
The IOA Simulator 1Dilsun K�rl� Kaynar, Anna Chefter, Laura Dean,Stephen Garland, Nany Lynh, Toh Ne Win, Antonio Ram��rez-RobredoMIT Laboratory for Computer Siene 2July 16, 2002

1Available at URL http://theory.ls.mit.edu/tds/ioa.html.2Corresponding address: 200 Tehnology Square, Cambridge, MA 02139, USA, dilsun�theory.ls.mit.edu.Currently, Chefter is employed by Merill Lynh, Dean is employed by Oryxa, and Ram��rez is in the PhDprogram in mathematis at Stanford University.



AbstratIOA is a high-level distributed programming language based on the formal I/O automatonmodel for asynhronous onurrent systems. A suite of software tools, alled the IOA toolkit, hasbeen designed and partially implemented to failitate the analysis and veri�ation of systems usingtehniques supported by the formal model. This paper introdues the IOA simulator 1 whih is apart of the IOA toolkit.The IOA simulator runs seleted exeutions of an I/O automaton on a single mahine, generateslogs of exeution traes and displays information about the seleted exeutions. The simulator alsohas the apability to simulate pairs of I/O automata, allowing users to hek purported simulationrelations between automata desribed at di�erent levels of abstration.This paper is a primary soure of referene for both the users and the developers of the IOAsimulator. It desribes the design of the simulator fousing on the mehanism for resolving nondeter-minism in IOA programs. It inludes a olletion of small examples to illustrate the basi oneptsregarding the simulation of IOA programs, and a larger tutorial example that demonstrates howto use the simulator. The �nal setion of the paper gives information about the implementation ofthe simulator.Aknowledgements This work was funded by Aer In., Delta Eletronis In., HP Corp., NTTIn., Nokia Researh Center, and Philips Researh under the MIT Projet Oxygen partnership, byDARPA through the OÆe of Naval Researh under ontrat number N66001-99-2-891702, byNTT under ontrat number MIT9904-12, by NSF under ontrat number ACI-9876931 and byAFOSR-ONR under ontrat number F49620-94-1-0199.

1The instrutions for obtaining the related software an be found at http://theory.ls.mit.edu/tds/ioa.html.



Contents1 Introdution 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Purpose of simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4 How to use this doument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 I/O automata and the IOA language 32.1 Theoretial bakground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 The IOA language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.3 Future researh ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Simulation of I/O automata 53.1 Simulation and nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2 Resolution of nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.3 The simulator algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.4 Invariant heking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.5 Dynami detetion of invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.6 Future researh ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Paired simulation 164.1 Simulation relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.2 Enoding step orrespondenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.3 The paired simulator algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.4 Future researh ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Mutual exlusion: A Tutorial example 235.1 The Mutual exlusion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.2 Spei�ation of mutual exlusion for three proesses . . . . . . . . . . . . . . . . . . 245.3 Levels of abstration and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Simulator-related extensions to the IOA language 356.1 Resolution of nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356.2 Labeling transition de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366.3 Labeling invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376.4 Paired simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 Implementation of the simulator 387.1 The IOA toolkit arhiteture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387.2 The Intermediate language and IL parser . . . . . . . . . . . . . . . . . . . . . . . . 397.3 Implementation of the IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417.4 Simulator data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417.5 Testing and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42A Simulator outputs 43A.1 Simulator output for Chooser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43A.2 Simulator output for Fibonai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44A.3 Forward simulation from FiniteGreeter to GreeterSpe . . . . . . . . . . . . . . . . 45



A.4 Simulator output for DijkstraInt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46A.5 Forward simulation from DijkstraInt to MutexEnv . . . . . . . . . . . . . . . . . . . . 49B Trait NonDet 51

ii



iii



1 Introdution1.1 OverviewThe development of formal methods for modeling and reasoning about distributed systems is oneof the major researh ativities within the Theory of Distributed Systems Group at MIT. Theinput/output automaton (I/O automaton) model [LT89, Lyn96℄ onstitutes the basis of the workon formal methods. It is a labeled transition system model suitable for desribing asynhronousonurrent systems [Lyn96℄.The I/O automaton model inorporates the notion of abstration to enable viewing systemsat multiple levels of abstration. A system an be �rst desribed at a high level of abstration,apturing only the essential requirements about its behavior, and then be suessively re�ned untilthe desired level of detail is reahed. The model de�nes what it means for an automaton toimplement another and introdues the notion of a simulation relation as a suÆient ondition toprove an implementation relation between two automata.The notion of parallel omposition, also inluded in the I/O automaton model, failitates mod-ular design and analysis of distributed systems. The parallel omposition operator in the modelallows one to onstrut large and omplex systems from smaller and simpler subsystems and studytheir behavior in terms of the behaviors of its omponents.Work on the I/O automaton model inludes the de�nition of a formal language|the IOAlanguage [GL00, GL98℄|for desribing I/O automata. The IOA language an be regarded as a high-level distributed programming language. Its design has been driven by the motivation to supportboth simulation and veri�ation. A suite of software tools|the IOA toolkit|is being developed tofailitate the design, analysis, and development of systems within the I/O automaton framework.The toolkit onsists of a front-end that heks whether system desriptions (IOA programs) omplywith the IOA syntax and stati semantis, and produes an intermediate representation of the odeto be used by the bak-end tools. The bak-end tools inlude the IOA simulator, a ode generatorand translators to a range of representations suitable for use with some theorem provers and model-heking tools. The state of the tool development projet is reported on our WWW pages [TDS℄.This doument is onerned with the IOA simulator in partiular. We desribe the design ofthe simulator, the major issues regarding its implementation and also provide a set of examplesto demonstrate how to use the simulator. The IOA simulator has been developed over a periodof four years by a number of people ontributing to its design and implementation [TDS℄. It hasbeen the subjet of the MEng theses of the authors Anna Chefter [Che98℄, Antonio Ramirez [RR00℄and Laura Dean [Dea01℄. This doument is intended to be a stand-alone referene for the IOAsimulator and refers to the urrent implementation of the tools unless expliitly stated otherwise.The idea behind the simulation of a single automaton is rather onventional. The IOA simulatorruns seleted exeutions of an I/O automaton on a single mahine, generates logs of exeutiontraes and displays information upon the user's request. The IOA Language allows users to expressinvariants for an automaton. The simulator heks whether these invariants proposed by users aretrue in the seleted exeutions. The IOA simulator also has the apability to simulate pairs ofI/O automata, allowing users to reason about the behavioral orrespondene between automata atdi�erent levels of abstration. The need for this style of reasoning typially arises when a systemis designed by moving through the highest level to the lowest level in the abstration hierarhy. Inthis ase, users de�ne a simulation relation whih relates the two automata at two di�erent levelsand the IOA simulator heks whether this relation holds in the seleted exeutions. The apabilityto perform paired simulation in this sense is a very useful feature in distributed system design andanalysis.



1.2 Purpose of simulationFormal orretness proofs for distributed systems an be long, hard or tedious to onstrut. Simula-tion an be used as a way of testing automata before delving into orretness proofs. The exeutionof an IOA automaton either reveals bugs or inreases the on�dene that an automaton works asexpeted.The simulator an also assist users in onstruting orretness proofs. By desribing a systemor an algorithm as an IOA program and simulating it, a user gains a better understanding of how itworks. This an guide the strategy to be followed in proving orretness. Moreover, the invariantswhih are observed to be true for the simulated exeutions onstitute andidates for useful lemmasin a full orretness proof.The urrent implementation of the IOA simulator does not aim at providing quantitative in-formation of the kind that would be useful for evaluating the performane of an algorithm undervarious onditions. However, it is oneivable that the IOA simulator be used for this purpose bymeans of some extensions to its design and implementation.Simulation in general is an eÆaious method for exposing possible de�ienies in the design ofsystems and algorithms whih an lead to the orretion of disovered errors, revision of proofs ortuning for better performane.1.3 Design goalsA key hallenge in the design of the IOA language has been to provide support for both simulationand veri�ation in a uni�ed framework. Nondeterminism is favorable in IOA beause it allowssystems to be desribed in their most general forms and to be veri�ed onsidering all possiblebehaviors without being tied to a partiular implementation of a system design. On the other hand,nondeterminism ompliates simulation, whih must hoose partiular exeutions. The design ofa satisfatory mehanism for resolving nondeterminism is an essential issue onerning the designof the simulator. The approah adopted by the IOA simulator is desribed in greater detail in thefollowing setions. We note here the properties that have been identi�ed as desirable properties forthe nondeterminism resolution mehanism:� Broadness. It should provide several ways to resolve nondeterminism, eah suited to di�er-ent situations and appliations. For instane, it should allow hoies and transitions to beresolved as deterministi funtions of the automaton's state, or using a pseudorandom numbergenerator, or by querying the user, or any ombination of these.� Extensibility. It should be suÆiently open-ended that future developers and advaned usersan tailor it to spei� needs without too muh e�ort. For instane, if a new datatypeimplementation is added to the simulator, it should be possible to add useful nondeterminismresolution mehanisms to go with it.� Usability. It should be reasonably easy to use, and it should not plae umbersome demandsupon the user. The resolution of nondeterminism is an absolute neessity for nontrivial uses ofthe simulator, and it would be unfortunate that a lak of attention to usability onsiderationsshould disourage its use.1.4 How to use this doumentThe intended audiene for this doument is both users and developers of the IOA toolkit. Thematerial has been organized so that it should be suÆient to read the �rst 5 setions to be able to2



use the IOA simulator and to understand the fundamental ideas behind its design. Setion 6 is forreaders who are familiar with the ore IOA language and are interested in a formal presentation ofthe syntati extensions made to support simulation. Setion 7 is intended for tool developers; itgives an overview of the IOA simulator implementation.2 I/O automata and the IOA languageThis setion inludes a brief introdution to the I/O automaton model and the IOA Language.See [Lyn96, GLV01℄ for an in-depth introdution. We fous only on those notions and languageonstruts that are ruial for understanding the material in this doument.2.1 Theoretial bakgroundAn I/O automaton is a simple type of state mahine in whih the transitions are assoiated withnamed ations. The ations are lassi�ed as either input,output, or internal. The inputs and outputsare used for ommuniation with the automaton's environment, whereas internal ations are visibleonly to automaton itself. The input ations are assumed not be under the automaton's ontrol,whereas the automaton itself ontrols whih output and internal ations should be performed.An I/O automaton A onsists of �ve omponents:� a signature, whih lists the disjoint sets of input, output, and internal ations of A;� a (not neessarily �nite) set of states, usually desribed by a olletion of state variables;� a set of start states, whih is a non-empty subset of the set of all states;� a state-transition relation, whih ontains triples (known as steps or transitions) of the form(state, ation,state); and� an optional set of tasks, whih partition the internal and output ations of A.An ation � is said to be enabled in a state s if there is another state s0 suh that (s; �; s0) isa transition of the automaton. Input ations are enabled in every state. That is to say automataare not able to blok input ations from ourring. The external ations of an automaton onsistof its input and output ations.2.1.1 Exeutions and traesAn exeution fragment of an I/O automaton is either a �nite sequene s0; �1; s1; �2; : : : ; �n; sn, oran in�nite sequene s0; �1; s1; �2; : : : ; of alternating states si and ations �i suh that si; �i+1; si+1is a transition of the automaton for every 0 � i. An exeution is an exeution fragment that beginswith a start state. A state is reahable if it ours in some exeution. The trae of an exeution isthe sequene of external ations in that exeution.2.1.2 Properties and proof methodsInvariant assertions An invariant property of an automaton is any property that is true in allreahable states of the automaton. Invariants are typially proved by indution on the number ofsteps in an exeution leading to the state in question.
3



