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This paper presents a method for computer-aided verification of timing properties of
real-time systems. A timed automaton model, along with invariant assertion and simula-
tion techniques for proving properties of real-time systems, is formalized within the Larch
Shared Language. This framework is then used to prove time bounds for two sample
algorithms—a simple counter and Fischer’s mutual exclusion protocol. The proofs are

checked using the Larch Prover. Keywords: 1.3, 1.8, 1.6/I11.12: Larch, IIL.1, IV.8

1. Introduction

Techniques based on simulations are widely accepted as useful for verifying the cor-
rectness of (untimed) concurrent systems. These methods involve describing both the
problem specification and an implementation as state machines, establishing a correspon-
dence known as a simulation mapping between their states, and proving that the mapping
is preserved by all transitions of the implementation. Such methods are attractive be-
cause they provide insights into a system’s behavior, appear to be scalable to systems of
substantial size, and provide assistance in modifying system descriptions and proofs.

It is usually possible to describe the transitions of the specification, the transitions of
the implementation, and the simulation relation, all as equations involving states. Then
the proof that the simulation mapping is preserved is an exercise in equational deduction.
Such deductions are natural candidates for partial automation. Proofs of this sort for
untimed systems have already been automated, for example, using HOL [8], Isabelle [16],
and the Larch Prover [21].

Recently, the simulation method has been extended to proofs of correctness and timing
properties for timing-based systems [11, 13, 10]. The extended method is based on the
timed automaton model of Merritt, Modugno and Tuttle [15]. Both the specification and
implementation are described as timed automata, which include timing conditions in their
states. The implementation’s conditions represent timing assumptions, and the specifi-
cation’s conditions represent timing upper and lower bounds to be proved. As in the
untimed case, a simulation mapping is defined between the states of the implementation
and those of the specification; but now the mapping typically includes inequalities in-
volving the timing conditions. The proof that the mapping is preserved by all transitions
has a similar deductive flavor to the proofs in the untimed case, but now the deductions
involve inequalities as well as equations.
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The simulation method for timed systems has the same attractions as for untimed sys-
tems. Furthermore, it is capable of proving performance as well as correctness properties.
Examples of proofs done by hand using this method appear in [11, 10, 20, 6, 9].

Just as in the untimed case, the timed proofs are amenable to automation. Specifically,
the notions of timed automata, invariant assertions, and simulation mappings are formal-
ized using the Larch Shared Language [5], and this formal infrastructure is used to specify,
verify, and analyze two sample algorithms—a simple counter [11] and Fischer’s mutual
exclusion protocol. Fischer’s algorithm has been verified many times by many people
[1, 18, 19], including some with machine assistance [19]. But in addition to the usual
correctness property of mutual exclusion, we prove a more difficult timing property—an
upper bound on the time from when some process requires the resource until some process
acquires it.

The rest of the paper proceeds as follows. We introduce our techniques by way of a
simple example in Section 2. Then we use these techniques to verify Fischer’s mutual
exclusion protocol in Section 3.

2. A Simple Example

In this section, we verify the correctness and timing properties of a simple timed au-
tomaton. We present both manual and machine-checked proofs. Our model of timed
automata is based on work by Merritt, Modugno, and Tuttle [15] and by Lynch and
Attiya [11]. We describe this model by means of an example in this section and more
formally in Appendix A.

Consider a counting automaton C}, which decrements a counter with initial value &
and issues a single report when the counter reaches 0. We will verify that C; implements
the specification given by another automaton R, which just issues a single report. We
will also establish bounds a; and a3 on how long it takes the specification automaton
R to issue its report based on k and the time bounds ¢; and ¢y for the actions of the
implementation automaton C}. Figure 1 defines the two automata.

The untimed part of each automaton is a simple state-transition system. Actions are
said to be enabled in the states satisfying their preconditions. Actions are classified as
external or internal so that we may compare an implementation with its specification.

To describe timing properties, the actions are partitioned into tasks. A task is enabled
when any of its actions are enabled. Lower and upper bounds, lower(C') and upper(C),
on each task C' specity how much time can pass after C' becomes enabled before either
one of its actions occurs or the task is disabled. The upper bound can be infinite.

The timed part of each automaton contains three additional state components: a real-
valued variable now representing the current time, and two functions first and last rep-
resenting the earliest and latest times that some action from each task can occur. All
times are absolute, not incremental. All tasks that are not enabled have trivial first and
last components (i.e., 0 and o0). In a start state, now = 0, and first(C') = lower(C') and
last(C') = upper(C) for each enabled task C'.

A timed action is a pair associating either an untimed action or a special time-passage
action with the time it occurs. The time-passage action (v,t) modifies only the now
component of the state, setting it equal to ¢; it cannot let time pass beyond any task’s



Specification automaton: R(aq,as) | Implementation automaton: Cy(cq, ¢s)

State State
reported, initially false reported, initially false
count  initially £ > 0
Actions Actions
External report External report
Pre: —reported Pre: count = 0 A —reported
Eff: reported — true Eff: reported — true

Internal decrement

Pre: count > 0

Eff: count — count <1
Tasks Tasks

{report}: [a1, as] {report}: [c1, ca]
{decrement}: [c1, ca)

Figure 1. A counting process and its specification

upper bound, i.e., t < last(C') for all tasks C'. Other actions (n,1) are viewed as happening
instantaneously at time ¢. They must not occur before the lower bound for their tasks
(i.e., first(task(r)) < now), and they do not modify now. They reset the values of first
and last for their task and for any other tasks that are newly enabled or disabled as
a result of their effect on the untimed part of the state. We write 5T ¢ to denote a
transition of the timed automaton.

An execution of a timed automaton is admissible if time increases without bound. A
state is reachable if it appears in some execution. Properties that are true of every reach-
able state are invariants. The visible behavior of a timed automaton is characterized by
its admissible timed traces, which are the sequences of external timed actions in admissi-
ble executions. We say that one timed automaton implements another if any admissible
timed trace of the first is also an admissible timed trace of the second.

