## ハL

A Complete Classification of the $\Delta 1 / 2$-functions. by Yoshindo Suzuki
Review by: Stephen J. Garland
The Journal of Symbolic Logic, Vol. 36, No. 4 (Dec., 1971), p. 688
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/2272507
Accessed: 10/01/2012 13:14

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @ jstor.org.


Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

Yoshindo Suzuki. A complete classification of the $\Delta_{2}^{1}$-functions. Bulletin of the American Mathematical Society, vol. 70 (1964), pp. 246-253.

One of the classical problems of descriptive set theory is that of providing a complete hierarchical classification of the $\Delta_{2}^{1}$ sets of real numbers (sometimes referred to as the $B_{2}$ or $P C A \cap C P C A$ sets) or, equivalently, of the $\Delta_{2}^{1}$ sets of functions of natural numbers. While attempts to construct such a hierarchy have failed, Shoenfield (XXXIV 515) and Suzuki have constructed hierarchies for an analogous class, that of the $\Delta_{2}^{1}$ functions.

Suzuki shows, with the aid of the Novikov-Kondó-Addison uniformization theorem, that every $\Delta_{2}^{1}$ function is hyperarithmetical in a $\Pi_{1}^{1}$ singleton, i.e., in a function which is the unique member of a $\Pi_{1}^{1}$ set of functions, and that the set of hyperdegrees of $\Pi_{1}^{1}$ singletons is well ordered by the relation "hyperarithmetical in"; furthermore, the successor of the hyperdegree of a $\Pi_{1}^{\frac{1}{1}}$ singleton in this ordering is just its hyperjump. To establish these results, ordinals are assigned to $\Pi_{1}^{1}$ singletons in a manner which refines the ordering of their hyperdegrees. This ordering of the $\Pi_{1}^{1}$ singletons induces the complete classification of the larger set of all $\Delta_{2}^{1}$ functions.

Stephen J. Garland

## A. Mostowski. Quelques applications de la topologie à la logique mathématique. Topologie,

 Volume I, 4th edn., by Casimir Kuratowski, Państwowe Wydawnictwo Naukowe, Warsaw 1958, pp. 470-477.This note gives a compact survey of a wide variety of uses of topology in logic, including the analogy between Borel sets and recursive sets, the Rasiowa-Sikorski proof of the SkolemGödel theorem, and topological interpretations of many-valued, intuitionistic, and modal logic, with many references.

Perry Smith
Richard Montague. Theories incomparable with respect to relative interpretability. The journal of symbolic logic, vol. 27 no. 2 (for 1962, pub. 1963), pp. 195-211.

It is shown that there is an infinite recursive set of sentences $\Phi_{1}(i<\omega)$ in $N$ (the set of true sentences of elementary number theory) such that for each $i, \Phi_{i} \nVdash \cdot C n\left(\left\{\Phi_{j}\right\}_{j+i}\right)$, where $\preccurlyeq$ is the relation of relative interpretability. It follows that there is a continuum of subtheories of $\mathbf{N}$ which are mutually incomparable with respect to $\preccurlyeq$. The method of proof is by an extension of the self-referential lemma to prescribed joint self-reference by an infinity of sentences. For the application, each $\Phi_{1}$ can be thought of as expressing that if there is a verification of a relative interpretation of itself in the remaining sentences, then there is already one such for some $\boldsymbol{\Phi}_{\boldsymbol{k}}$ with $k \neq i$.
S. Feferman

Jerzy Slupecki and Witold A. Pogorzelski. A variant of the proof of the completeness of the first order functional calculus. English with Polish and Russian summaries. Studia logica, vol. 12 (1961), pp. 125-134.
The authors fix a set of axioms and inference rules for the first-order predicate calculus with negation, disjunction, and universal quantification as primitive (and without identity and operation symbols), and define $\mathrm{Cn}^{\prime}(X)$, for a set of formulas $X$, as the set of formulas $\alpha$ such that for some finite sequence ( $\alpha_{1}, \cdots, \alpha_{n}$ ), we have $\alpha_{n}=\alpha$, and for all $i \in\{1, \cdots, n\}$ either $\alpha_{i} \in X$, or for some $j, k$ less than $i, \alpha_{i}$ is ( $\alpha_{j} \vee \alpha_{k}$ ), or for some $j<i,\left(-\alpha_{i} \vee \alpha_{j}\right)$ is a theorem, or for some $j<i, \alpha_{j}$ has the form $\forall x \phi(x)$ and $\alpha_{i}$ has the form $\phi(y)$ for some $y$ such that the substitution is proper and $y$ does not occur free in ( $\alpha_{1} \vee \cdots \vee \alpha_{i-1}$ ). (More precisely, they use separate letters for free and for bound variables, so that the substitution is automatically proper.) ( $\alpha_{1}, \cdots, \alpha_{n}$ ) is thought of as a proof that $\alpha$ is false when all the members of $X$ are assumed to be false.

This $C^{\prime}$ satisfies the axioms of Tarski's XXXIV 99(7), so by Lindenbaum's theorem (Theorem 12 in Tarski's paper) every "consistent" set of formulas has a "complete" and "consistent" extension, i.e., a maximal superset $Y$ such that $\operatorname{Cn}^{\prime}(Y)$ is not the set of all formulas.

If $\alpha$ is a formula which is not a theorem, and $X=\{\alpha\}$, then $X$ is "consistent" since $C r^{\prime}(X)$ contains no theorems. (It can be proved by induction on $n$ that whenever ( $\alpha_{1}, \cdots, \alpha_{n}$ ) is as above, the formula ( $\alpha_{1} \vee \cdots \vee \alpha_{n}$ ) is not a theorem.) Let $Y$ be a "complete" and "consistent" extension of $X$. For all formulas $\phi$ and $\psi,(\phi \vee \psi) \in Y$ iff $\phi \in Y$ and $\psi \in Y ;-\phi \in Y$ iff $\phi \notin Y$, and