Simulation proofs The I/O automaton model aims at providing support for system desriptionsat multiple levels of abstration. The proess of moving through the series of abstrations, fromhighest level to the lowest level is alled suessive re�nement. The top level may be a problemspei�ation written in the form of an automaton. The next level desribes the system in moredetail with respet to the top level. However, the ations typially have large granularity, andsimple data strutures are used. Lower levels in the abstration hierarhy orrespond more diretlyto the most optimized implementation of the system. To prove that one automaton implementsanother one higher in the hierarhy, one needs to show that for any exeution of the lower levelautomaton there is a orresponding exeution of the higher level automaton. The notion of asimulation relation failitates this style of reasoning.De�nition 2.1 (Forward simulation). A forward simulation from automaton A to automatonB is a relation f on states(A)� states(B) with the following properties:1. For every start state a of A, there exists a start state b of B so that f(a; b) holds.2. If a is a reahable state of A, b is a reahable state of B, f(a; b) holds and a �! a0, then thereexists a state b0 of B and an exeution fragment � of B so that b �! b0; f(a0; b0) holds andtrae(�) = trae(�).Theorem 2.1. If there is a forward simulation relation from A to B, then every trae of A is atrae of B.Remark on terminology There is an unfortunate lash of terminology, due to the dual use ofthe term \simulation". Depending on the ontext, this term an refer either to the ation of asimulator or to simulation relations as in De�nition 2.1.2.1.3 CompositionThe omposition operation allows an automaton representing a omplex system to be onstrutedby omposing automata representing individual system omponents. The omposition identi�esations with the same name in di�erent omponent automata. When any omponent automatonperforms a step involving ation �, so do all omponent automata that have � in their signatures.A ountable olletion fSig of signatures is said to be ompatible if for all i; j 2 I; i 6= j all ofthe following hold:� int(Si) \ ats(Sj) = ; where int(Si)) denote the set of internal ations in Si, and ats(Sj)denotes the set of ations in Sj.� out(Si) \ out(Sj) = ; where out(Si) and out(Sj denote the set of output ations in (Si) and(Sj) respetively.� No ation is ontained in in�nitely many sets ats(Si).We say that a olletion of automata is ompatible if their signatures are ompatible. The om-position S = Qi2ISi of a ountable ompatible olletion of signatures fSig is de�ned to be thesignature with� out(S) = [i2Iout(Si)� int(S) = [i2Iint(Si) 4



� in(S) = [i2Iin(Si) n [i2Iout(Si)Now, the omposition A = Qi2IAi of a ountable, ompatible olletion of I/O automata fAigi2Ian be de�ned as follows:� sig(A) =Qi2Isig(Ai)� states(A) =Qi2Istates(Ai)� start(A) =Qi2Istart(Ai)� trans(A) is the set of triples (s; �; s0) suh that, for all i 2 I, if � 2 ats(Ai), then (si; �; si0) 2trans(Ai); otherwise si = si0� tasks(A) =Qi2Itasks(Ai)2.2 The IOA languageIn the IOA language, the desription of an I/O automaton has four main parts: the ation signature,the states, the transitions, and the tasks of the automaton. States are represented by olletions oftyped variables. The transition relation is usually given in preondition-e�et style, whih groupstogether all transitions that involve a partiular ation into a single piee of ode. Eah de�nitionhas a preondition (indiated by the keyword pre), whih desribes a ondition on the state thatshould be true before the transition an be exeuted, and an e�et (indiated by the keyword e�)whih desribes how the state hanges when the transition is exeuted. If pre is not spei�ed,then it is assumed to always hold. State hanges are spei�ed in terms of the initial state, thetransition parameters, and optional additional parameters, whih are hosen nondeterministially.The ode may be written either in an imperative style, as a sequene of assignment, onditional,and looping instrutions, or in delarative style, as a prediate relating state variables in the pre-and post-states, transition parameters, and nondeterministi parameters. It is also possible to usea ombination of these two styles.The IOA language supports desriptions of systems omposed from several interating ompo-nents based on the notion of omposition in the theory of I/O automata.The sample programs in this paper do not exploit the full generality of the language. We assumethat the automata are pre-omposed, and restrit ourselves to a subset of the language that onsistsof imperative features and nondeterministi hoie statements onstrained by where prediates.2.3 Future researh ideasThe urrent IOA language allows desription of distributed systems without any timing-dependene.We are interested in extending the language with onstruts to express timing behavior, inludingupper and lower bounds on times for various events, and program onstruts suh as timeouts. Var-ious IOA tools, in partiular, the simulator must also be extended to handle these new onstruts.In the longer run we also aim to provide language support for desribing and analyzing systemswith probabilisti automata and hybrid automata.3 Simulation of I/O automataThis setion desribes how the simulator is designed fousing on the IOA language support that itrequires, and the algorithm that it follows to simulate an automaton. We do not treat details suhas the management of operator and sort implementations. The reader is referred to Setion 7 forfurther information about this and other software-related issues of the simulator.5



3.1 Simulation and nondeterminismIOA programs allow two kinds of nondeterminism: impliit nondeterminism whih involves thesheduling of ations, and, expliit nondeterminism, whih arises from hoose statements, hooseparameters and hoose expressions in initial assignments. For example:� an automaton an have multiple enabled ations in a given state;� a given enabled ation an have multiple transition de�nitions assoiated with it;� a given transition de�nition an take arbitrary atual parameter values, as long as they satisfyits where lause; and� a transition de�nition an ontain one or more hoose statements, eah of whih may evaluateto an arbitrary value that satis�es the onstraint in the where lause.3.2 Resolution of nondeterminismFrom the point of view of an IOA automaton spei�ation, the soures of nondeterminism an beregarded as a blak box that an yield transitions to be sheduled and values to be assigned tostatements whih involve nondeterministi hoie. Thus, the problem of resolving nondeterminisman be regarded as that of providing an algorithmi means of obtaining these values and transitionsas the need for them arises during the simulation of an automaton.The nondeterminism resolution approah adopted by the IOA simulator is to assign a program,alled an NDR program, to eah soure of nondeterminism in an automaton. Eah suh programis apable of providing values that resolve a hoie, or determining the transitions to be sheduled,depending on the ontext. There is an NDR program orresponding to every hoose statement inan automaton, and an NDR program for sheduling the ations of the automaton. We illustrate thekey points of our approah by a series of examples based upon an automaton { Chooser { desribedas an IOA program.Example 3.1. The automaton Chooser has two ations (ation1 and ation2), and two state vari-ables hosen and did_hoose whih is initially set to false to indiate that no integer has yet beenhosen by the automaton. The transition de�nitions show that ation1 is always enabled. Its e�etis to nondeterministially hoose an integer greater than or equal to 10 and assign the variablehosen to this integer. It also sets the state variable did_hoose to true. The semantis of the IOAlanguage requires that the assignments to hosen and did_hoose our atomially. The transitionde�nition for ation2 has a parameter, and the ation is enabled when an integer has already beenhosen and n is equal to that integer. The ourrene of ation2 has no e�et on the state.automaton Choosersignatureoutput ation1output ation2 (n: Int)stateshosen : Int,did_hoose : Bool := falsetransit ionsoutput ation1e f f hosen := hoose x: Int where 10 � x;did_hoose := trueoutput ation2 (n)pre did_hoose ^ n = hosen 6



This automaton exhibits both expliit and impliit nondeterminism. The hoose statement in thede�nition of transition for ation1 is the soure of expliit nondeterminism. After ation1 hasourred at least one, both ation1 and ation2(n) beome enabled where the atual parametern is equal to the value hosen by ation1. The possibility of more than one ation being enabledis the soure of impliit nondeterminism in this automaton.3.2.1 NDR programsTo aid the simulator in resolving nondeterminism a user is required to augment the automatonspei�ation with a shedule blok and det bloks eah of whih embodies an NDR program. Aprogram in a shedule or a det blok is used respetively for resolving automaton transitions andfor resolving the values of a hoose statement. Note that this requires modi�ation of the IOAlanguage syntax as disussed in Setion 6.Example 3.2. The automaton Chooser an be augmented as below with NDR programs.automaton Choosersignatureoutput ation1output ation2 (n: Int)stateshosen : Int,did_hoose : Bool := falsetransit ionsoutput ation1e f f hosen := hoose x: Int where 10 � xdet do% NDR program to be speifiedod;did_hoose := trueoutput ation2 (n)pre did_hoose ^ n = hosenshedule do% NDR program to be speifiedodThe NDR programs in shedule and det bloks an evaluate arbitrary IOA terms to deide whihtransitions to shedule, or whih values to yield for a hoie. Additionally, they an evaluateoperators whose implementations perform pseudorandom number generation, or user prompting,to produe a result. Two forms of statements { �re statements and yield statements { have beenintrodued to IOA as essential building bloks of NDR programs.3.2.2 Fire statementsShedule bloks use �re statements to speify how the ations will be sheduled by the simulator.A �re statement spei�es the parameters of an ation and whether it is an input, output or aninternal ation. The parameters in these statements may depend on the values of state variablesof the automaton. The NDR mehanism also supports �re statements with no arguments. Theseare useful under irumstanes when it would be tedious to write a omplete shedule by hand.When the simulator enounters a �re statement without arguments in an NDR ontext, it hoosesan appropriate transition to shedule aording to the following mehanism. It �rst examines inturn eah loally-ontrolled transition de�nition of the automaton with no parameters. For eah of7



them, it evaluates the preondition to see if it is enabled. It hooses one of the enabled transitionsrandomly and exeutes it.In the speial ase of an automaton where all transitions are non-parameterized, the simulatoran be run without a shedule blok. At eah step the simulator exeutes one of the enabledtransitions. However, there are no guarantees about randomness or ompleteness. Note that wereommend the use of shedule bloks as part of a good programming disipline for simulation.3.2.3 Yield statementsA yield statement is used to speify the values of hoie in a hoose statement. When the simulatorenounters a hoose statement, it starts exeuting the NDR program until it enounters a yieldstatement. At this point, it uses the value provided by the statement as the value of the hoosestatement. The urrent statement of the NDR program is reorded by the simulator so that thenext time it enounters the same hoose statement, the simulator does not start its NDR programfrom the beginning; rather, it resumes exeuting it where it left o�. 2Example 3.3. This example illustrates the use of yield and �re statements in NDR programs.The partiular det blok we have added auses the hoie to be resolved suessively to 11, 12,and 13. The shedule blok has been oded suh that the simulator interleaves the exeutions ofation1 and ation2.automaton Choosersignatureoutput ation1output ation2 (n: Int)stateshosen : Int,did_hoose : Bool := falsetransit ionsoutput ation1e f f hosen := hoose x: Int where 10 � xdet doyield 10; yield 11; yield 12od;did_hoose := trueoutput ation2 (n)pre did_hoose ^ n = hosenshedule dowhile true dof i r e output ation1;f i r e output ation2(hosen)ododIt may appear surprising to have a nonterminating while loop in the shedule blok. This, however,does not ause a problem sine the simulator has been designed so that the number of simulationsteps are spei�ed by the user at the beginning of simulation. Setion A.1 on page 43 shows theexerpts from the output of the simulator on the automaton Chooser. The simulator takes asommand line arguments the number of transitions to simulate, the name of the automaton tosimulate, and the name of a �le ontaining the IOA spei�ation of the automaton. For everystep taken by the automaton (inluding the initialization step), the simulator reports the transitionthat was exeuted, and the state variables that hanged. The sample output has been obtained by2The semantis of yield and �re statements were inspired by the iterator onstrut in the programming languageCLU [LAB+81℄. 8



simulating the automaton for 100 steps. The example in Setion 5 gives a detailed explanation ofhow to use the simulator.3.2.4 Labeling transition de�nitionsThe IOA Language allows multiple transition de�nitions to share the same ation type, nameand atual parameter sorts. In the absene of a mehanism to disambiguate these de�nitions,speifying ation names in �re statements alone would not be suÆient to resolve nondeterminism.As a solution to this problem, the simulator inorporates a faility whereby a user an augmentation names with ase indiators.Example 3.4. The ase indiator of the transition is loal to the primitive automaton in whih itis de�ned, and it an be a number or an alphanumeri identi�er as shown in the example below.automaton Undeidedsignatureoutput hellostatesb: Booltransit ionsoutput hello ase 1e f f b := trueoutput hello ase 2e f f b := falseshedule dowhile true dof i r e output hello ase 1;f i r e output hello ase 2odod3.2.5 Alternative methods of resolving nondeterminismIt is sometimes desirable to resolve hoies and shedule transitions using pseudorandomness oruser input as information. This issue an be addressed by providing extra operators that evaluateas random number generators and user prompters. One way to do this is to use a trait suh asthe one in Setion B on page 51. Eah of these operators is either urrently implemented by thesimulator, or is easy to implement with the urrent software support.Example 3.5. This version of the Chooser automaton uses an operator that yields an integer be-tween 20 and 30 rather than speifying the integers as was the ase in Example 3.3.uses NonDetautomaton Choosersignatureoutput ation1output ation2 (n: Int)stateshosen : Int,did_hoose : Bool := falsetransit ionsoutput ation1e f f hosen := hoose x: Int where 10 � xdet doyield randomInt (20,30)9



od;did_hoose := trueoutput ation2 (n)pre did_hoose ^ n = hosenshedule dowhile true dof i r e output ation1;f i r e output ation2(hosen)ododNote that it is also possible to prompt the user to hoose an integer at the point where the operatorrandomInt is used in this example.3.2.6 Simulation errorsThe simulator requires NDR programs to only �re transitions that are enabled, and yield hoievalues that make the orresponding where lause true. If the simulator enounters a situationwhere either of these onditions does not hold, it issues an error message and halts the simulation.3.3 The simulator algorithmSo far, we have pointed out that it is neessary to resolve nondeterminism to be able to simulateIOA programs. There are, however, other requirements for an IOA program to be in the right formfor simulation. The users are expeted to transform programs into this required restrited formbefore using the IOA simulator.3.3.1 Simulability onditions for programsQuanti�ers The simulator has the ability to handle quanti�ers only when the quanti�ed variableis of enumeration type. This implies that the variable has a �nite number of possible values.Existential or universal quanti�ers whih do not satisfy this ondition are not permitted anywherein the IOA automaton to be simulated. The e�et of an existential quanti�er an often be ahievedusing a suitably onstrained hoose statement as desribed in [Che98℄, thereby reduing the problemof evaluating suh quanti�ers to the problem of nondeterminism resolution for hoose statements.Evaluating universal quanti�ers would require an essentially di�erent mehanism.Transition parameters There are restritions on the atual parameters in transition de�nitions:eah of them must be either a pure variable, or a term that ontains no variables, so that it evaluatesto a onstant. As explained in [Che98℄, this is not a drasti restrition, sine expression parametersan be replaed by variables that are suitably onstrained by the where lause of the transition.It would not be diÆult to modify the urrent implementation to remove this onstraint, but someorresponding hanges to the NDR mehanisms would be neessary.Looping onstruts No for loops are permitted anywhere in the automaton to be simulated. Itis often possible to use a while loop instead. For example, for i:Nat where i < 20 do : : : od an bereplaed by while i < 20 do i:= i+1; : : : od. Note that while does not inorporate a mehanismfor delaring a variable; the variable i must be delared and initialized outside the loop.
10