2.1. Manual Proofs

We seek to show that Ci(cq,e2) implements R(ay,as) when a3 = (k+ 1)y and az =
(k+1)cy. Note that our notion of correctness for timed automata incorporates both safety
properties (e.g., that C}, issues no more than one report) and liveness properties (e.g., that
it issues its report in time at most (k + 1)cz).

The key steps in the proof are (1) proving that the states of C}, satisfy an invariant and
(2) defining a simulation mapping between the states of Cy and those of R. Given such
a mapping f, a straightforward proof by induction shows that f maps any admissible
execution of C} to some admissible execution of R. We say that a binary relation f
between states of C} and states of R is a simulation mapping from C} to R if it satisfies
the following conditions:

L. If f(s,u), then u.now = s.now.

2. If s is a start state of C, then there is a start state v of R such that f(s,u).

3. If s and u are reachable states such that f(s,u) and st s, then there is a state



u’ of R such that f(s',u’), and a sequence of timed actions that takes R from u to
v’ and has the same visible behavior as (7,1).

For the first step, we prove that C} preserves the invariant count > 0 = —reported.
This invariant is trivially true in C}’s initial state. Only the report action can make
reported true, and that can happen only if count = 0. Thus, every action preserves the
invariant.

For the second step, we define f(s,u), where s is a state of C and u is a state of R, to
hold if and only if the untimed components of the two states are the same and the timing
components are properly related, i.e., if and only if

® u.nowW = $.NOW
e u.reported = s.reported

s.first(decrement) + s.count - ¢q  if s.count > 0

L] u,ﬁ?”st(?”(ipOTt) S {5.ﬁ7”5t(7”6]707”t) otherwise

s.last(decrement) + s.count - co  if s.count > 0

o u.last(report) > {s.last(repori) otherwise

We prove that f is a simulation mapping from Cy(¢1, ¢3) to R(aq,as) when aq = (k+1)¢y
and ay = (k+ 1)ea. If f(s,u), then u.now = s.now by definition. It is also easy to see
that f(so,uo), where so and ug are the start states of C) and R. Finally, suppose s and u
are reachable states of C and R such that f(s,u) and that s (™t o' We show that there
is a sequence of timed actions with the same visible behavior as (7,t) that takes R from
u to some state u’ such that f(s’,u’). There are three possibilities for 7.

1. If # = report, we show that R can take a report step, resulting in a state u’ such
that f(s',u'). Because f(s,u) and (report,t) is enabled in s, we have u.reported =
s.reported = false, s.count = 0, and wu.first(report) < s.first(report) < t. Hence
(report,t) is enabled in u and f(s',u’), because v’.now = u.now = s.now = s'.now.

2. If # = decrement, we show that R need not take any step. Since decrement is in-
ternal, it suffices to show that f(s',u). Because f(s,u) and decrement occurred, we
have u.now = s.now = s'.now, u.reported = s.reported = s'.reported, s.count > 0,
and wu.first(report) < s.first(decrement) + s.count - ¢ < s.now + s.count - ¢1.
We consider two cases. If s.count > 1, then wu.first(report) < s.now + ¢ +

(s.count — 1) - ¢q = &' first(decrement) + s'.count - ¢;, because the time bound
for decrement is reset. If s.count = 1, then —s.reported by the invariant for Cj
and w.first(report) < s.now + ¢; = §.first(report), because report is newly en-

abled. Similary, u.last(report) > s'.last(decrement) + s'.count - ¢y if s.count > 1 and
u.last(report) > &' last(report) if s.count = 1.

3. If # = v, we show that R can take a corresponding (v,t) step, resulting in a state
u’ such that f(s',u’). Since t > s.now = u.now, to show that (v,t) is enabled
in «', we only need to check that t < w.last(report). If s.count > 0, then ¢ <
s.dast(decrement) < u.last(report). Otherwise, t < s.last(report) < u.last(report).
Since time-passage actions modify only the now components of the states, and
u'.now =1 = s".now, we have f(s',u').



AutomatonCount (C, k): trait
includes Automaton(C), CommonActionsRC, Natural
States[C] tuple of count: N, reported: Bool

introduces
k = N
decrement, report : — Actions[C]
asserts

sort Actions[C] generated freely by report, decrement
sort Tasks[C] generated freely by task
VY s, s’: States[C], a, a’: Actions[C]

isExternal(report); isInternal(decrement); common(report) = report;
start(s) & —s.reported A s.count = k;
enabled(s, report) & s.count = 0 A —s.reported;
effect(s, report, s’) < s’.count = s.count A s’.reported;
enabled(s, decrement) < s.count > 0;
effect(s, decrement, s’) < s’.count + 1 = s.count A s’.reported = s.reported;
inv(s) < s.count > 0 = —s.reported
implies

Invariants(C, inv)

¥V s: States[C], a: Actions[C]
enabled(s, task(decrement)) < enabled(s, decrement);
enabled(s, task(report)) < enabled(s, report);
a = report V a = decrement

Figure 2. LSL trait defining untimed part of automaton C},

2.2. Machine-Checked Proofs

In order to check this simulation proof mechanically, we must first create machine-
readable versions of the definitions and abstractions used in the manual proof, filling
in details normally suppressed in careful, but not completely formal proofs. To this
end, we use the Larch Shared Language (LSL), which provides suitable notational and
parametrization facilities. Later, we use the Larch Prover (LP), which provides assistance
for reasoning in first-order logic. The versions of these tools used for this paper are
enhancements of the versions described in [5, 4]; the primary differences are that both
tools now support full first-order logic, and that LP now has features for reasoning about
linear inequalities [17] similar to those in the Boyer-Moore prover [2, 3] and in PVS [19].

