1}^{\prime}(a-y)\right]-\left[a_{n}-a_{n}^{\prime}(a-y)\right] \\
& \equiv 2 a y^{n+1}-y^{n} \\
& \equiv\left(y^{2}+1\right) y^{n}-y^{n} \\
& \equiv y^{n+2}
\end{aligned}
$$

Lemma 4. $\quad a_{n}^{\prime} \equiv n \quad \bmod a-1$
Proof:

$$
\begin{aligned}
a_{n+2}^{\prime} & =2 a a_{n+1}^{\prime}-a_{n}^{\prime} \\
& \equiv 2 a(n+1)-n \\
& \equiv 2(n+1)-n \quad \text { since } a \equiv 1 \bmod a-1 \\
& \equiv n+2
\end{aligned}
$$

Definition Let $\psi(a, 0)$ be the relation

$$
=\underset{x, y}{V}\left[x^{2}-\left(a^{2}-1\right)(a-1)^{2} y^{2}=1 \wedge a>1 \wedge u=a x\right] \text {. }
$$

Lemma 5. $\quad \psi(a, u) \rightarrow u \geqslant a^{a}$

$$
a>1 \rightarrow{\underset{v}{ }}_{V^{\prime}}\left[\psi(a, v) \wedge v<\alpha^{20}\right]
$$

Proof: Suppose $\psi(a, u)$ holds for the particular values x, y of the bound variables. Then $x,(a-1) y$ is a solution of Pol's Equation: for some $n, \quad x=a_{n}$

$$
(a-1) y=a_{n}^{\prime}
$$

By Lemma $4,0 \equiv n \quad \bmod (a-1)$.
Since we are restricting all quantifiers to positive integers, y is positive and therefore $n \neq 0$. Hence $n \geqslant a-1$. Since $a_{n}+a_{n} \cdot \sqrt{0^{2}-1}$ $=\left(a-\sqrt{a^{2}-1}\right)$, we have $a_{n} \geqslant a^{n}$. Thus

$$
u=a \times=a \cdot a_{n} \geqslant a \cdot a_{a-1} \geqslant a \cdot a^{a-1}=a^{a},
$$

since the sequence a_{0}, a_{1}, \ldots is increasing.
For the second part, set

$$
x=a_{a-1}
$$

$$
(a-1) y=a_{a-1} .
$$

By Lemma $a^{2 n}, 4, y$ is integral. Since $a \geqslant 2$,

$$
a^{2 n} \geqslant(2 a)^{n} \geqslant a_{n} .
$$

Setting $u=a x, \quad \psi(a, u)$ holds and

$$
u=a \cdot a_{a-1} \leq a^{2(a-1)}<a^{2 a} .
$$

The particular definition of ψ is unimportant, as the properties of Lemma 5 plus the fact that ψ is existentially definable are all that is needed for the proofs of Theorems 1 and 2 .

Theorem 1. Exponentiation is existentially definable in terms of t, j, and any infinite set of primes.
Proof: We shall show that

$$
\begin{aligned}
x=y^{z} \leftrightarrow & \vee a, r, s, p, u
\end{aligned} \begin{aligned}
& \text { prime }(p) \wedge \psi(y+z, u) \wedge u \leq p \\
& \wedge r^{2}-\left(a^{2}-1\right) s^{2}=1 \wedge s \equiv z \bmod (a-1) \\
& \wedge p \mid 2 a y-y^{2}-1 \wedge p-1 \backslash a-1 \\
& \wedge x=\operatorname{Rem}(r-s(a-y), p)\} .
\end{aligned}
$$

Suppose a, r, s, p, u satisfy the conditions in $\}$. Then p is prime, $(y+z) y^{p+z} \leq u<p$
by Lemma 5

$$
y^{z}<p
$$

For some $n, \quad r=a_{n}$

$$
s=a_{n}{ }^{\prime}
$$

$s \equiv n \bmod (a-1)$ by Lemma 4
$z \equiv n \quad \bmod (a-1)$ since $s \equiv z$
(a)

$$
z \equiv n \bmod (p-1) \text { since } p-1 \mid a-1
$$

$r-s(a-y) \equiv y^{n} \bmod \left(2 a y-y^{2}-1\right)$ by Lemma 3
(b)

$$
\begin{array}{rlrl}
r-s(a-y) & \equiv y^{n} & \bmod p & \text { since } p \backslash 2 a y-y^{2}-1 \\
y^{z+m}\left(p^{-1)}\right. & \equiv y^{n} \bmod p & \text { by }(a) \\
y^{z} & \equiv y^{n} \quad \bmod p & \text { by Fermat's Little Thm. } \\
r-s(a-y) & \equiv y^{z} \quad \bmod p & \text { by }(b) \\
x & \equiv y^{z} \quad \bmod p & \text { since } x=\operatorname{Rem}(r-s(a-y), p)
\end{array}
$$

But $x, y^{z}<p$, so that $x=y^{z}$.
Conversely, let p be any prime fin the given set) greater than $(y+z) \mathscr{L}^{2}(y+z)$. By Lemma 5 there is a u satisfying $\psi(y+z, u) \wedge u \leq p$.
Now it suffices to find an a satisfying the two divisibility conditions, for by taking $r=a_{z}, s=a_{z}^{\prime}$, the other conditions are satisfied as above. But such an a may always be found by the Chinese Remainder Theorem.