Composition The simulator only supports primitive automaton spei�ations. There is a projetin progress on the development of a tool whih takes an IOA automaton omposition spei�ationas an input, and transforms it to an equivalent IOA spei�ation of a primitive automaton. Onethis omposer implementation is omplete it an be used in onjuntion with the simulator. Com-posite automata an be simulated by providing the neessary NDR programs for the output of theomposer.Data types The simulator urrently has implementations for several built-in primitive IOA types(Bool, Natural, Real, Char, String) and it supports user-de�ned types formed from the onstru-tors Array (for one-dimensional arrays), Seq (sequene), Set, Mset(multiset), and Map onstrutorsand syntati shorthands enumeration, tuple, and union shorthands, and those formed from the.These types, onstrutors and shorthands are desribed in the IOA Manual [GLV01℄. There isurrently no implementation for the two dimensional use of Array. Spei�ations and implemen-tations for the parameterized datatypes Stak, Tree and PQ(priority queue) are also available foruse with the simulator even though they are not yet a part of the language spei�ed in the IOAManual [GLV01℄. Note also that it is possible to add new data types to the Simulator as explainedin Setion 7.3.3.2 PseudoodeA good way to understand how the simulator interprets NDR programs is through a desription ofthe algorithm that it follows. On Page 11 we present a table whih summarizes the abbreviationsand the notation we use in desribing the algorithm. Page 12 inludes the pseudoode desriptionof the simulator algorithm whih is organized into three proedures. The main one is Simulate(A),where A is the primitive automaton spei�ation to be simulated. This proedure in turn uses twoauxiliary ones, ExeuteShed and EvalChoie also presented in the �gure. The algorithm does notdesribe the details of evaluating IOA programs or terms but fouses on the NDR mehanisms.Evaluating a term requires every operator in the term to have a simulator implementation; refer toSetion 7 for the details on mathing operators and sorts with their implementations.NotationA:ndr The shedule NDR program for automaton spei�ation A.A:p A program ounter for A:ndr .Its value an be a statement in A:ndr or null .A:invs The list of invariants of A.A:simpleTrans The set of transition de�nitions in A with onstant atual parameters.t:pre The preondition term for a transition de�nition t.t:where The where term for a transition de�nition t.t:e� The e�et program for a transition de�nition t.:ndr The hoie NDR program for a hoose statement .:p A program ounter for :ndr .Its value an be a statement in :ndr or null .:var The dummy variable in a hoose statement .:where The where term in a hoose statement .trans(A; t; n; ) The transition de�nition of type t, name n and aselabel  in automaton A.eval (t) The result of evaluating a term t.
11



Simulate(A)[A: IOA primitive automaton℄initialize a program ounter :p for eah hoose statement  in Ainitialize a program ounter A:p for the shedule blok of Awhile A:p 6= null doall ExeuteShed(A,A:p)advane A:p to the next statement in A:ndrExeuteShed(A; s) [A: IOA primitive automaton, s: statement in A:ndr℄if s is not a �re statement then exeute s(s is an assignment, a onditional, or a while onstrut;the semantis for these types of statements are the obvious ones)else if s = ``�re ationType ationName(ationAtuals) ase '' thenlet t := trans(A; ationType ; ationName ; )assign ationAtuals to the formal parameter variables of tif eval (t:pre) = true and eval (t:where) = true thenexeute the statements in t:e� following IOA semantis;when a hoose statement  needs to be evaluated, all EvalChoie()else halt with an errorfor eah t 2 A:invs suh that eval (t) = false doissue an invariant failure warningelse if s = ``�re'' thenlet S = ft 2 A:simpleTrans j eval(t:pre) = truegif S 6= ; thenhoose t 2 S uniformly at randomexeute the statements in t:e� following IOA semantis;when a hoose statement  needs to be evaluated, all EvalChoie()EvalChoie() [: hoie statement℄forever doif :p is not a yield statement thenexeute :p (:p is an assignment, a onditional, or a while onstrut)advane :p to the next statement in :ndrelse if :p is of the form ``yield t'', where t is a term thenlet v = eval (t)assign v to :varif eval (:where) 6= false thenadvane :p to the next statement in :ndrexit EvalChoieelse halt with an errorFigure 1: Simulator Algorithm
12



3.4 Invariant hekingThe simulator has the apability of heking whether the invariants of an automaton, stated usingthe IOA syntax, hold throughout an exeution. This is done simply by evaluating eah of theinvariants found in the IOA spei�ation after eah transition is exeuted, and issuing a warningmessage if any of them fail. The ExeuteShed routine of the pseudoode of the algorithm presentedin Setion 3.3 inludes a part for dealing with invariant heking.Example 3.6. The ode in this example is an IOA spei�ation of an automaton, along with twoproposed invariants of its state and suitable NDR programs.automaton Fibonaisignatureinternal omputestatesa: Int := 1,b: Int := 0,: Int := 1transit ionsinternal omputee f fa := b;b := ; := a + binvariant of Fibonai : % true invarianta + b = invariant of Fibonai : % false invarianta - b = Setion A.2 on page 44 gives the simulator output for 5 steps of exeution. It shows that one ofthe invariants did not hold for this partiular exeution.3.5 Dynami detetion of invariantsThis setion desribes the onnetion between the IOA simulator and Daikon { an invariant dis-overy tool developed by the Program Analysis Group at the MIT Laboratory for Computer Si-ene [PAG℄.3.5.1 DaikonDaikon is a dynami program analysis tool whih extrats information from exeutions of a program.As input, Daikon requires a set of delarations and data traes. A delaration �le ontains listsof program points onsidered interesting to users and a list of variables in sope at eah programpoint. Data trae �les reord information about the values the variables take on during exeution.For eah exeution of a program point, the trae �le ontains the name of the point and the valuesof the variables at that point. The output generated by Daikon is a list of invariants deteted tohold in all reorded exeutions. These are only potential invariants in that Daikon annot guaranteetheir truth for all possible exeutions.3.5.2 Purpose of onneting IOA to DaikonThere are mainly two motivations for onneting the IOA simulator with an invariant disoverytool suh as Daikon. First of these onerns orretness proofs for automata. If the disoveredinvariants turn out to be veri�able, they an assist the proofs in several ways. One possibility is13



that Daikon disovers invariants that are not readily detetable by users. In this ase Daikon helpsproofs by disovering those invariants that would have remained unnotied by users. At the otherextreme lie the invariants that are easily detetable by users even without the help of Daikon. Theautomati disovery of suh invariants is onsidered also useful, sine it saves users the e�ort of�nding and formulating these simple invariants.Seond, Daikon might suggest invariants whih are known to be not always true, pointing toshortomings in the simulation. The IOA ode and NDR programs should then be examined toorret errors or to inrease the simulator's overage of possible exeutions.3.5.3 Interfae to DaikonDaikon has initially been designed to disover invariants for sequential programs written in lan-guages suh as C or Java. It is however possible to make use of Daikon in disovering invariantsfor programs written in other languages so long as it is supplied with suitable delarations anddata traes regarding a program. The simulator provides the neessary mahinery for this. In thepreeding setions we have desribed how the IOA simulator exeutes I/O automata written in theIOA Language. The neessary input for Daikon an be generated by the simulator by reordingdata traes while exeuting I/O automata. This is ahieved by running the simulator with a speialoption ({daikon) as desribed in Setion 5.When run with the above mentioned option, the IOA simulator generates a delaration �lewhih delares a program point for the entry and exit of every transition and a program point forthe automaton. Delaring entry and exit of every transition point as an interesting program pointallows Daikon to infer how a transition's pre-state relates to its post-state. The program point atthe top level allows Daikon to detet invariants that hold at all times, not just at ertain entryand exit points in the automaton. Tehnial issues regarding the implementation an be foundin [Dea01, WS01℄.3.6 Future researh ideasIn this setion we desribe how we intend to ontinue our work on the IOA simulator. Our exper-iments onvine us that the urrent state of the IOA simulator allows it to be used for nontrivialtasks in distributed system design and analysis. The future researh will mostly onern useronveniene and keeping the simulator in tandem with the extensions to the IOA language.3.6.1 Sheduling poliiesThe users of the IOA simulator are required to enode sheduling poliies expliitly by means ofNDR programs. It would be possible alleviate this burden on the users if the simulator was giventhe apability to make sheduling deisions. We outline below a method for enhaning the IOAsimulator with suh a apability.The syntax and the semantis of shedule bloks are rede�ned so that the users are requiredonly to resolve expliit nondeterminism, provide a list of onditional lauses that speify the set ofseleted transitions and their parameter values. They selet a sheduling poliy prior to simulationand ommuniate this hoie to the simulator. Whenever multiple transitions are enabled duringthe exeution, the sheduler selets a transition to be exeuted aording to the sheduling poliythat has been hosen by the user.This idea has appeared in Chefter's design of the simulator, however it is not supported bythe IOA simulator yet. Aording to this design the user has a hoie of three sheduling poliies:randomized, round-robin, and one based on time estimates for eah ation. Moreover, the user is14



required to speify a weight (w) or time estimate for eah transition to be used by the sheduler inthe ase of hoosing the randomized poliy or the poliy based on time estimates respetively.For the randomized sheduler, the simulator omputes the total t of the weights of all spei�edtransitions, and at eah step of the exeution selets a transition with weight w with probabilityw=t.The round-robin sheduler keeps trak of the number of times a transition was enabled but notseleted for exeution and maintains a queue of these ounts. It always selets the transition withthe greatest ount. The ount is reset to zero after the transition is exeuted.In time based sheduling time estimates are used for determining the probability of eah ationbeing sheduled suh that the smaller the time estimate, the higher the probability that the ationwill be sheduled. Time estimates allow one to model the running of a system on multiple proessorswith di�erent speeds. For example, if an ation is intended to be run on a fast proessor the timeestimate assoiated would be smaller than that of other ations whih are intended to be run onslower proessors. Similarly, time estimates an be used to model omputation lateny or therate at whih an environment generates ations. Spei�ally, if times for n ations are given by nintegers time1; time2; : : : timen, then the sheduler determines whih of the n ations to perform bythe following proedure:1. Find the least ommon multiple m of time1; time2; : : : timen2. Assign a weight to eah seleted ation as follows:weight i = (m=time i)=Pn�1j=0 (m=timej).3. Divide the interval [0 : : : 1℄ into n parts[0 : : :weight0℄; [weight0 : : :weight0 + weight1℄; : : : ; [Pn�2j=0 (weight j) : : : 1℄and shedule the ith ation if the random number is in the range[Pi�1j=0 : : :Pij=0weight j℄.The I/O automaton task partition an be thought of as an abstrat desription of threads of ontrolwithin an automaton, and is used to de�ne fairness onditions suh that eah of the tasks is givenfair turns during exeution. The simulator does not support task partitions, however it would beuseful to devise a two-level mehanism for sheduling where the �rst level selets the next task tobe sheduled and the seond level selets a partiular ation within a task.3.6.2 NDR librariesThe urrent mehanism for nondeterminisim resolution might lead to repetitive ode fragmentssattered over the automaton desription (one NDR program for eah hoose statements) andomplex shedule bloks. More important, it is the user who has to provide these programs. Ifthe IOA simulator provided a library of NDR programs or some default NDR programs, the userswould be relieved from having to do this. For eah ommonly enountered sort in IOA programs,suh as natural numbers or booleans, the simulator ould speify a default NDR program to beused when no NDR program is provided by the user. The similar idea applies to the prediates inhoose statements. For example, many hoose statements have where prediates that restrit therange of the hosen value to some �xed �nite set of numbers. It would be possible to determinesome patterns for prediates suh as p : Int � q ^ q : Int ^ r : Int and have the simulator providea library of NDR programs whih resolve nondeterminism suh that the prediate holds.15