2.3. Machine-Readable Definitions

Figure 2 contains an LSL definition of the untimed part of automaton . This formal
definition mimics the definition given in Figure 1. It builds upon a library of LSL spec-
ifications, shown in Appendix B, that defines general notions related to timed automata
and that can be reused in simulation proofs like the ones in this paper.

The basic unit of specification in LSL is a trait, which introduces symbols for sorts (such
as Actions[C] and States[C]) and operators (such as decrement and enabled), and
which constrains their properties by axioms expressed in first-order logic. Sort symbols
denote disjoint nonempty sets of values; operator symbols denote total mappings from



SimulationRC: trait
includes
TimedAutomaton(R, br, TR), AutomatonReport(R),
TimedAutomaton(C, bc, TC), AutomatonCount(C, k)

introduces
a, ¢ : — Bounds
f : States[TC], States[TR] — Bool
asserts V u: States[TR], s: States[TC], cr: Tasks[R], cc: Tasks[C]
br(cr) = a; % bounds [al, a2] for tasks of R
be(cec) = c; % bounds [c1, c2] for tasks of C
c.bounded;
a = (k+1)*c;
f(s, u) &
U.NOoW = $.Now
A u.basic.reported = s.basic.reported

A (if s.basic.count > 0
then s.bounds[task(decrement)] + (s.basic.count * c)
else s.bounds[task(report)]) C u.bounds[task(report)]
implies SimulationMap(TC, TR, f)

Figure 3. LSL trait defining the timed simulation of R by C}

tuples of values to values. When a trait includes another, it inherits the other trait’s
symbols and axioms. Thus AutomatonCount inherits general properties of automata from
the library trait Automaton and properties of the natural numbers from the trait Natural
in the Larch handbook [5]. Because LSL requires sorts to represent disjoint nonempty
sets, AutomatonCount also includes the following trait CommonActionsRC, and it defines
a map common from the actions of C to a new sort CommonActions so that the traces of
C (whose actions have sort Actions[C]) can be compared with those of R (whose actions
have sort Actions[R]).

CommonActionsRC: trait
introduces report: — CommonActions
asserts CommonActions generated by report

When a trait implies another, its theory is claimed to include that of the other. The
implies clause in AutomatonCount claims that the predicate inv satisfies the axioms of
the library trait Invariants; Figure 4 contains an LP proof of this claim. The implies
clause also lists several lemmas that are easy to verify with LP, but are not noticed
automatically by the prover.

The specification of R’s untimed part is similar to, but shorter than C}’s. The trait
SimulationRC in Figure 3 uses the library trait TimedAutomaton to extend these two
specifications to the timed parts of C and R. It also claims that a particular relation £ is a
simulation mapping, i.e., that £ satisfies the properties of the library trait SimulationMap.
Later we use LP to verify this claim.



execute AutomatonCount

set proof-methods =, normalization

prove start(s) = inv(s)
ged

prove inv(s) A isStep(s, a, s’) = inv(s’) by cases on a
ged

Figure 4. LP proof of invariance for automaton Cj,

The most notable feature of the formalization process is that it is quite mechanical to
move from definitions such as those in Figure 1 to LSL definitions. In fact, one could
write a compiler to perform the translation.

2.4. Machine-Checkable Proofs

This section contains two entire LP proof scripts, one showing that automaton C} pre-
serves its invariant, and the other that f is indeed a timed forward simulation. LP’s proof
mechanisms include proofs by cases and induction, equational term rewriting (for simpli-
fying hypotheses and conjectures), and decision procedures for proving linear inequalities.

The LP proof of invariance in Figure 4 is virtually identical to the manual proof. It
begins with commands that load the axioms of the trait AutomatonCount and that set
LP’s proof methods. That the invariant holds in the initial state is proved without human
guidance. That the invariant is preserved by all actions requires exactly the same guidance
as in the manual proof: separate consideration of each action.

The proof that £ is a simulation mapping in Figure 5 is considerably longer than
the proof of invariance, but similar in length and structure to the manual proof.! The
user guides the proof that each start state s of C} corresponds to a start state u of R
by producing an explicit description of u and showing LP why “it is easy to see that
(s, u).”? In the induction step of the proof, s’c and sc are fresh constants that LP
generates and substitutes for the variables s and s’ when it assumes the hypotheses of
the implication it is trying to prove. In addition to suggesting separate consideration
of each action, and to providing the simulating execution fragment for each action, the
user provides guidance for the induction step of the proof using the set immunity and
instantiate commands, which call LP’s attention to instances of the hypotheses (and
other facts) used by the decision procedure for linear arithmetic.

3. Fischer’s Mutual Exclusion Algorithm

In this section, we use timed automata to model Fischer’s well-known timing-based
mutual exclusion algorithm, which uses a single shared read-write register [7]. We use

ITwo periods .. in this proof script mark the end of a multiline LP command; they do not indicate any
elision of the script.

ZWhile the length of this proof suggests room for improvement in LP, the need to consider the case k = 0
separately suggests room for clarification in the manual proof.