Lemma 6. If ∞ is a relation satisfying
(i) ${ }_{n} \wedge_{v, v}(\varphi(u, v) \rightarrow v<u * n)$
(ii) $\sim^{n} V_{n}^{v, v} \wedge_{v, v}\left(\Phi(u, v) \rightarrow v<u^{n}\right)$,
then there ${ }^{v, v}$ is a relation $\rho(x, y)$ definable existentially in terms of φ, t, such that
(a) $\rho(x, y) \rightarrow y<x^{x}$
(b) $\quad-\underset{n}{ } \wedge_{v, v}\left(\rho(x, y) \rightarrow y<x^{n}\right)$.

Proof: Cave 1: $\underset{k}{V}\left[\varnothing(x, y) \rightarrow y<x^{k x}\right]$
Let ${ }^{k} k$ be such a bound and define $\quad \rho(x, y) \leftrightarrow V_{v}\left[\phi(x, v) \wedge y^{k}<v\right]$.

$$
\begin{aligned}
\rho(x, y) & \rightarrow V^{v}\left[v^{k x}>x^{k x} \wedge y^{k}<v\right] \\
& \rightarrow x^{k}>y .
\end{aligned}
$$

By (ii), for any n, there exist u, v such that $\varphi(u, v)$ n unk $\leq v$. Hence $p\left(u, u^{n}\right)$ holds, and (b) is satisfied.
Case 2: $\quad \phi(x, y) \rightarrow y \leq x * n n^{n}-v_{k}\left[\phi(x, y) \rightarrow y^{<} x^{k x}\right]$.
We proceed by induction on n, defining a new function φ_{1} for which

$$
\Phi_{1}(x, y) \rightarrow y \leq x *(n-1)
$$

Q. may then be treated either under case 1 or Case 2. Specifically, we define

$$
\varphi_{1}(x, y) \leftrightarrow V_{a}[\psi(a, x) \wedge \phi(a, y)]
$$

Then $\Phi_{1}(x, y) \rightarrow \hat{\vee}\left[x \geqslant a^{a} \wedge y \leqslant a \neq n\right]$ by Lemma 5
But $a=n \leqslant a^{a} *(n-1)^{a}$ for $n>1$
since $a * 2=a^{a}=a^{a} * 1$ and

$$
\begin{aligned}
a * 2 & \left.=a^{a}=1 \quad a^{a} *(n-1) \leq a^{\left[a^{a}\right.} \psi(n-2)\right] \\
a * n & \left.\left.=a^{a}=a^{a}\right)^{[a} *(n-2)\right]=(n-1) .
\end{aligned}
$$

Hence $\varphi_{1}(x, y) \rightarrow y \leqslant x+(n-1)$.
For any n there exist u, v such that $\phi(u, v) \wedge v \geqslant u^{2 n u}$ (by assumption). By Lemma 5, there is an x such that $\psi(u, x) \wedge x<u^{2 u}$. Hence $\varphi_{1}(x, v)$ holds and $x^{n}<v$, so that (b) is ratified.

Theorem 2. Exponentiation is existentially definable from t, ', and any binary relation ϕ satisfying conditions (i). (ii) of Lemma 6.
Proof: Let p be defined from θ as in Lemma 6. Then we assert

$$
\begin{aligned}
x=y^{z} \leftrightarrow \vee_{u, a, r, r^{\prime}, s}\{ & \psi(y+z, u) \wedge \quad u \leq 2 a y-y^{2}-1 \wedge \rho\left(a, r^{\prime}\right) \\
& \wedge r<r^{\prime} \wedge r^{2}-\left(a^{2}-1\right) s^{2}=1 \wedge \operatorname{Rem}(s, a-1)=z \\
& \left.\wedge \operatorname{Rem}\left(r-s(a-y), 2 a y-y^{2}-1\right)=x\right\}
\end{aligned}
$$