3.6.3 Alternatives to NDR programsIt is possible to resolve some of the nondeterminism in an automaton to be simulated by modifyingits IOA spei�ation. For example, the user an augment the automaton with new state variablesontaining sheduling information, an add extra onstraints involving the new sheduling variablesto the preonditions of transitions, and an add extra statements to the e�ets of transitions tomaintain the sheduling variables. This onversion must be done manually, without the help of theNDR programs. We are onsidering the relative advantages of resolving nondeterminism with NDRprograms as explained throughout this doument or within the IOA language itself as mentionedabove. We are planning to ontinue our work by evaluating the e�ets of alternative nondeterminismresolution shemes on the IOA programs with respet to user onveniene, reusability of ode withinthe toolkit and elegane.3.6.4 Theorem proving using Daikon-deteted invariantsA group of us are investigating how to make invariants disovered by Daikon more relevant toproofs of orretness of distributed systems. Toh Ne Win has reently �nished an experiment onusing Daikon-disovered invariants in the veri�ation of a mutual exlusion algorithm [Win02℄. Byarrying out similar but more advaned experiments, we aim to identify when an invariant should beonsidered useful. Our ultimate aim is to make orretness proofs more automati by feeding theseinvariants into the theorem prover. Our urrent e�orts are based on the Larh Prover. However,we are potentially interested in using other theorem provers suh as ACL2, Isaballe or HOL.4 Paired simulationIn the study of distributed systems, it is ommon for omplex systems to be analyzed throughsuessive re�nements: in the presene of an abstrat spei�ation A, one would like to show thatanother spei�ation B is an implementation of A. If A and B are I/O automata, this is modeledby the statement that traes(B) � traes(A).To prove a statement of this form, it is almost inevitable to use an argument by indution onthe length of a �nite pre�x of an exeution of B. This indutive reasoning on automaton exeutionshas been abstrated, yielding the method of simulation relations. Using this method, one seeks toonstrut a simulation relation f from B to A. For a formal de�nition of simulation relations seeSetion 2.4.1 Simulation relationsThe IOA Language inludes syntax for asserting simulation relations between automaton spei�a-tions. One of the goals of IOA is to provide software tools to assist the analysis of I/O automata.For example, given a proposed simulation relation f from B to A, it would be useful to test itsvalidity when restrited to a partiular exeution of B. As in the ase of invariants, a single exe-ution in whih f is observed not to hold would suÆe to show that f is invalid. While ontinuedveri�ation of f in di�erent exeutions of B does not prove the orretness of f , it does provideempirial evidene that f may be true, before the user spending the neessary e�ort to prove itsorretness.In this setion, we desribe how the simulator desribed so far in the paper was extended toallow simulation of a pair of automata related by a mathematial simulation relation. The keyproblem here is the following: the simulation relation itself, being merely a prediate that relates16



the states of two automata, is not suÆient to speify how eah step in the implementation au-tomaton orresponds to a sequene of steps in the spei�ation automaton. In general, there mightbe multiple step orrespondenes that realize a given valid simulation relation between automata,and even if there is only one, it an be diÆult to �nd it. From this point of view, the problem ofderiving a spei�ation-level exeution from an implementation-level exeution is analogous to thatof deriving a deterministi exeution of a single automaton from a spei�ation that allows non-determinism. Not surprisingly, the problem of programmatially speifying a step orrespondeneadmits a similar solution.4.2 Enoding step orrespondenesA step orrespondene needs to speify, for a given low level transition, a high level exeutionfragment suh that the simulation relation holds between the respetive �nal states of the transitionand the exeution fragment. Thus, a step orrespondene an be seen as an \attempted proof"of the simulation relation, missing only the reasoning that shows that the simulation relation ispreserved. To speify the proposed proof of a simulation relation, the urrent syntax of the IOAonstrut forward simulation was extended to inlude a new setion alled proof for speifyingthe step orrespondene. This setion ontains one entry for eah possible transition de�nition inthe low level automaton, and eah entry enodes an algorithm for produing a high level exeutionfragment, using a program similar to the NDR programs used in automaton shedule bloks. Inaddition to these entries, the proof setion also ontains an initialization blok, whih spei�es howto set the variables of the high level automaton given the initial state of the low-level automaton,and an optional states setion that delares auxiliary variables used by the step orrespondene.Figure 2 on Page 18 shows the general high level struture of a simulation proof enoded usingthis language. Note that this syntax extends the syntax for forward simulation relations in IOA.Some of the setions in the proof blok have a more exible syntax than is depited here, and somean be omitted; refer to Setion 6 for the detailed grammar. The states blok introdues auxiliaryvariables used in the proof, and their initial values. The initially blok spei�es how to initializethe state variables of the spei�ation automaton as a funtion of the implementation automaton'sinitial state, so as to satisfy the simulation relation.Eah proofEntryi is either the keyword ignore or a proof program, surrounded by do and oddelimiters. Suh a program is essentially an NDR program, of the form allowed in an automaton'sshedule blok, exept that the �re statements must now provide additional information to resolvethe hoose statements of the spei�ation automaton. If a proof program is present, the simulatorwill exeute it from beginning to end to produe a high-level exeution fragment for that ase, usingthe �re statements to shedule transitions in the spei�ation automaton. A proof entry equal toignore is equivalent to a proof program with no statements, and it is used to represent an emptyhigh-level exeution fragment.The �re statements allowed in proof programs have the struture depited in Figure 3 onpage 18. This general �re statement has the meaning: \shedule the transition of type ationType ,name ationName with atual parameters ationAtuals , using the values of the terms term1 totermn to resolve the hoose statements in the e�et of the transition having dummy variables v1to vn". If present, the aseId label is used to disambiguate between transition de�nitions with thesame signature.This design imposes a onstraint not present in the single automaton ase: it must be requiredthat, for a given transition de�nition in the spei�ation automaton, the hoie statements in ithave dummy variable names whih are distint. While in general it is undesirable to plae unique-naming onstraints for loal dummy variables, we justify this design deision by arguing that, in17



forward simulationfrom autImpl to autSpe :simPrediateproofstatesauxV ar1 : sort1,auxV ar2 : sort2,...auxV arm : sortm,initiallyvar1 := term1;var2 := term2;...varn := termnfor atType1 atName1(atFormals1)ase aseId1proofEntry1for atType2 atName2(atFormals2)ase aseId2proofEntry2...for atTypep atNamep(atFormalsp)ase aseIdpproofEntryp Figure 2: Syntax of step orrespondene
�re ationType ationName(ationAtuals)ase aseIdusing term1 for v1,term2 for v2,...termk for vk Figure 3: �re statements in proof bloks

18



the ase of paired simulation, these are not just dummy variables, but serve also as natural namesfor the hoies in a high-level transition. An alternative design would be to add syntax for expliitlynaming the hoose statements.Example 4.1. The automaton GreeterSpe is a spei�ation for automata that produe the outputation hello any, perhaps in�nite, number of times. The automaton FiniteGreeter is a speializa-tion of this { an automaton that only produes a �nite (bounded by the value of maxGreets) numberof hello outputs. Note the use of dummy variable sg in the hoose statement. FiniteGreeter hasexatly one hoie point, whih ours in its initialization of the maxGreets variable. To be able tosimulate it, it has been augmented with an NDR program that yields 100 as the value of hoie.axioms NonDetautomaton GreeterSpesignatureoutput hellostatesstillGoing : Booltransit ionsoutput hellopre stillGoinge f f stillGoing := hoose sgautomaton FiniteGreetersignatureoutput hellostatesmaxGreets : Int hoose x:Int det do yield 100 od,ount: Int := 0transit ionsoutput hellopre ount < maxGreetse f f ount := ount + 1forward simulationfrom FiniteGreeter to GreeterSpe :GreeterSpe . stillGoing ,(FiniteGreeter .ount < FiniteGreeter . maxGreets )proofi n i t i a l l yGreeterSpe . stillGoing :=( FiniteGreeter .ount < FiniteGreeter .maxGreets )for output hello dof i r e output hellousing ( FiniteGreeter .ount < FiniteGreeter .maxGreets ) for sgodThe forward simulation blok embodies a simulation prediate, whih states that the value ofthe variable stillGoing for automaton GreeterSpe is required to be true if the value of ount inautomata FiniteGreeterhas not reahed the value of maxGreets yet, and false otherwise. The proofblok initializes the value of stillGoing and states the step orrespondene suggested by the user.Aording to the user, eah hello ation exeuted by the low-level automaton (FiniteGreeter),an be mimiked by a hello ation of the high-level automaton Greeter if the dummy variable ishosen to be the value of the prediate (FiniteGreeter.ount < FiniteGreeter.maxGreets). It isthe simulator's responsibility to hek whether the simulation prediate holds and the traes of thelow-level and high-level exeutions are the same.19



Setion A.3 on page 45 ontains the output of the paired simulator for 100 steps. As in the aseof non-paired simulation, it outputs the transitions taken and state variables modi�ed for everystep of the implementation automaton. In addition, it outputs the transitions of the spei�ationautomaton indued by eah implementation step. For eah transition taken in either automaton,the simulator outputs the variables that were hanged by the transition's e�et. The absene ofsimulator error messages in the output indiates that the simulation relation was veri�ed to hold,in this partiular run, with this proposed step orrespondene. We refer the reader to Setion 5 fora detailed desription of how to run the paired simulator.4.3 The paired simulator algorithmIn this setion we present the pseudoode for the paired simulator on pages 21 and 22, as we didin Setion 3.3 for the single automaton ase. The pseudoode is organized into several proedures,of whih SimulatePair is the main one. The reader is referred to Page 21 for the abbreviations andthe notation used.The proedure SimulatePair invokes the algorithm for single-automaton exeution desribed inSetion 3.3, exept that it alls proedure ExeCorresponding for every low-level transition t thatis sheduled. The proedure ExeCorresponding follows the proof program assoiated with t in theproof blok of the simulation relation, exeuting eah of the high level transitions determined by�re statements. In addition, ExeCorresponding veri�es that the indued high level transitions havethe same trae as t, and alls ChekSimRel to determine if the simulation relation holds at theend of the step. The proedure ExeSpeE�et, alled by ExeCorresponding for eah high-leveltransition, exeutes the e�et program of the transition as in the single-automaton ase, exeptthat proedure EvalSpeChoie is alled for every expliit hoie. The latter proedure evaluates ahoose statement using the value provided in the using part of the �re statement that determinedthe high level transition, provided that it satis�es the where prediate.Notie that the low level step is taken in full before its orresponding proof entry is examined,and the prior state of the low level automaton is not reorded. This means that the proof programan only refer to the low level state after the low level step has taken plae. Nevertheless, it is easyto modify an implementation automaton to make it keep trak of relevant parts of its old state, orof the hoies it makes. In this way, the proof an refer to this information, and the language anbe very expressive. A possibility for future expansion is to extend the syntax so that it an referexpliitly to the state before and after the low level step, and to the hoies taken during the step.4.4 Future researh ideasThere are many diretions for future work on the paired simulation tool. We present below somesuggestions for possible projets.4.4.1 Improving the step orrespondene languageThe language desribed in this setion is already substantially exible, and it might be argued thattogether with auxiliary automaton state variables and auxiliary variables in the step orrespon-dene, it allows one to express most of what is usually expressed in simulation proofs. However, tomake easier to use, it might be desirable to have expliit syntax for:� referring to state variable values both before and after the low-level transition, and,� referring to the atual value to whih an expliit hoie was resolved in the low-level automa-ton. 20