execute SimulationRC
set proof-methods =-, normalization
prove f(s, u) = u.now = s:States[TC].now
ged
prove start(s:States[TC]) = 3 u (start(u) A £(s, u))
resume by specializing u to [[falsel, 0, update({2}, task(report), a)l]
instantiate c:Tasks[C] by task(report) in *Hyp
instantiate c:Tasks[C] by task(decrement) in *Hyp
resume by specializing a:Actions[R] to report
resume by case k = 0
resume by cases on c:Tasks[R]
resume by cases on c:Tasks[R]
ged
declare variables u: States[TR], alpha: StepSeq[TR]
set immunity ancestor
prove
f(s, u) A isStep(s:States[TC], a, s’) A inv(s:States[TC]) A inv(u:States[TR])
= 3 alpha (execFrag(alpha) A first(alpha) = u A £(s’, last(alpha))
A trace(alpha) = trace(a:Actions[TC]))
by cases on a:Actions[TC]

resume by cases alc = report, alc = decrement
% Case 1: simulate report action
resume by specializing alpha to
({uc}) {addTime(report, uc.now),
[[truel, uc.now, update(uc.bounds, task(report), [false,0,0]1)]13}

resume by cases on c:Tasks[R]
% Case 2: simulate decrement action
resume by specializing alpha to {uc}
instantiate c:Tasks[C] by task(report) in *impliesHyp
instantiate c:Tasks[C] by task(decrement) in *impliesHyp
resume by case s’c.basic.count = 0
instantiate t:Time by c.first, n by s’c.basic.count in Real
instantiate t:Time by c.last, n by s’c.basic.count in Real
% Case 3: simulate passage of time
resume by specializing alpha to ({uc}) {nu(lc), [uc.basic, lc, uc.bounds]}
resume by cases on c:Tasks[R]
instantiate c:Tasks[C] by task(report) in *Hyp
resume by case sc.basic.count = 0
instantiate c:Tasks[R] by reportTask in *Hyp
instantiate n by sc.basic.count in TimedAutomaton
instantiate c:Tasks[C] by task(decrement) in *Hyp
ged

Figure 5. LP proof that £ is a simulation mapping



State
region; € {remainder, trying, critical, exit} for ¢ € I, initially remainder
Actions
External {ry; External exil;
Pre: region; = remainder Pre: region; = critical
Eff: region; — trying Eff: region; — exit
External crii; External rem;
Pre: region; = trying Pre: region; = exit
for all j, region; # critical Eff: region; «— remainder

Eff: region; — critical

Tasks

{try;}: [0, 00] {exit; }: [0, 0]
{erit; 11 € T}: [0,5a+ 2¢] {rem;}: [0, 24]

Figure 6. Automaton M: a simple specification for mutual exclusion

simulations to prove not only mutual exclusion, but also an upper bound on the time to
reach the critical region, which is much harder to prove than mutual exclusion. We believe
that the use of simulations both gives insight into the algorithm and yields a convincing
proof that can be checked using automated provers like LP.

3.1. A Specification for Mutual Exclusion

We begin with the specification in Figure 6 of a mutex object M described as a timed
automaton that keeps track of the regions of all processes (with indices in I) and ensures
that at most one process is in its critical region at any time.

Notice that all erit actions belong to the same task. Intuitively, this means that if one
or more processes are trying to acquire the resource when it is free, then one will succeed
within time 5a + 2¢. (The parameters ¢ and ¢ here are derived from the bounds we will
impose on the tasks of Fischer’s algorithm.)

3.2. Fischer’s Timed Mutual Exclusion Algorithm

In this algorithm, shown in Figure 7, there is a single shared register. Intuitively, if
some process has the resource, the register contains the index of that process; and if no
process has, wants, or is releasing the resource, the register contains 0.°> Each process
trying to obtain the resource tests the register until its value is 0, and then sets it to its
own index. Since several processes may be competing for the resource, the process waits
for the register value to stabilize, and then checks the register again. The process whose
index remains in the register (the last one to set it) gets the resource, and the others
return to testing until the register is 0 again. When a process exits, it resets the register
to 0.

One problem with this algorithm as described so far is that a fast process might not wait

3We assume 0 ¢ 1.
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State

pc; € {remainder, test, set, check, leave-trying, critical, reset, leave-exit} for i € I, initially remainder

z € TU {0}, initially 0
Actions

External {ry;
Pre: pc, = remainder
Eff: pc;, — test

Internal test;
Pre: pe;, = test
Eff: if £ = 0 then pc; < set

Internal set;
Pre: pe; = set
Eff: 2 —1
pe; — check

Internal check;
Pre: pc;, = check
Eff: ifx =12
then pc; — leave-trying
else pc; «— test

Tasks

Assume a < b <e¢
{try,}: 0]
{test;}: [0, q]
{set;}: [0,d]
{check;}: [b, ]

External crit;
Pre: pe; = leave-trying
Eff: pe; — critical

External ezit;
Pre: pe; = eritical
Eff: pc; — reset

Internal reset;
Pre: pc;, = reset
Eff: 20

pe; — leave-exit

External rem;
Pre: pc; = leave-exit
Eff: pc; — remainder

{erit;}: [0, q]
{exit; }: [0, 0]
{reset;}: [0, a]
{rem;}: [0, a]

Figure 7. Automaton [F: Fischer’s algorithm

long enough, check the register before a slow process has managed to set it, and so proceed
to its critical region. The slow process might then overwrite the register with its own
index, which would remain there until the slow process checked it and entered its critical
region as well, violating mutual exclusion. This situation can be avoided by a simple time
restriction that requires every process to wait long enough for any other process to see the
new value in the register, or else to overwrite it. Formally, upper(set;) < lower(check;)
for all 2,5 € I.

Notice that every action is a task by itself, corresponding to our intuition that each
process acts independently of the other processes. We define timing conditions for all the
tasks other than ¢ry, and exit; in order to prove the timing conditions for the specification.*

Finally, we use the following invariants in our proofs of the simulations. The last, which
we call strong mutual exclusion, clearly implies mutual exclusion.

4We can show tight, slightly better bounds at the cost of additional complexity. See [9].