Suppose u, a, r, r^{\prime}, s satisfy the conditions in \{\}. Then by Lemma $5 \quad \psi(y \geqslant z, u)$ implies

$$
(y+z)^{y+z} \leq u
$$

Hence

$$
\begin{aligned}
& y^{z}<2 a y-y^{2}-1 \\
& r<r^{1}<a^{a} \\
& r<a_{a}
\end{aligned}
$$

by Lemma 6 as in Lemma 5.
For some n we have

$$
\begin{aligned}
& r=a_{n} \\
& s=a_{n}^{\prime}
\end{aligned}
$$

$s \equiv n \quad \bmod (a-1)$ by Lemma 4 $n \leq a-1$ since $a_{n}<a_{a}$ $z=n \quad$ since $z=\operatorname{Rem}(s, a \cdot 1)$.
Hence
Consequently $r=a_{z}$ and $s=a_{z}$, and by Lemma 3, $r-s(a-y) \equiv y^{2} \quad \bmod 2 a y-y^{2}-1$.
Thus

$$
x=y^{z}
$$

Conversely, by Lemma 5 there exists a u satisfying $\psi(y+z, u)$. By Lemma 6 sarguing from both (a) and (b)), we can find an a large enough so that $u \leqslant 2 a y-y^{2}-1$ and $p\left(a, r^{\prime}\right)$ holds for some $r^{\prime}>a^{2 z}$. Then

$$
r^{\prime}>a^{2 z}>\left(a+\sqrt{a^{2}-1}\right)^{z}=a_{z}
$$

Hence we may take $r=a_{z}$ and $\delta=a^{\prime} z$ to satisfy the remaining conditions.

Corollary if there exists a r.e. set which is not diophantine then for any diophantine equation $P\left(x, y, v_{1}, \ldots, v_{k}\right)=0$, either for all n there exists a solution of $p=0$ with $y \geqslant x * n$ or there exists an n such that every solution of $p=0$ satisfies $y<x^{n}$.
Proof: If this were not the case, P would satisfy the hypothesis of Theorem 6, and every re. set would be existentially definable in terms of P, t; ; i.e., every re. set would be diophantine, contrary to hypothesis.
As an illustration of the corollary we consider the equation

$$
x^{2}=y^{3}+a
$$

which is known to have finitely many solutions for each a. if there were a non-diophantine re. set, then either there would be solutions with $y \geqslant x * n$ for all n or there would be an n such that $y<x^{n}$. Since the number of solutions is finite, the first alternative is impossible, and hence we could conclude that for some n, all solutions satisfied $y<x^{n}$.

Myhill Normal Form

Lemma Every, rec. set is definable in the form $x \in S \leftrightarrow \underset{v_{1}, \ldots, v_{k}, p}{V}\left\{P\left(x, p, v_{1}, \ldots, v_{k}\right)=0\right.$ n prime $\left.(p)\right\}$, where p is o polynomial with integral
coefficients.

Proof: If we examine the proof of Theorem 1 of the preceeding section, we see that we may choose a single prime p sufficiently large to satisfy the definitions of all equations $x^{y}=z$ occurring in the exponential diophantine definition of a given rue set.

Theorem. (Myhill) Every, re. set s is definable by a formula of the form

$$
x \in \& \leftrightarrow \bigvee_{y} \wedge_{v_{1}} \ldots u_{k} P\left(x, y, v_{1}, \ldots, v_{k}\right) \neq 0 \text {, }
$$

where p is a polynomial with integral
coefficients.
Proof: By the Lemma there exists o P such that

$$
\begin{aligned}
& x \in \mathcal{B} \leftrightarrow \underset{\underline{y}, p}{\mathcal{V}} \wedge_{, z}\{p(x, p, \underline{y})=0 \cap p \neq(y+2)(z+2)\} \\
& \leftrightarrow \sum_{z}^{V} \hat{y}_{x, p, y, z}\left\{\left(z J_{k+1}\left(u_{1}, \ldots, v_{k}, p\right) \rightarrow p=0 \cap p \neq(y+2)(z+2)\right\}\right. \\
& \leftrightarrow \sum_{t=0, p, y, z, w}\left\{t=J_{k+1}(\underline{v}, p) \rightarrow p^{2} \neq 1+w \sim \rho \neq(y+2)(z+2)\right\}
\end{aligned}
$$

But $f \neq g \wedge n \neq m \leftrightarrow\langle f-g)(n-m) \neq 0$, and $t=J_{t+1}(\underline{v}, p)$ can be written as a polynomial equation $F=G$ by multiplying both sides by 2^{k+1}. Hence S is expressible in the form

$$
\begin{aligned}
x \in S & \leftrightarrow \sum_{z}^{v} \underline{u}, p, y, z, w \\
& \leftrightarrow \underset{e}{V} \underline{u}, p, y, y, w
\end{aligned} \quad(F-G)^{2}+Q^{2} \neq 0 . \quad .
$$

The quantifiers in the Myhill Normal Form may be bounded. Myhill originally conjectured falsely that we could tale $v_{1} \cdots v_{k} \leq y$. However it is possible to take $v_{1} \ldots v_{k}$ less than some polynomial in x and y, or to take $u_{1} \ldots u_{k} \leq y$ provided that $y>x$.