NotationR:proof The proof blok in simulation relation RR:impl The implementation-level automaton in simulation relation RR:spe The spei�ation-level automaton in Rt:pre The preondition term for a transition de�nition t.t:where The where term for a transition de�nition t.t:e� The e�et program for a transition de�nition t.:var The dummy variable in a hoose statement .:where The where term in a hoose statement .trans(A; t; n; ) The transition de�nition of type t, name n and ase label  in automaton Aeval (t) The result of evaluating a term t.proofProg(R; t) The proof program orresponding to t in R:proof .t must be a transition of R:implSimulatePair(R):[R: IOA simulation relation℄let A := R:impl, B := R:spe, p := R:proofall Initialize(R)simulate A as desribed in Setion 3, exept that:for eah transition t exeuted in Aall ExeCorresponding(R,t)Initialize(R):[R:IOA simulation relation℄let A := R:impl, B := R:spe, p := R:proofinitialize the state of A (using its NDR mehanism if neessary)initialize the auxiliary variables in the states blok of pinitialize the state of B aording to the initially blok of pall ChekSimRel(R)ExeCorresponding(R; t):[R: IOA simulation relation,t: a transition of R:impl℄p := proofProg(R; t)let ` be an empty sequene of transitionsfor eah statement s in p doif s is not a �re statement thenexeute s (s is an assignment, a onditional, or a while onstrut)elset0 := trans(S:spe; ationType ; ationName ; aseId )all ExeSpeE�et(R; s; t0)append t0 to `all ChekSimRel(R)if trae(`) 6= trae(t) thenhalt with an error Figure 4: Paired Simulator Algorithm (1)21



ExeSpeE�et(R; s; t):[R:IOA simulation relation,s:a �re statement of the form given in Figure 3,t:the transition of R:spe orresponding to s℄assign ationAtuals to the formal parameters of tif eval (t:pre) = true and eval (t:where) = true thenexeute the statements in t:e� following IOA semantis;when a hoose statement  needs to be evaluated, all EvalSpeChoie(R; s; t; )elsehalt with an errorEvalSpeChoie(R; s; t; )[R:IOA simulation relation,s:a,�re statement of the form given in Figure 3,t:the transition of R:spe orresponding to s,:a hoose statement in t:e� ℄let r := eval (termi), where vi is the name of :varassign r to :varif eval (:where) = false thenhalt with an errorChekSimRel(R)[R:IOA simulation relation℄if eval (R:pred) = false thenhalt with an error Figure 5: Paired Simulator Algorithm (2)Neither of these two additions should be hard to implement. For example, prior and posterior valuesof variables ould be distinguished with a prime deoration on variable names. Referenes to low-level expliit hoie values ould be done using another unique-naming-per-transition onvention,this time in the low-level automaton.4.4.2 Interfaing with a omputer-assisted theorem proverThe paired simulator may provide ounterexample exeutions where the proposed step orrespon-dene does not hold, but it will never ompletely ertify the proof, even if it provides empirialevidene of its orretness after multiple simulations. However, a version of this language ould beused as an interfae between the simulation relation stated in IOA and a theorem prover: the proofprogram an be used to drive the theorem prover in the major overall steps of the proof, reduingthe amount of routine work that the user has to do. We refer the reader to [KCD+℄ for an examplethat illustrates the promise of this diretion.4.4.3 Adding syntax for providing a omplete proofAs it stands, the proof blok is not a really a proof, sine it is missing the reasoning that shows thateah high-level exeution fragment produed by a for blok in the proof preserves the simulationrelation, assuming the relation held true in the immediately preeding state. An interesting projetwould be to add syntax that would allow the inlusion of this reasoning, in a form suitable forautomated proof veri�ation. 22



REM

TRY

CRIT

EXITFigure 6: Cyle of regions for a single user5 Mutual exlusion: A Tutorial exampleIn the preeding setions we introdued the basi onepts onerning the simulation of I/O au-tomata and presented simple examples to illustrate the simulation language (an extension of IOA)supported by the IOA simulator. This setion is intended to serve as a tutorial for using the IOAtoolkit for simulating IOA programs. The instrutions for obtaining the toolkit an be found atURL http://theory.ls.mit.edu/tds/ioa.html.We take a well-known problem in distributed algorithms researh { the mutual exlusion problem{ and proeed with the reader through multiple levels of abstration in speifying the problem andderiving a low-level algorithm that implements mutual exlusion. We use the simulation tools tohek that our algorithms work as expeted and to inrease our on�dene in the orretness of theproposed simulation relations between di�erent levels in the abstration hierarhy.5.1 The Mutual exlusion problemThe mutual exlusion problem involves the alloation of a single, indivisible, non-shareable resoureamong n proesses. The resoure ould be, for example, an output devie that requires exlusiveaess to produe sensible output or a data struture that requires exlusive aess in order to avoidinterferene among the operations of di�erent proesses.A proess with aess to the resoure is modeled as being in a ritial region, whih is adesignated subset of its states. When a proess is not involved in any way with the resoure, itis said to be in the remainder region. In order to gain admittane to its ritial region, a proessexeutes a trying protool, and after it is done with the resoure, it exeutes an exit protool. Thisproedure an be repeated, so that eah proess follows a yle, moving from its remainder region(R) to its trying region (T), then to its ritial region (C), then to its exit region (E), and thenbak to its remainder region. This yle is shown in Figure 6.In our example, we onsider mutual exlusion algorithms within the shared memory model [Lyn96℄.The shared memory system ontains n proesses, numbered 1; : : : ; n. The inputs to proess i arethe tryi ation whih models a request for aess to the resoure by proess i, and the exiti ation,whih models an announement that proess i is done with the resoure. The outputs of proess i23



Proessi exititryiritiremiFigure 7: External interfae of a proessare riti whih models the granting of aess to proess i, and remi whih tells the proess i thatit an ontinue with the remainder of its work.The try; rit; exit, and rem ations are the only external ations of the shared memory system.The proesses are responsible for performing the trying and exit protools. The external interfaeof proess i is depited in Figure 7.5.2 Spei�ation of mutual exlusion for three proessesThe automaton Mutex below is the IOA spei�ation for a mutual exlusion servie in a system ofthree proesses.type Index = enumeration of p1, p2, p3type Region = enumeration of rem , try, rit , exitautomaton Mutexsignatureinput try(p:Index)output rit (p:Index)input exit (p:Index)output rem(p:Index)statesregionMap : Array[Index, Region ℄ := onstant (rem)transit ionsinput try(p: Index)e f f regionMap [p℄ := tryoutput rit (p: Index)pre ( regionMap [p℄ = try)^ 8 u: Index ((p 6= u) ) ( regionMap [u℄ 6= rit ))e f f regionMap [p℄ := ritinput exit (p: Index)e f f regionMap [p℄ := exitoutput rem(p: Index)pre regionMap [p℄ = exite f f regionMap [p℄ := remExplanation of ode The ode above assumes that the proesses in the system are referred toby indies p1, p2 and p3 and the regions whih onstitute the yle used in modeling the exeutionof a proess are alled rem, try, rit and exit. The de�nitions for types Index and Region are usedto express these assumptions in IOA. 24



The signature of Mutex orresponds to the expression of the the external interfae in the IOAlanguage of a proess shown in Figure 7. The state variable regionMap maps proess indies toregions and is used to keep trak of the urrent region of a proess. Eah proess is assumed to bein its remainder region initially, hene the initialization of regionMap to onstant(rem).The transition de�nitions are mostly self-explanatory. Eah ation auses the variable regionMapto be updated to reord the region that is entered upon its exeution. The transition de�nition forrit warrants more attention as it is this de�nition whih imposes the mutual exlusion ondition.A proess in a trying region is allowed to enter its ritial region only if there is no other proesswhih is also in region rit.5.2.1 The EnvironmentWe have hitherto assumed that eah proess obeys the yli region protool. Formally, we de�nea sequene of tryi; riti; exiti and remi ations to be well-formed for proess i if it is a pre�x ofthe ylially ordered sequene tryi; riti; exiti; remi; tryi; : : : In this setion we no longer assumebut enfore the ondition that the interation of the automaton Mutex with its environment iswell-formed by speifying the behavior of the environment by means of the automaton Env. Thesignature of Env is similar to that of Mutex. The point to notie is that the input ations of Mutexare output ations for Env and the output ations of Env are input ations for Mutex.type Region = enumeration of rem , try, rit , exittype Index = enumeration of p1, p2, p3automaton Envsignatureoutput try(p: Index)input rit (p: Index)output exit (p: Index)input rem(p: Index)statesregionMap : Array[Index, Region ℄ := onstant (rem)transit ionsoutput try(p)pre regionMap [p℄ = reme f f regionMap [p℄ := tryinput rit (p)e f f regionMap [p℄ := ritoutput exit (p)pre regionMap [p℄ = rite f f regionMap [p℄ := exitinput rem(p)e f f regionMap [p℄ := rem5.2.2 Well-formed interation with the environmentThe automaton MutexEnv below is an automaton whih has been obtained by omposing Mutex andEnv aording to the de�nition of omposition from Setion 2. The resulting automaton MutexEnvis the IOA spei�ation of mutual exlusion for three proesses where the well-formedness of inter-ation with the environment is guaranteed. The invariant at the very end asserts mutual exlusion.type Index = enumeration of p1, p2, p3type Region = enumeration of rem , try, rit , exit25



automaton MutexEnvsignatureoutput try(p: Index)output rit (p: Index)output exit (p: Index)output rem(p: Index)statesregionMap : Array[Index, Region ℄ := onstant (rem)transit ionsoutput try(p)pre regionMap [p℄ = reme f f regionMap [p℄ := tryoutput rit (p)pre regionMap [p℄ = try^ 8 u: Index (p 6= u ) regionMap [u℄ 6= rit )e f f regionMap [p℄ := ritoutput exit(p)pre regionMap [p℄ = rite f f regionMap [p℄ := exitoutput rem(p)pre regionMap [p℄ = exite f f regionMap [p℄ := reminvariant of MutexEnv : % asserts mutual exlusion8 p: Index(regionMap [p℄ = rit) 8 u: Index (p 6= u ) regionMap [u℄ 6= rit ))5.2.3 Syntax and semanti heking with ioaChekEah IOA program needs to pass through a syntax heking phase before it is subjeted to furtherstudy with bak-end tools suh as the simulator. The tool for syntax heking an be used byrunning the shell sript ioaChek. Note that this program also performs some semanti heks onthe ode. To hek your ode with ioaChek:1. Plae the ode in a �le with extension .ioa. For example: MutexEnv.ioa2. At the ommand line type> ioaChek MutexEnv.ioaThe result of using ioaChek without any options is either a message on the standard outputthat indiates a suessful hek (Finished heking speifiations) or errors. The ommandioaChek an also be used to hek LSL spei�ations plaed in a �le with the extension.lsl. Thefollowing is the list of options available for running ioaChek.UsageioaChek [option℄ soure-fileOptions-il translate to intermediate language-p prettyprint soure files-path <dirlist> use <dirlist> to find soure files (default '.')-sorts print sorts in first soure file (LSL only)-syms print symbols in first soure file (LSL only)-debug print debugging information-verbose print verbose debugging information26



5.3 Levels of abstration and simulationIn this setion we present the IOA ode of two algorithms that implement mutual exlusion spei�edby the automaton MutexEnv. The automaton Dijkstra desribes the mutual exlusion algorithmdesigned by Dijkstra [Lyn96℄. The automaton DijkstraInt is a simpler version of Dijkstra's algo-rithm that abstrats from those parts in the original algorithm dediated to dealing with liveness.In other words, we have an abstration hierarhy where the automata MutexEnv, DijkstraInt andDijkstra lie respetively at the top, intermediate and lowest levels.Figure 8 summarizes how we proeed in the rest of this setion. We �rst present the IOA ode forthe intermediate level algorithm and use the IOA simulator to hek whether it works as expeted.To inrease our on�dene that it omplies with the spei�ation of mutual exlusion, we proposea forward simulation relation from DijkstraInt to MutexEnv. We then use the paired simulatorto hek that the proposed relation holds for the seleted exeutions. We follow a similar line ofation for the lower level algorithm. In this ase we propose and hek a forward simulation relationfrom Dijkstra to DijkstraInt. We know by Theorem 2.1 that if there is a forward simulation fromDijkstraInt to MutexEnv and from Dijkstra to DijkstraInt, then traes(Dijkstra) must be a subsetof traes(MutexEnv). That is to say all observable behaviors of Dijkstra are a subset of observablebehaviors of MutexEnv and therefore satisfy mutual exlusion.5.3.1 Intermediate level algorithmThe following is an IOA program whih inludes the desription of the intermediate level algorithmand a shedule blok to simulate the automaton DijkstraInt.axioms NonDettype Index = enumeration of p1, p2, p3type Region = enumeration of rem , try, rit , exittype PValue = enumeration of rem , setflag01 , setflag2 , hek, leavetry ,rit , reset , leaveexittype Stage = enumeration of stage01 , stage2automaton DijkstraIntsignatureoutput try(p: Index)output rit (p: Index)output exit (p: Index)output rem(p: Index)internal setflag01 (p: Index)internal setflag2 (p: Index)internal hek(p: Index , u: Index)internal reset(p: Index)statesflag : Array[Index, Stage℄ := onstant (stage01 ),p: Array[Index, PValue ℄ := onstant (rem ),S: Array[Index, Set[Index ℄℄ := onstant ({})transit ionsoutput try(p)pre p[p℄ = reme f f p[p℄ := setflag01internal setflag01 (p)pre p[p℄ = setflag01e f f flag [p℄ := stage01;p[p℄ := setflag2internal setflag2 (p)pre p[p℄ = setflag2 27