State

11

region; € {remainder, trying, critical, exit} for i € I, initially remainder
stalus, an element of {start, seized, stabilized}, initially start

Actions

External {ry;
Pre: region; = remainder
Eff: region; — trying

Internal seize
Pre: for some 2, region; = {rying
status = start
for all ¢, region; # critical
Eff: status — seized

Internal stabilize
Pre: status = seized
Eff:  status < stabilized

Tasks
{try,;}: [0, 00
{seize}: [0,3[

]
a+ ¢
{stabilize}: [0

’a]

External crit;
Pre: region; = trying
status = stabilized
Eff: region; — critical
status «— start

External czit;
Pre: region; = critical
Eff: region; — exit

External rem;
Pre: region; = exit
Eff: region; «— remainder

{erit; i €T} [0,a+ ¢
{exit;}: [0, 00]
{rem;}: [0, 2a]

Figure 8. Automaton [I: an intermediate milestone automaton

1. If # =1, then pe, € {check, leave-trying, critical, reset}.

2. Ifx =14 #0, pc; = check, and pc; = set then first(check;) > last(set;).
3. If pe; € {leave-trying, critical, reset }, then x = ¢ and pc; # set for all j.

3.3. Milestones: An Intermediate Abstraction

While we could give a simulation mapping directly from F to M. it seems useful to
introduce an intermediate level of abstraction that we believe captures the intuition behind
Fischer’s algorithm. We then define two intuitive simulation mappings, one from the
algorithm to the intermediate automaton, and one from the intermediate automaton to
the specification, thereby proving that the algorithm implements the specification.

The intermediate automaton, shown in Figure 8, expresses two milestones toward the
goal of some process reaching its critical region. The first occurs when a process sets the
register from 0 to its index; we say that the register is seized at this point. After this, the
register will have some non-zero value until some process reaches its critical region and
resets the register as it exits. Thus only processes that have already tested the register
will set it. The second milestone, a stabilize event, occurs when the last process sets the
register, i.e., when no other process has pe = set.

We need one easy invariant for this automaton:

If status # start, then region; = trying for some 1 and region; # critical for all j.
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3.4. Simulations
3.4.1. Simulation from Intermediate to Specification
We define a relation g between the states of I and M, where ¢(s,u) if and only if:
® U.NOW = S.how

® wu.Tegion; = S.Tegion;

s.last(seize) + 2a+ ¢ if seize is enabled in s
o u.last(crit) > < s.last(stabilize) + a + ¢ if stabilize is enabled in s
s.last(crit) if ¢rit; is enabled in s for some j

o u.last(rem;) > s.last(rem;) if s.region; = exit

It is straightforward to show that ¢ is a simulation mapping. This simulation corresponds
to the notion that seizing and stabilizing are just steps that need to be done before a
process can enter its critical region. Note, however, that seize and stabilize are not actions
of individual processes, but of the entire system.

3.4.2. Simulation from Algorithm to Intermediate
We define a relation f between the states of I and I, where f(s,u) if and only if:

® U.NOW = s5.10W

trying if s.pe; € {test, set, check, leave-trying}
o w.redion. — critical if s.pe; = eritical
TGN =Y et if s.pc; € {reset, leave-exil}

remainder if s.pc; = remainder

start if s.e = 0 or s.pe; € {critical, reset} for some i

seized if s.e £ 0, s.pe; & {critical, reset} for all ¢, and
s.pc; = set for some ¢

stabilized if s.x # 0 and s.pc; & {set, critical, reset} for all ¢

u.status =

s.last(reset;) +2a 4+ ¢ if s.pe; = reset
s.last(test;) + a if s.pc; = test

o u.last(seize) > ming {w(i)} i 5.z = 0 where w(i) = s.last(set;) %f s.pc; — set
s.dlast(check;) + 2a  if s.pc; = check
o} otherwise
o u.last(stabilize) > s.last(set;) if s.pc; = set
, s.dast(check;) +a if s.pc; = check and s.x =
o u.last(crit) {s.last(cm'ti) if s.pc; = leave-trying
L ]

s.dast(reset;) +a if s.pe; = reset
. i) > . ! .
u-last(rem;) {s.last(remi) if s.pc; = leave-exil

The now and region correspondences are straightforward; that for status follows natu-
rally from the intuition given earlier about the seize and stabilize milestones. The first
inequality for seize says that if some process is about to reset, then the simulated state
must allow the register to be seized at least up to 2a + ¢ after the reset occurs. The second
inequality for seize says that if @ = 0 (so, by strong mutual exclusion, no process is about
to reset) then the time until the register must be seized is determined by the minimum
of a set of possible times, each corresponding to some candidate process that might set x.
For instance, if some process ¢ is about to set z, then the corresponding time is only the
maximum time until it does so, while if ¢ is about to test x, then the corresponding time
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is an additional @ after the test occurs. The interpretations for the remaining inequalities
are similar.

Most of the proof that f is a simulation mapping involves straightforward but tedious
checking that each action of F' preserves the mapping, since the corresponding behavior
in [ is easy to intuit. (It is the same action if it is external, and no action if not.) The
one exception to this is the set action. Recall the intuition here is that, if it is the first
time the register is set (i.e., it was previously 0), then there must be a corresponding seize
action. If no other process is about to set the register (i.e., no other process has pe = set),
then this is the last set before some process enters its critical region, and so there must
be a corresponding stabilize action. We examine this case and its pl@glfii)n more detail.

If s and u are reachable states of F' and [ such that f(s,u) and s — ', then s.pc; =
set, s'.pc; = check, and s'.x =i # 0. By strong mutual exclusion, s'.pc; ¢ {critical, reset }
for all j. We have the following cases:

(seize,t) )
1. If s.o =0, let «' be such that v — u’. The state exists because u.status = start,

u.region; = trying, and u.region; # critical for all j.

(stabilize,t)
(a) If s.pc; # set for all j # 4, then let u” be such that v’ — w”, which is

possible since u'.status = seized. So u” = u except that u”.status = stabilized,
u" last(seize) = oo and u”.last(crit) = s.now + a + ¢. Since s.now + a + ¢ is
greater than any of the time bounds that occur in the condition for last(crit),
and s'.pc; # set for all j, we have f(s',u").