As a consequence of Myhillis Theorem, we prove the following result of putnam:
Theorem There does not exist a decision procedure for determining whether or not an arbitrary polynomial with integral coefficients assumes all values for integral arguments.
Proof: Let s be a re. but not recursive set. By Myhill's Theorem, there exists a polynomial P with integral coefficients such that

$$
x \notin \& \leftrightarrow{\underset{y}{y}}_{\underline{v}}^{v} P(x, y, \underline{v})=0 \text {. }
$$

Hence wo could decide membership in $\approx s$ if wo could tell if $V P(x, y, y)=0$ represented all positive integers y for a fixed x. Let

$$
F(x, y, v, v, t)=y\left(1-p^{2}\right)-(t-1)(y+v-1)
$$

where all variables singe over positive integers. CF can be made into an equation in integer variables by writing each positive variable as the sum of four squares.)

If P has a solution for $y>0$, then

$$
P(x, y, \underline{v})=0 \overrightarrow{\vec{l}} \quad F(x, y, \underline{v}, v, 1)=y .
$$

If P nos no solution for $y>0$, then $1-p^{2} \leq 0$ and $P(x, y, \underline{v}) \neq 0 \rightarrow F(x, y, \underline{u}, v, t)<0$.
Also $F(x, 0, \underline{y}, v, 2)=1-v$, so that F takes on all negative. values, 0 , and all positive values y for which P is solvable. Hence
if we had a decision procedure which enabled us to tell if F took on all values, we could decide if $\underset{Y}{ } P(x, y, \underline{y})=0$ represented all positive integers y, and thus we could decide if $x \in \sim 8$, contrary to assumption.

As a final comment on the relationship between diophantine and re. sets, we mention the following result due to Rabin (Logic and Methodology Proceedings, Stanford):
Theorem. Let $C, 8$ be two models of the true sentences of arithmetic. B is a cofinal extension of a iff $a<B$ and for all b in the domain of \mathbb{B} there exists an a in the domain of a such that be sa holds in B. If there exist (non-standard) models Q, B of arithmetic such that B is a cofinal but not an elementary extension of Q, then every re. set is diophantine.

Final Exam - 225A

1. Prove that every consistent set of sentences of a denumerable logic without equality, individual constants, or operation symbols has a model.
2. What can a sentence containing no predicate symbols other than equality say about the size of the universe of its models? Justify your answer using the method of elimination of quantifiers.
3. Contrast the notions of completeness and model completeness. Show that the theory of a given structure is model complete if the class of existentially definable relations in the structure is closed under complementation.
4. State Bethis Theorem carefully defining the
terms you use. What is its significance? terms you use. What is its significance?
5. Let \mathcal{L} be a first order predicate logic with equality and one binary relation symbol ' 2 '.

Let $\mathcal{L}^{\prime \prime}$ be obtained from \mathcal{L}^{2} by adjoining additional variables (capital letters) to represent finite sets of individuals and the relation symbol ϵ with its usual interpretation.

Let $\mathcal{L}^{\prime \prime}$ be obtained from $\dot{2}$ by adjoining additional variables (Greek (otters) to represent arbitrary sets of individuals and the relation symbol E as before.
(a) can you characterize \& as an ordering
relation of type w in $\mathcal{L}^{\text {? }}$? in \mathcal{L}^{\prime} ? in $\mathcal{L}^{\prime \prime}$? Il so, do so; it not, why not?
(b) Can you characterize \& as a well-ordering relation in $\mathscr{L}^{\prime \prime}$? in '2?

Final Exam - 225B

1. Discuss for 30 minutes classes of sets and functions which we have studied.
2. Let g be a theory in the language of arithmetic och that every recursive sot is 1,2 a definable. Give an informal proof that g is essentially hereditarily undecidable.
3. Is there a finite system Σ of functional equations in S,F, and auxiliary functions such that Σ has a solution with $F=F_{0}$ of F_{0} is recursive?
4. Show that the theory P 2 of finite models of the following axioms

$$
\left.\begin{array}{rl}
\Delta_{m}+\Delta_{n} & =\Delta_{m+n} \\
\Delta_{m} \cdot \Delta_{n} & =\Delta_{m, n}
\end{array}\right\} \text { for all } m, n
$$

is undecidable.
5. (a) Show that there is a recursively enumerable set orr with an infinite complement such that each infinite re. set has an infinite intersection with m.
(b) Same as (a) with each occurrence of "re." replaced by "diophantine:"