(Dijkstra)

   (MutexEnv)

(DijkstraInt)

Problem   specification

Intermediate level algorithm

Low level algorithm

Step 1

Step 2  

Step 4

Step 3Step 1: single-automaton simulation with simStep 2: paired simulation with psimStep 3: single-automaton simulation with simStep 4: paired simulation with psimFigure 8: Abstration hierarhy
28



e f f flag [p℄ := stage2;S[p℄ := {p};p[p℄ := hekinternal hek(p, u)pre p[p℄ = hek ^ :(u 2 S[p℄)e f f i f flag[u℄ = stage2 then S[p℄ := {};p[p℄ := setflag01e lse S[p℄ := S[p℄ [ {u};i f size (S[p℄) = 3 then p[p℄ := leavetryf if ioutput rit (p)pre p[p℄ = leavetrye f f p[p℄ := ritoutput exit (p)pre p[p℄ = rite f f p[p℄ := reset;internal reset(p)pre p[p℄ = resete f f flag [p℄ := stage01;S[p℄ := {};p[p℄ := leaveexitoutput rem(p)pre p[p℄ = leaveexite f f p[p℄ := remshedulestates pik : Int,p: Indexdo while true dopik := randomInt (1,3);i f pik = 1 then p := p1e l s e i f pik = 2 then p := p2e lse p := p3f i ;i f p[p℄ = rem then f i r e output try(p)e l s e i f p[p℄ = setflag01 then f i r e internal setflag01 (p)e l s e i f p[p℄ = setflag2 then f i r e internal setflag2 (p)e l s e i f p[p℄ = hek then i f :(p1 2 S[p℄) then f i r e internal hek(p,p1)e l s e i f :(p2 2 S[p℄) then f i r e internal hek(p,p2)e l s e i f :(p3 2 S[p℄) then f i r e internal hek(p,p3) f ie l s e i f p[p℄ = leavetry then f i r e output rit (p)e l s e i f p[p℄ = rit then f i r e output exit (p)e l s e i f p[p℄ = reset then f i r e internal reset(p)e lse f i r e output rem(p)f iododExplanation of ode The automaton DijkstraInt makes use of the types PValue and Stagein addition to those that we have already introdued. The values of type PValue represent thepossible program ounter values for the proess while values of type Stage represent the stages ofthe algorithm. The phrase axioms NonDet is inluded to allow the use of operations spei�ed bythe trait NonDet.The signature of DijkstraInt has three internal ations along with those of MutexEnv. It alsohas some state variables whih are not present in MutexEnv. The algorithm spei�ed by DijkstraInt29



has two stages. The �rst stage stage01 indiates that a proess is either inative or is about to enterthe seond stage. The seond stage stage2 embodies the ruial steps and determines whether aproess is allowed to enter the its ritial region. A proess an enter its ritial region only if allother proesses are in the �rst stage of the algorithm. The transition de�nition for ation hekdetails how this is heked. The state variables flag and p are used respetively to reord the stageof the algorithm for eah proess and to ontrol the order of ourrene of the ations mimiking theprogram ounter of a proess. The shedule blok implements a randomized sheduling poliy forthree proesses. One of the three proesses is piked randomly eah time the while loop is exeuted.When p[p℄ is hek then the shedule blok deides the proess to be heked by p, by looking atS[p℄ and yielding the proess with the smallest identi�er that is not already in S[p℄. Suh a proessis guaranteed to exist beause p[p℄ is no longer hek one S[p℄ ontains all proesses.5.3.2 Running the simulator with simTo simulate your ode with sim:1. Plae your ode in a �le with extension .ioa, for example DijkstraInt.ioa2. Chek the ode for syntax and semanti errors with ioaChek3. At the ommand line type> sim 100 DijkstraInt.ioawhere the �rst argument to sim is the number of required simulation steps and the seondargument is the soure �le. The hoie of number 100 here is arbitrary.A sample output is presented in Setion A.4 of the Appendix.The following is the list of options available for running sim.Usagesim [option℄ <# steps> [<automaton name>℄ <IL filename>Options[-big℄ Use BigInteger and BigReal for all alulations[-onfig <string>℄+ Use the given onfiguration file(s) for options[-daikon℄ Turn on Daikon instrumentation on[-dbg <string>℄+ Turn on debug information for a java lass or pakage.[-debug℄ Turn on debug information globally[-ignoreFirst℄ Ignore first program point (init states) during Daikon instrumentation[-noIl℄ Do not send il output to a file (if reading an IOA file)[-o <string>℄ Set base name for output[-odels <string>℄ Set destination file for dels output[-odtrae <string>℄ Set destination file for dtrae output[-oil <string>℄ Set destination for il output[-rseed <number>℄ Set randomizer seed for regression resting[-state℄ Show all state variables during exeution[-traes℄ Show only traes during exeution[-traesOnly℄ Show only traes during exeution5.3.3 Forward simulation from DijkstraInt to MutexEnvThe ode below de�nes a forward simulation relation in IOA and ontains a proof blok for thatrelation. Together with the IOA desriptions of Mutex and DijkstraInt augmented with the NDR30



programs from Setion 5.3.1, this blok allows one to use the paired simulator to hek whetherthe relation holds in the simulated exeutions.forward simulation from DijkstraInt to MutexEnv :8 i: Index ( DijkstraInt .p[i℄ = setflag01 _ DijkstraInt .p[i℄ = setflag2 _DijkstraInt .p[i℄ = hek _ DijkstraInt .p[i℄ = leavetry, MutexEnv .regionMap [i℄ = try );8 i: Index ( DijkstraInt .p[i℄ = rit , MutexEnv .regionMap [i℄ = rit );8 i: Index ( DijkstraInt .p[i℄ = rem , MutexEnv .regionMap [i℄ = rem );8 i: Index ( DijkstraInt .p[i℄ = reset _ DijkstraInt .p[i℄ = leaveexit, MutexEnv .regionMap [i℄ = exit );proofi n i t i a l l y MutexEnv .regionMap := onstant (rem)for output try(p:Index) do f i r e output try(p) odfor output rit (p:Index ) do f i r e output rit (p) odfor output exit (p:Index ) do f i r e output exit (p) odfor output rem(p:Index) do f i r e output rem(p) odfor internal setflag01 (p:Index) ignorefor internal setflag2 (p:Index) ignorefor internal hek(p:Index,u:Index) ignorefor internal reset(p:Index) ignoreExplanation of ode The andidate relation in this example is based on the relation between thevalues of the state variable p of the low-level automaton and those of the state variable regionMapof the spei�ation automaton. The intuition behind this relation is as follows. For eah region inthe spei�ation of mutual exlusion there are ertain ations that an be performed by the low-level automaton. These ations are determined by the p values. The relation states that wheneverthe program ounter of a proess at the low-level automaton is set to one of setflag01, setflag2,hek, or leavetry, the regionMap of the spei�ation automaton must show region try for thesame proess. The rest of the relation is de�ned similarly. The delimiter \;" an be interpreted asonjuntion.In paired simulation, the simulation of the low-level algorithm drives the simulation of the high-level one. For eah external ation performed by the low-level automaton, the proof blok diretsthe simulator to �re the ation with the spei�ed name at the high-level. The internal ationsare mathed by empty exeution fragments indiated by ignore statements. The simulator hekswhether the proposed simulation relation holds after the ations are performed.5.3.4 Running the paired simulator with psimTo run the paired simulator:1. Plae the ode is in a �le with extension .ioa, for example InttoMutex.ioa2. Chek the ode for syntax and semanti errors with ioaChek3. At the ommand line type> psim 100 DijkstraInt MutexEnv InttoMutex.ioawhere the �rst argument to psim is the number of simulation steps, the seond argument isthe name of the low-level (implementation) automaton and the third argument is the nameof the high-level (spei�ation) automaton and the fourth one is the name of the soure �le.The hoie for number 100 in this example is arbitrary.31



A sample output is presented in Setion A.5 of the Appendix.The following is the list of options available for running psim.Usagesim [option℄ <numSteps> <implAut> <speAut> <filename>Options[-big℄ Use BigInteger and BigReal for all alulations[-onfig <string>℄+ Use the given onfiguration file(s) for options[-daikon℄ Turn on Daikon instrumentation on[-dbg <string>℄+ Turn on debug information for a java lass or pakage.[-debug℄ Turn on debug information globally[-ignoreFirst℄ Ignore first program point (init states) during Daikon instrumentation[-noIl℄ Do not send il output to a file (if reading an IOA file)[-o <string>℄ Set base name for output[-odels <string>℄ Set destination file for dels output[-odtrae <string>℄ Set destination file for dtrae output[-oil <string>℄ Set destination for il output[-rseed <number>℄ Set randomizer seed for regression resting[-state℄ Show all state variables during exeution[-traes℄ Show only traes during exeution[-traesOnly℄ Show only traes during exeution5.3.5 Forward simulation from Dijkstra to DijkstaIntIn this setion we present the IOA ode written for use with the paired simulator on automataDijkstra and DijkstaInt. Note that the low-level automaton Dijkstra is presented for the �rsttime. We do not explain it in detail as it is similar in many aspets to DijkstraInt. The maindi�erene is that Dijkstra has three stages as opposed to two in Dijkstra. The additional stage isneessary to deal with the turn variable whose purpose is to guarantee that a proess eventuallyenters its ritial region. The internal ations whih are present in Dijkstra but not in DijkstraIntall deal with testing and setting the variable turn.type PValueLow = enumeration of rem, setflag1 , testturn , testflag , setturn ,setflag2 , hek, leavetry , rit , reset,leaveexittype StageLow = enumeration of stage0 , stage1 , stage2automaton Dijkstrasignatureoutput try(p:Index)output rit (p:Index)output exit (p:Index)output rem(p:Index)internal setflag1 (p: Index)internal setflag2 (p: Index)internal testturn (p: Index)internal testflag (p, u: Index)internal setturn (p: Index)internal hek(p: Index , u: Index)internal reset(p : Index)statesturn : Index, 32



flag : Array[Index, StageLow ℄ := onstant (stage0 ),p: Array[Index, PValueLow ℄ := onstant (rem),whose_flag : Array[Index , Index℄,S: Array[Index, Set[Index ℄℄ := onstant ({})transit ionsoutput try(p: Index)pre p[p℄ = reme f f p[p℄ := setflag1internal setflag1 (p: Index)pre p[p℄ = setflag1e f f flag [p℄ := stage1;p[p℄ := testturninternal testturn (p: Index)pre p[p℄ = testturne f f i f turn = p then p[p℄ := setflag2e lse p[p℄ := testflag ;whose_flag [p℄ := turnf iinternal testflag (p, u: Index)pre p[p℄ = testflag ^ whose_flag [p℄ = ue f f i f flag[u℄ = stage0 then p[p℄ := setturne lse p[p℄ := testturnf iinternal setturn (p: Index)pre p[p℄ = setturne f f turn := p;p[p℄ := setflag2internal setflag2 (p: Index)pre p[p℄ = setflag2e f f flag [p℄ := stage2;S[p℄ := {p};p[p℄ := hekinternal hek(p, u: Index)pre p[p℄ = hek ^ :(u 2 S[p℄)e f f i f flag[u℄ = stage2 then S[p℄ := {};p[p℄ := setflag1e lse S[p℄ := S[p℄ [ {u};i f size (S[p℄) = 3 then p[p℄ := leavetry f if ioutput rit (p: Index)pre p[p℄ = leavetrye f f p[p℄ := ritoutput exit (p: Index)pre p[p℄ = rite f f p[p℄ := resetinternal reset(p: Index)pre p[p℄ = resete f f flag [p℄ := stage0;S[p℄ := {};p[p℄ := leaveexitoutput rem(p: Index)pre p[p℄ = leaveexite f f p[p℄ := remshedulestates pik : Int,p: Indexdo while true dopik := randomInt (1,3); 33