(b) If s.pc; = set for some j # i, then we see that f(s',u’) since s'.pc; =
set and v’ = wu except that u'.status = seized, u'.last(seize) = oo, and
u' last(stabilize) = s.now + a > s'.last(set ;) for all j’ such that s'.pc,, = set.

(stabilize,t)

2. If s.x # 0 and s.pc; # set for all j # 7, then let v’ be such that u — u'. The
state exists because u.status = seized, and u' = u except that u'.status = stabilized,
u' last(stabilize) = oo, and u'.last(crit) = s.now + a + ¢. Since s.now + a + ¢ is
greater than any of the time bounds that occur in the condition for last(ecrit), and
s'.pc; # set for all j, we have f(s',u').

3. If s.x # 0 and s.pc; = set for some j # ¢, then f(s',u) since u.status = seized, and
s'.pe; = set.

Our method of proof uses old, familiar techniques (invariant assertions and simulation
mappings) in a novel way (on timed automata) to provide rigorous proofs of timing
properties. The time bounds established by this simulation are new; there was no clear,
rigorous proof of them before. Furthermore, the bounds aren’t completely obvious: the
extra ¢ is necessary; we can demonstrate executions that need this extra time. We used
the same library of LSL traits that we used for the counting process to formalize these
automata and simulations, and we used LP to check the entire proof.

4. Conclusions

We have defined, within the Larch Shared Language, a set of abstractions to support
proofs of timing properties of timed systems. We have used these abstractions to carry out
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computer-aided proofs of time bounds for two sample algorithms—a simple counter and
Fischer’s mutual exclusion protocol—using invariant assertion and simulation techniques.

We see several advantages of this general approach. Because they can be used for
proofs of timing properties in addition to ordinary correctness properties, invariants and
simulations are very powerful in the real-time setting. The invariants and simulation
mappings also serve as “documentation”, expressing key insights about a system’s behav-
jor (including its timing). Our experience in going from the simple counter to Fischer’s
algorithm suggests that these methods are scalable to systems of realistic size. They also
appear to provide assistance when modifying systems. When we modify a system or its
specification only slightly, we expect that LP will be able to recheck most of the original
proof automatically, thereby allowing us to concentrate our attention on what has truly
changed without having to worry that we have overlooked some important detail.

The first proof we attempted, that of the counter, took many weeks. Making it work
successfully required understanding the manual proof better (e.g., that it relied on an
invariant of the automaton ('), finding LSL formalizations that were easy to reason about
using LP, and finding appropriate LP proof strategies (e.g., for dealing with transitivity
before LP was enhanced with decision procedures for linear inequalities). As a result
of our increased understanding, and of enhancements made to LP in response to our
experience, the proof for Fischer’s algorithm took much less time—about four days to fill
in all the details of the last simulation, from £ to I, which was the most difficult. This
amount of time does not seem unreasonable, given that we get the added assurance of
a machine-checked proof. But we would like to reduce further the amount of time and
user guidance required for proofs of this sort. We expect this to happen as we refine our
formalizations and our tools, and we believe that practical machine-checked proofs for
real-time processes are not such a distant goal.

Finally, we expect to use our methods to prove timing properties for many more ex-
amples. We also expect to extend the timed automaton model used in this paper to
encompass other timing-based systems that arise in practice. For example, work in [6] on
the Generalized Railroad Crossing example uses a slightly more general timed automaton
model [10, 13]; nevertheless, the proof uses simulation methods very similar to those in
this paper.
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A. Input/Output Automata and Simulations

A.1. The I/O Automaton Model

We use a slight variant of the standard I/O automaton model from [12]. An I/O
automaton A consists of
a set states(A) of states;

e a nonempty subset start(A) of start states;

5

a set acts(A) of actions, partitioned into external and internal actions.
a set steps(A) of steps, which is a subset of states(A) x acts(A) x states(A);

a partition tasks(A) of the actions into at most countably many equivalence classes.
We write s == 4 s" or just s ™= &’ as shorthand for (s,7,s") € steps(A).

An action 7 is said to be enabled in a state s provided that there exists a state s’ such
that s ™= s’. A set of actions is said to be enabled in s if some action in the set is enabled
in s.

An execution fragment is a finite or infinite alternating sequence soms1729 ..., where
s; is a state, 7; is an action, s;_; ~2+ s; for each j, and the sequence ends with a state if
it is finite. An execution is an execution fragment with sg € start(A). A state of an I/O
automaton is reachable if it is the final state of some finite execution of the automaton.

The trace of an execution is the sequence of external actions that occur in the execution.
Often, we express requirements to be satisfied by an I/O automaton A by another 1/O
automaton B.

A.2. MMT Automata

MMT automata were originally defined by Merritt, Modugno and Tuttle [15]; we use
a special case of their definition appearing in [11, 13]. An MMT automaton is an 1/O
automaton with only finitely many tasks together with lower and upper time bounds,
lower(C) and upper(C'), for each task C. We require that 0 < lower(C) < o0, 0 <
upper(C') < oo, and lower(C') < upper(C).

A timed execution of an MMT automaton is a sequence so(71,t1)s1(72,12)82 ..., where
S0T181 728y . . . 1s an execution of the underlying /O automaton, ¢; < ¢;11, and ¢; satisfies
the given lower and upper bound requirements. Formally, define j to be an initial index
for a task C provided that (' is enabled in s;, and 7 = 0, or C' is not enabled in s;_4, or
7; € (; initial indices are the points at which the bounds for C' begin to be measured.
Then for every initial index j for a task C', the following conditions must hold:

L. (Upper bound) If upper(C) # oo, then there exists k > j with t, <1t; + upper(C)
such that either 7, € € or C is not enabled in sy.

2. (Lower bound) There does not exist any k > j with ¢, < t; + lower(C') and 7, € C.

Finally, if the execution is infinite, it must be admissible, i.e., the times associated with
the actions must increase without bound. Each timed execution of an MMT automaton
A gives rise to a timed trace, which is just the subsequence of external actions and their

>The external actions are usually further partitioned into input and output actions, thus the name “I/O
automaton”. This distinction is important for composition and fairness, which we do not consider in this
paper. A more complete discussion is found in [12].
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associated times. The admissible timed traces of an MMT automaton A are the timed
traces that arise from the admissible timed executions of A.

A.3. Timed Automata

Lynch and Attiya [11] describe how to incorporate the timing information of an MMT
automaton A into the state, yielding an 1/O automaton A’ of a special form. We call
automata derived in this way timed automata.

Each state of A’ is a record consisting of a component basic, which is a state of A,
a component now € R2Z% and, for each task C' of A, components first(C') in RZ% and
last(C') in RZ° U {co}. For each start state s of A, s.basic € start(A) and s.now = 0.
Also, if s is a start state and C is enabled in s.basic, then s.first(C') = lower(C') and
s.dast(C') = upper(C); otherwise s.first(C') = 0 and s.last(C') = co. The actions of A’ are
pairs of an action of A or the time-passage action v, and non-negative reals. Each non-
time-passage action is classified as external or internal; time-passage actions are internal.

If 7 € acts(A), then s, exactly if all the following conditions hold:

1. s'.now = s.now = 1.

2. s.basic = 4 s'.basic.

3. For each C € tasks(A):
(a) If 7 € C then s.first(C') < t.
(b) If C is enabled in both s.basic and s'.basic, and = ¢ C, then s'.first(C) =
s.first(C) and s'.last(C') = s.last(C).
(c) If C is enabled in s'.basic and either C' is not enabled in s.basic or 7 € C, then
§.first(C) =t + lower(C) and §'.last(C') =t + upper(C'). In this case, we say
that C' is newly enabled in s'.
(d) If C' is not enabled in §'.basic then &' first(C') = 0 and s'.last(C) = .
On the other hand, S(V’—%A/ s exactly if all the following conditions hold:
1. s.now <t = s .now.

2. s'.basic = s.basic.

3. For each C € tasks(A):

(a) t < s.last(C).

(b) &.first(C) = s.first(C') and §'.last(C') = s.last(C).
We define the admissible timed executions of A’ to be those in which the times associated
with the time-passage actions increase without bound, and the admissible timed traces to
be the traces of admissible timed executions. With this definition, the MMT automaton
A and its corresponding timed automaton A’ have exactly the same admissible timed
traces.

We refer to the MMT automaton and its corresponding timed automaton interchange-
ably. Also, we often omit the basic part of the selector, writing s.field as a shorthand for
s.basic.field, where field is a component of the MMT automaton’s state.

Timed automata satisfy the following invariants:

Lemma 1 In all reachable states of A’, and for every task C:
1. now < last(C)
2. first(C') < now + lower(C)
3. If C is enabled, then last(C) < now + upper(C).
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4. If C is not enabled, then first(C) =0 and last(C) = co.
5. If upper(C) = oo, then last(C') = oo.

A.4. Invariants and Simulations

An invartant of a automaton is any property that is true in all reachable states. We
usually establish an invariant [ by proving that all start states satisfy it, and that all
steps preserve it, i.e., start(s) = I(s) and I(s) A (s == s') = I(&).

The definition of a simulation mapping is paraphrased from [13, 14, 10]. If A and B
are timed automata with invariants I4 and Ig, then a simulation mapping from A to B
with respect to I4 and Ip is a relation f between states(A) and states(B) such that:

L. If f(s,u), then u.now = s.now.

2. If s € start(A), then there exists some u € start(B) such that f(s,u).
3. If f(s,u) for states s and u of A and B satisfying 4 and [p respectively, and

5@, , ', then there exists some u’ such that f(s’,u’) and there is some execution
fragment from u to u’ with the same timed external actions as (7,1).
The most important fact about simulation mappings is that they imply admissible

timed trace inclusion.

Theorem 1 If there is a simulation mapping from A to B, with respect to some invari-
ants, then every admissible timed trace of A is an admissible timed trace of B.

B. Library of LSL Traits for Timed Automata

The trait Automaton (Figure 9) provides LSL definitions for terminology regarding
untimed automata. For example, it defines the execution fragments of an automaton A to
be those elements of sort StepSeq[A] that satisty the predicate execFrag, which itself is
defined inductively.

The trait Invariants (Figure 10) lists the proof obligations for showing that a property
is an invariant of an automaton. The Larch tools provide support for checking that these
properties hold.

The trait Bounds (Figure 11) describes intervals, which may be unbounded above, of
time during which an action may occur. Time itself is modeled as a real number using the
Larch handbook trait Real, upon which LP’s decision procedure for linear inequalities is
based.

The trait TimedAutomaton (Figures 12 and 13) associates time bounds b(c) with each
task ¢ of an untimed automaton A, defining a timed automaton TA. This corresponds
directly to the transformation of an MMT automaton into a timed automaton described
in the Appendix A.

Finally, the trait SimulationMap (Figure 14), which generated the proof obligations
in Figure 5, defines what it means for one timed automaton to simulate another. This
also corresponds directly to the definition of simulation mappings in Appendix A. Recall
that timed automata are actually just untimed automata with special requirements; in
particular they must have a now component. Thus we use the NowExists assumption to
ensure that this definition is applied only to automata for which it is meaningful.