i f pik = 1 then p := p1e l s e i f pik = 2 then p := p2e lse p := p3f i ;i f p[p℄ = rem then f i r e output try(p)e l s e i f p[p℄ = setflag1 then f i r e internal setflag1 (p)e l s e i f p[p℄ = testturn then f i r e internal testturn (p)e l s e i f (p[p℄ = testflag ^ whose_flag [p℄ 6= p) thenf i r e internal testflag (p,whose_flag [p℄)e l s e i f p[p℄ = setturn then f i r e internal setturn (p)e l s e i f p[p℄ = setflag2 then f i r e internal setflag2 (p)e l s e i f p[p℄ = hek then i f :(p1 2 S[p℄) then f i r e internal hek(p,p1)e l s e i f :(p2 2 S[p℄) then f i r e internal hek(p,p2)e l s e i f :(p3 2 S[p℄) then f i r e internal hek(p,p3)f ie l s e i f p[p℄ = leavetry then f i r e output rit (p)e l s e i f p[p℄ = rit then f i r e output exit(p)e l s e i f p[p℄ = reset then f i r e internal reset(p)e lse f i r e output rem(p)f iododforward simulation from Dijkstra to DijkstraInt :( Dijkstra .S = DijkstraInt .S);8 p:Index ( Dijkstra .flag [p℄ = stage0 _ Dijkstra .flag [p℄ = stage1, DijkstraInt .flag [p℄ = stage01 );8 p:Index ( Dijkstra .flag [p℄ = stage2 , DijkstraInt .flag [p℄ = stage2 );8 p:Index ( Dijkstra .p[p℄ = rem , DijkstraInt .p[p℄ = rem );8 p:Index ( Dijkstra .p[p℄ = setflag1 , DijkstraInt .p[p℄ = setflag01 );8 p:Index ( Dijkstra .p[p℄ = testturn _ Dijkstra .p[p℄ = testflag _Dijkstra .p[p℄ = setturn _ Dijkstra .p[p℄ = setflag2, DijkstraInt .p[p℄ = setflag2 );8 p:Index ( Dijkstra .p[p℄ = hek , DijkstraInt .p[p℄ = hek);8 p:Index ( Dijkstra .p[p℄ = leavetry , DijkstraInt .p[p℄ = leavetry );8 p:Index ( Dijkstra .p[p℄ = rit , DijkstraInt .p[p℄ = rit );8 p:Index ( Dijkstra .p[p℄ = reset , DijkstraInt .p[p℄ = reset);8 p:Index ( Dijkstra .p[p℄ = leaveexit , DijkstraInt .p[p℄ = leaveexit );proofi n i t i a l l yDijkstraInt .flag := onstant (stage01 );DijkstraInt .p := onstant (rem );DijkstraInt .S := onstant ({})for output try(p:Index) do f i r e output try(p) odfor internal setflag1 (p:Index) do f i r e internal setflag01 (p) odfor internal testturn (p:Index) ignorefor internal testflag (p,u:Index) ignorefor internal setturn (p:Index) ignorefor internal setflag2 (p:Index) do f i r e internal setflag2 (p) odfor internal hek(p,u:Index) do f i r e internal hek(p,u) odfor output rit (p:Index ) do f i r e output rit (p) odfor output exit (p:Index ) do f i r e output exit (p) odfor internal reset(p:Index) do f i r e internal reset(p) odfor output rem(p:Index) do f i r e output rem(p) od34



Explanation of ode The forward simulation relation is based on the idea that the �rst twostages (stage0 and stage1) of algorithm Dijkstra are represented by a single stage in DijkstraInt(stage01). The rest of the ode should be self-explanatory. The paired simulation an be arriedout by plaing the ode for DijkstraInt from Setion 5.3.1 in the same �le as the ode for Dijkstrawith the shedule blok and the proposed simulation relation.6 Simulator-related extensions to the IOA languageIn this setion we revisit those parts of the IOA language that were modi�ed in order aommodatethe language onstruts on whih the IOA simulator depends. The modi�ations to the IOA syntaxare desribed formally using a BNF grammar. We also omment on the semanti onstraints forthe extensions to the IOA language. The reader is referred to [GLV01℄ for the rest of the IOAgrammar, the grammar syntax onventions used here and the semantis of the IOA Language.6.1 Resolution of nondeterminismAs explained in Setion 3, our approah to resolution of nondeterminism requires programmers tospeify how the nondeterminism in an automaton is to be resolved by the simulator. The neessarymodi�ation to the IOA Language has two parts:1. Addition of syntax for sequential programs that speify the values to hoose or the transitionsto shedule (\NDR programs").2. Extensions to the existing syntax for automaton and hoose that inorporate these sequentialprograms.The resulting grammar is very similar to the existing program grammar in IOA, exept that itpermits the new �re and yield statements, used by the NDR mehanisms to shedule automatonations and determine values of hoies, as well as the while statement, whih provides a loopingonstrut with simple deterministi semantis.Extension to primitive automaton syntax: This extension is straightforward: it simply pro-vides a plae to speify the shedule of a primitive automaton.Original:basiAutomaton ::= 'signature' formalAtions+ states transitions tasks?Modi�ed:basiAutomaton ::= 'signature' formalAtions+ states transitions tasks? shedule?shedule ::= 'shedule' states? 'do' NDRProgram 'od'NDRProgram ::= NDRStatement;*NDRStatement ::= assignmentj NDRConditionalj NDRWhilej NDRFireNDRConditional ::= 'if' prediate 'then' NDRProgram('elseif' prediate 'then' NDRProgram)*('else' NDRProgram)? 'fi'NDRWhile ::= 'while' prediate 'do' NDRProgram 'od'NDRFire ::= 'fire' ationType ationName ationAtuals? transCase?j 'fire' 35



An assignment in a shedule blok may assign a value to any of the shedule's state variables, butit may not assign values to variables inside the automaton. This onstraint is veri�ed during statiheking.Determining values within a hoose: This extension is also mostly straightforward. Besidesproviding a plae to hold the NDRProgram, however, it does two additional things: �rst, it spei�es ashorthand notation for a (presumably) ommon form of hoie determination, and seond, it allowsfor a hoose statement to speify a variable name without a onstraining where prediate. This isneessary for paired simulation, sine the names of the hosen values in the spei�ation automa-ton are still neessary to arry out the step orrespondene, even in the absene of a where prediate.Original:hoie ::= 'hoose' (variable 'where' prediate)?Modi�ed:hoie ::= 'hoose' (variable ('where' prediate)?)? hoieNDR?hoieNDR ::= 'det' 'do' NDRProgramY 'od'j NDRYieldNDRProgramY ::= NDRStatementY;*NDRStatementY ::= assignmentj NDRConditionalYj NDRWhileYj NDRYieldNDRConditionalY ::= 'if' prediate 'then' NDRProgramY('elseif' prediate 'then' NDRProgramY)*('else' NDRProgramY)? 'fi'NDRWhileY ::= 'while' prediate 'do' NDRProgramY 'od'NDRYield ::= 'yield' termThe only statements appearing in a yield ontext are those that return values; spei�ally �restatements are disallowed.6.2 Labeling transition de�nitionsAs explained in Setion 3, our approah to resolution of nondeterminism requires a way to refer toa transition de�nition in a primitive automaton. In general, it is not enough for this to speify thename and parameters of the transition: it is possible for two transitions with idential signatureand where lause to be enabled in the same state. This addition to the IOA syntax remedies thesituation by providing an expliit naming mehanism:Original:transition ::= ationHead hooseFormals? preondition? effet?ationHead ::= ationType ationName (ationAtuals where?)?Modi�ed:transition ::= ationHead hooseFormals? preondition? effet?ationHead ::= ationType ationName (ationAtuals where?)?transCase?transCase ::= 'ase' idOrNumeral 36



The user is free to de�ne, for a given ation, two transitions with the same parameters and asename. The semanti heker does not issue an error message unless a shedule blok for theautomaton refers to suh a dupliate transition. In ase a dupliate transition is referred to, itindiates that more than one transition mathes the given desription, just as it would if there wereno ase names given.6.3 Labeling invariantsIt is onvenient for invariants to have a name, so that the simulator an refer to the spei� invari-ant in ase it fails. This was aomplished with the following grammar hange, whih allows anynumeral or identi�er to be given as the name for an invariant.Original:invariant ::= 'invariant' 'of' automatonName ':' prediateModi�ed:invariant ::= 'invariant' idOrNumeral? 'of' automatonName ':' prediateBeause invariant labels exist only for the user's onveniene in reading the simulator's output, theuser is free to hoose any (alphanumeri) name desired; no semanti heks are performed. Forexample, the user may give all invariants of an automaton the same name | this is onsidered aslegal although it should obviously be avoided.6.4 Paired simulationIn addition to the mathematial statement of a simulation relation between automata, the simulatoralso needs a step orrespondene between the automata whih realizes the simulation relation.Hene, it was neessary to develop a language for speifying these orrespondenes. See Setion 4for the semantis of this language, and for justi�ation of the approah and terminology.The syntax of IOA has been extended with forward simulations to permit the spei�ationof a \proof", whih embodies the step orrespondene. This proof spei�es, for eah transitionthat the implementation automaton might take, a way to produe a sequene of transitions for thespei�ation automaton. The following are the additions:Original:simulation ::= ('forward' j 'bakward') 'simulation' 'from'automatonName 'to' automatonName ':' prediateModi�ed:simulation ::= ('forward' j 'bakward') 'simulation' 'from'automatonName 'to' automatonName ':' prediatesimProof?simProof ::= 'proof' states? ('initially' (variable ':=' term);+)?simProofEntry+simProofEntry ::= 'for' ationType ationNameationFormals? transCase?(('do' simProofProgram 'od') j 'ignore')simProofProgram ::= simProofStatement;+ 37



simProofStatement ::= assignmentj simProofConditionalj simProofWhilej simProofFiresimProofConditional ::= 'if' prediate 'then' simProofProgram('elseif' prediate 'then' simProofProgram)*('else' simProofProgram)? 'fi'simProofWhile ::= 'while' prediate 'do' simProofProgram 'od'simProofFire ::= 'fire' ationType ationNameationAtuals? transCase?('using' ( term 'for' variable ),+)?The left-hand side of an assignment in a simProofInit blok must refer to a state variable of thespei�ation automaton. The user assumes the burden of ensuring that the initially assignmentsresult in a reahable state of the spei�ation automaton.7 Implementation of the simulator7.1 The IOA toolkit arhitetureThe simulator is part of the IOA toolkit, whih is written in Java. The toolkit is split into twoparts: the front end and the bak end. The front end inludes the IOA parser and syntax heker,while the bak end inludes the simulator, a ode generator (to Java) and a translator to LSL. Thetools share many omponents, and the shared parts are designed to failitate adding new tools withminimal e�ort. The omponents an be divided into three ategories:� Intermediate language and syntax trees All bak end tools use the same syntax tree torepresent the IOA language strutures as Java data strutures. The front end generates anintermediate language (IL) representation of IOA, and bak end libraries parse this IL intothe shared syntax tree.3� Data strutures for exeutable IOA In addition to the simulator, the IOA ode generatoran also exeute IOA programs4. To prevent redundant ode and to ensure similar behavior,the toolkit programs that an exeute IOA all use the same Java pakage for IOA datastrutures and funtions.� Shared utility omponents To provide similar behavior aross all the IOA tools, many userinterfae and other features are implemented in shared libraries. In addition to the IL parserand syntax tree desribed below, the tools share an error handling mehanism, a ommandline argument proessor and debug output generator.Of ourse, all the tools are di�erent in the ways they work with IOA. Spei�ally, some toolsrequire only a subset of the language. For example, the simulator has no need for assert lauses inLSL spei�ations for data strutures, but requires shedule and det bloks for nondeterminismresolution. In ontrast, the the translator to LSL needs the assert lauses, but does not neednondeterminism resolution. We use the following rules for handling these implementation issues:3Note that the front end has to have a syntax tree to parse IOA, but this tree is di�erent from the bak end tree,and does not interat with the bak end. We shall heneforth all the front end parser the IOA parser and the bakend IL parser the IL parser.4Using the same ideas for nondeterminism resolution and sheduling that are presented in this paper38