Automaton (4): trait

introduces
start States[A]
enabled States[A], Actions[A]
effect : States[A], Actions[A], States[A]
isExternal : Actions[A]
isInternal : Actions[A]
isStep States[A], Actions[A], States[Al
{__} States[A]
S N StepSeql[A]l, Actions[A], States[4]
execFrag StepSeq[A]
first, last : StepSeql[Al
common : Actions[A]
empty
__ : Traces, CommonActions
trace : Actions[A]
trace : StepSeq[A]
task : Actions[A]
enabled States[A], Tasks[Al
inv States[A]
asserts

sort StepSeql[A] generated by {__}, __{__,__}

sort Traces generated by empty,

¥V s, s’: States[A], a, a’: Actions[A], ss: StepSeql[Al, t: Tasks[A]
isInternal(a) < —isExternal(a);
isStep(s, a, s’) & enabled(s, a) A effect(s, a, s’);
execFrag({s});
execFrag(({s}){a,s’}) & isStep(s, a, s’);
execFrag((ss{a,s}){a’,s’}) & execFrag(ss{a,s}) A isStep(s, a’, s’);

first({s}) = s;
last({s}) = s;

first(ss{a,s}) = first(ss);

last(ss{a,s}) = s;
trace({s}) = empty;

I e
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Bool

Bool

Bool
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StepSeqlAl
Bool
States[A]
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Traces
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Traces
Traces
Tasks [A]
Bool

Bool

trace(ss{a,s}) = (if isExternal(a) then trace(ss) ~ common(a) else trace(ss));

trace(a) = (if isExternal(a) then empty ~

common(a) else empty);

enabled(s, t) < 3 a (enabled(s, a) A task(a) = t)

Figure 9. LSL trait definining untimed automata

Invariants (4, inv): trait
assumes Automaton(4)

asserts V s, s’: States[A], a: Actions[A]

start(s) = inv(s);

inv(s) A 1isStep(s, a, s’) = inv(s’)

Figure 10. LSL trait defining proof obligations for proofs of invariance
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Bounds: trait
includes Real(Time)
Bounds tuple of bounded: Bool, first, last: Time

introduces
__+__ : Bounds, Time — Bounds
__*__ : Bounds, Bounds — Bounds
__*%__ : N, Bounds — Bounds
__ C __ : Bounds, Bounds — Bool
__ € __ : Time, Bounds — Bool

asserts V b, bl, b2: Bounds, t: Time, n: N
0 < b.first;
b.first < b.last;
b +t = [b.bounded, b.first + t, b.last + t];
bl + b2 = [bil.bounded A b2.bounded, bil.first + b2.first, bl.last + b2.last];
n * b = [b.bounded, n * b.first, n * b.last];
b1 C b2 &
b2.first < bil.first
A ( (bl.bounded A b2.bounded A bil.last < b2.last) V —b2.bounded );
t €b < b.first < t A (¢t < b.last V —b.bounded)

Figure 11. LSL definition of time bounds for actions in an automaton

TimedAutomaton (A, b, TA): trait
assumes Automaton(A)
includes Automaton(TA), Bounds, FiniteMap(Bounds[A], Tasks[A], Bounds)
States[TA] tuple of basic: States[A], now: Time, bounds: Bounds[A]
introduces

b : Tasks[A] — Bounds

nu : Time — Actions[TA]

addTime : Actions[A], Time — Actions[TA]
asserts

Actions[TA] generated by addTime, nu
VY s, s’: States[TA], c¢: Tasks[A], a: Actions[A], t: Time
defined(s.bounds, c);
isInternal(nu(t));
isInternal(addTime(a, t)) < isInternal(a);
start(s) &
start(s.basic) A s.now = 0
A ¥ c ( ( enabled(s.basic, ¢) = s.bounds[c] = b(c))

A (—enabled(s.basic, ¢) = — (s.bounds[c]).bounded));
enabled(s, nu(t)) < s.now < t A V ¢ (t € s.bounds[c]);
effect(s, nu(t), s’) <

s’.now = t A s’.basic = s.basic A s’.bounds = s.bounds;

Figure 12. LSL definition of timed automata (part 1)



enabled(s, addTime(a, t)) <
s.now = t A enabled(s.basic, a) A t € s.bounds[task(a)];
effect(s, addTime(a, t), s’) <
s’.now = t A effect(s.basic, a, s’.basic)
A V ¢ ( (enabled(s’.basic, ¢) A enabled(s.basic, c¢) A task(a) # ¢
= s’.bounds[c] = s.bounds[c])
A (enabled(s’.basic, c) A task(a) = ¢ = s’.bounds[c] = b(c) + t)
A (enabled(s’.basic, c¢) A —enabled(s.basic, ¢)
= s’.bounds[c] = b(c) + t)
A (—enabled(s’.basic, ¢) = - (s’.bounds[c]).bounded));
trace(addTime(a, t)) = trace(a);
common(addTime(a, t)) = common(a);
inv(s) &
V¢ ( s.now € s.bounds[c]
A (—enabled(s.basic, ¢) = — (s.boundsl[c]).bounded)
A (enabled(s.basic, c) = (s.bounds[c]).last < (s.now + b(c).last))
A (s.bounds[c]).first < (s.now + b(c).first)
A (—=Db(c).bounded = — (s.bounds[c]).bounded)
A inv(s.basic) )
implies
Invariants(TA, inv)
VY n: N, c: Tasks[A] (0 < (n * b(c).last))
VY s, s’: States[TA], a: Actions[TA], c: Tasks[A]
isStep(s, a, s’) A inv(s) A enabled(s.basic, c)
= (s.bounds[c]).last < (s’.bounds[c]).last

Figure 13. LSL definition of timed automata (part 2)

SimulationMap (A1, A2, f): trait
assumes Automaton(A1), Automaton(A2), NowExists(A1l), NowExists(A2)
introduces f: States[A1], States[A2] — Bool
asserts
Y s, s’: States[A1], u: States[A2], a: Actions[A1], alpha: StepSeql[A2]
start(s) = J u (start(u) A f(s, u));
f(s, 1) = u.now = sS.now;
f(s, u) A inv(s) A inv(u) A isStep(s, a, s’) =
J alpha (execFrag(alpha) A first(alpha) = u
A f(s’, last(alpha)) A trace(alpha) = trace(a))

Figure 14. LSL definition of simulation mapping
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