� The IOA front end parser understands all extensions of the language and writes IL �lesontaining all the relevant information.� The IL parser understands the ore part of IOA, suh as automaton signature, state variablesand transition de�nitions.� For a language struture that is spei� to a partiular tool, the tool is responsible for parsingand reating syntax trees for the struture.The advantage of the above rules is that it makes the tools more independent from eah otherand the IL more robust to hanges. The disadvantage is that implementing global features (likeunparsing) is more diÆult with respet to syntax trees.7.2 The Intermediate language and IL parserThe IL is written to a text �le by the IOA parser after an IOA �le is read. It is meant to be \selfontained": unlike an IOA �le, it does not refer to external de�nitions suh as LSL traits.The format of the IL is parenthesized symboli expressions (S-expressions), whih are easilyparsed and allow human reading and editing for debugging.The onvention is that the IOA parser and the IL parser do not write/read diretly to/fromtext format. Instead, they parse/unparse the into S-expressions and then let a utility write totext form. This separates the steps involved in text proessing and low-level parsing from thehigh-level reognition of IOA syntax strutures. Another advantage of this is that the formattingand appearane of IL is the same when it is being generated by the IOA parser or the IL parser5.Lastly, when the IL parser �nds an error in the IL, it uses the error handler ommon to all tools.7.2.1 The spe objetEvery IL �le ontains a top level objet alled the spe:(ioa *sort-table* *operator-table* *variable-table**automaton-definition* ...*annotations*)The spe is a an S-expression list (S-list) that begins with the word ioa, and ontains thesymbol tables (one for data type sorts, one for operators and one for variable names), followed bythe automaton de�nitions (more than one automaton an be de�ned), followed by any additionalannotations for the spe.The IL de�nes spei� plaes where tool-spei� extensions of the language may be plaed: theyare always at the end of S-lists and are written as S-lists following globally-reognized elements.The IL Parser delegates the parsing of tool-spei� extensions bak to the tool that invoked it.5Even though they use di�erent syntax trees, both of them generate S-expressions
39



7.2.2 Symbol tablesThe IOA heker and parser resolve all name and sope issues, so that variables and operators shareone at namespae. The symbol tables map from this at name spae to the original IOA namespae. The Simulator uses the at namespae, but reports ations using the symbol table so usersan refer to state variables and operators by their original names. For example in the followingsymbol tables:(ioa(sorts ;; *sort-table*(s0 "Bool" ())...(s3 "Int" () lit)...)(ops ;; *operator-table*(op1 (infix "=") ((s0 s0) s0) (sope 0))...(op452 (infix "=") ((s3 s3) s0) (sope 22))...)The operator op452 is the = operator that operates on two arguments of type Int and returnsa type Bool. Sine the equality operator for integers is expliitly named, bak end tools do nothave to determine what a partiular usage of = is. This is onvenient beause two data types mayde�ne and operator like * to mean di�erent things (e.g. onatenation vs. multipliation).7.2.3 Additional annotationsThe two major types of annotations reognized by the shared IL parser in the spe objet areshorthand sorts (suh as tuple de�nitions) and invariant statements. Simulation relations betweenautomata are annotations that are parsed only by the simulator and LSL generators.7.2.4 Automaton de�nitionsEah automaton de�nition is an S-list that onsists of a desription of the ations, the state variables(and their initializations), the possible transitions followed by tool-spei� annotations. The onlyannotation the simulator uses is a shedule blok for nondeterminism resolution.(automaton "Channel"((ations(a0 input "send" (formals v1))(a1 output "reeive" (formals v1)))(states *state-variables*)(transitions *transitions-list*)(shedule *shedule-blok*)))Laura Dean's thesis [Dea01℄ ontains the formal BNF spei�ation of the IL, along with thesimulator-spei� extensions. 40



7.3 Implementation of the ILIn this setion, we briey look at the way the IL syntax tree is implemented. For a more detailedview, see Ramirez's thesis [RR00℄.Every objet in the IL tree is a Java interfae that inherits from ioa.il.ILElement. For exam-ple, ioa.il.Program is an ioa.il.ILElement that ontains multiple ioa.il.Statements. Eahof these interfaes is implemented with Java objets that inherit from ioa.il.BasiILElement.There are two reasons for using interfaes rather than objets for the IL:� Tools an hoose to implement the IL in a ompletely di�erent way from the default objetsunder ioa.il.BasiIlElement.� Java does not permit multiple inheritane in objets, so using interfaes provides more exi-bility for tools that want to extend objet funtionality.Eah bak-end tool an hoose to diretly use lasses in ioa.il to implement its funtionality, orit an extend some of the objets derived from ioa.il.BasiILElement and reate a parallel syntaxtree for itself. The onvention is to delegate standard funtionality to ioa.il objets wheneverpossible. Therefore , for example, ioa.simulator.SimChoie extends ioa.il.NDRChoie whihextends ioa.il.BasiValue. ioa.simulator.SimChoie does not diretly extendioa.simulator.SimValue (whih extends ioa.il.BasiValue).To parse and generate IL tree objets, the fatory design pattern is used. The ILParser is asubroutine alled by bak-end tools that does the atual parsing. ILParser generates objets inthe tree as needed by asking an ILFatory. By default, the ILParser uses ioa.il.BasiILFatorywhih produes hildren of ioa.il.BasiILElement. Bak-end tools that want to replae IL treeobjets with ustomized ones just have to hange the fatory that is used to a ustom one. Thesimulator thus uses a ioa.simulator.SimILFatory.7.4 Simulator data typesThe Simulator shares runtime type libraries with the IOA Code Generator to ensure similar odebehavior and to redue repeated ode. The toolkit refers to these as abstrat data types (ADTs)and Mihael Tsai in \ADTs for IOA Code Generation" [Tsa01℄ desribes the proess in detail.Data types and assoiated operators used in IOA are spei�ed either expliitly (in LSL �les) orimpliitly (built in) to the IOA parser and heker. These spei�ations are implemented by ADTsin the runtime libraries. When an IOA program is run and an operator or data type is onstrutedin the IL tree, the Simulator looks up the appropriate implementation in an ADT \Registry" thatmaps operator and sort spei�ations to implementations. The implementation sort or operator isthen used when working with data values.7.4.1 The ADT registryBefore the Registry is used, it must be told whih IOA operators and sorts are being implemented bywhat. This is done by a set of registration lasses. For example, the registration lass for IntSorttells the Registry that: the IOA data type Int will be implemented by the Java lass IntSort, andthe operators that work on Int (suh as +) will be implemented by methods in IntSort.41



A registration lass may register for any number of operators or sorts, but the onvention is touse one registration lass for eah IOA data type and its assoiated operators. For funtions thatoperate on multiple sorts, registration an be done by any of the sorts' registration lasses.Sine spei�ations are separate from implementation, users an hoose to have an alternateset of data type implementations. This is done by on�guring the Registry to use a di�erent set ofregistration lasses in the .ioar on�guration �le.It is important to note that with this exible registration mehanism, mismathes in registrationare not deteted at ompile time. For example, if an ADT was missing and a registration lassreferred to it, the registration lass would still ompile. Only when the simulator is run would thiserror be deteted. This makes good testing and error heking vital (see below).7.5 Testing and implementationThe IOA toolkit also shares testing infrastruture between its tools. There are two types of tests:� Unit tests These test a few lasses for their expeted funtionality by themselves. This isdone using Junit[JUn02℄. Currently, all the ADT implementations and some shared interfaelibraries are tested this way. Testing the ADTs with unit tests is important as it would betroublesome to generate IOA �les that all every method in an ADT implementation.� Regression tests All the output generated by IOA tools is ompared to the expeted outputusing a test suite of more than 30 tests. These tests hek for orret implementation of IOAdata and language strutures, and eah test is run for eah tool.Extensions to the Simulator or other tools should also add the appropriate unit and regressiontests to ensure veri�ation of orret operation.

42



A Simulator outputsThis setion inludes the simulator outputs for the examples presented throughout this paper.(Note: some of them need to be updated).A.1 Simulator output for Chooser[[[[ Begin initialization [[[[%%%% Modified state variables:hosen --> 87did_hoose --> false℄℄℄℄ End initialization ℄℄℄℄[[[[ Begin step 1 [[[[transition: output ation1 in automaton Chooser%%%% Modified state variables:hosen --> 11did_hoose --> true℄℄℄℄ End step 1 ℄℄℄℄[[[[ Begin step 2 [[[[transition: output ation2(11) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 2 ℄℄℄℄[[[[ Begin step 3 [[[[transition: output ation1 in automaton Chooser%%%% Modified state variables:hosen --> 12did_hoose --> true℄℄℄℄ End step 3 ℄℄℄℄[[[[ Begin step 4 [[[[transition: output ation2(12) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 4 ℄℄℄℄[[[[ Begin step 5 [[[[transition: output ation1 in automaton Chooser%%%% Modified state variables:hosen --> 13did_hoose --> true℄℄℄℄ End step 5 ℄℄℄℄...[[[[ Begin step 95 [[[[transition: output ation1 in automaton Chooser%%%% Modified state variables:hosen --> 13did_hoose --> true℄℄℄℄ End step 95 ℄℄℄℄[[[[ Begin step 96 [[[[transition: output ation2(13) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 96 ℄℄℄℄[[[[ Begin step 97 [[[[transition: output ation1 in automaton Chooser43



%%%% Modified state variables:hosen --> 11did_hoose --> true℄℄℄℄ End step 97 ℄℄℄℄[[[[ Begin step 98 [[[[transition: output ation2(11) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 98 ℄℄℄℄[[[[ Begin step 99 [[[[transition: output ation1 in automaton Chooser%%%% Modified state variables:hosen --> 12did_hoose --> true℄℄℄℄ End step 99 ℄℄℄℄[[[[ Begin step 100 [[[[transition: output ation2(12) in automaton Chooser%%%% No modified state variables℄℄℄℄ End step 100 ℄℄℄℄No errorsA.2 Simulator output for Fibonai[[[[ Begin initialization [[[[%%%% Modified state variables:a --> 1b --> 0 --> 1℄℄℄℄ End initialization ℄℄℄℄[[[[ Begin step 1 [[[[transition: internal ompute in automaton Fibonai%%%% Modified state variables:a --> 0b --> 1 --> 1>>>> Invariant B failed℄℄℄℄ End step 1 ℄℄℄℄[[[[ Begin step 2 [[[[transition: internal ompute in automaton Fibonai%%%% Modified state variables:a --> 1b --> 1 --> 2>>>> Invariant B failed℄℄℄℄ End step 2 ℄℄℄℄[[[[ Begin step 3 [[[[transition: internal ompute in automaton Fibonai%%%% Modified state variables:a --> 1b --> 2 --> 3>>>> Invariant B failed℄℄℄℄ End step 3 ℄℄℄℄[[[[ Begin step 4 [[[[ 44



transition: internal ompute in automaton Fibonai%%%% Modified state variables:a --> 2b --> 3 --> 5>>>> Invariant B failed℄℄℄℄ End step 4 ℄℄℄℄[[[[ Begin step 5 [[[[transition: internal ompute in automaton Fibonai%%%% Modified state variables:a --> 3b --> 5 --> 8>>>> Invariant B failed℄℄℄℄ End step 5 ℄℄℄℄**** Some errors oured during simulationA.3 Forward simulation from FiniteGreeter to GreeterSpe[[[[ Begin initialization [[[[%%%% Modified state variables for impl automaton:maxGreets --> 100ount --> 0%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ End initialization ℄℄℄℄[[[[ Begin step 1 [[[[Exeuted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:ount --> 1Exeuted spe transition: output hello in automaton GreeterSpe using true for sg%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ End step 1 ℄℄℄℄[[[[ Begin step 2 [[[[Exeuted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:ount --> 2Exeuted spe transition: output hello in automaton GreeterSpe using true for sg%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ End step 2 ℄℄℄℄[[[[ Begin step 3 [[[[Exeuted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:ount --> 3Exeuted spe transition: output hello in automaton GreeterSpe using true for sg%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ End step 3 ℄℄℄℄[[[[ Begin step 4 [[[[Exeuted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:45



ount --> 4Exeuted spe transition: output hello in automaton GreeterSpe using true for sg%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ End step 4 ℄℄℄℄...[[[[ Begin step 15 [[[[Exeuted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:ount --> 15Exeuted spe transition: output hello in automaton GreeterSpe using true for sg%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ End step 15 ℄℄℄℄[[[[ Begin step 16 [[[[Exeuted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:ount --> 16Exeuted spe transition: output hello in automaton GreeterSpe using true for sg%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ End step 16 ℄℄℄℄...[[[[ Begin step 99 [[[[Exeuted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:ount --> 99Exeuted spe transition: output hello in automaton GreeterSpe using true for sg%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ End step 99 ℄℄℄℄[[[[ Begin step 100 [[[[Exeuted impl transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:ount --> 100Exeuted spe transition: output hello in automaton GreeterSpe using false for sg%%%% Modified state variables for spe automaton:stillGoing --> false℄℄℄℄ End step 100 ℄℄℄℄>>>> No errorsA.4 Simulator output for DijkstraInt[[[[ Begin initialization [[[[%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01))p --> (ArraySort (ConstantValue rem))S --> (ArraySort (ConstantValue ()))℄℄℄℄ End initialization ℄℄℄℄ 46



[[[[ Begin step 1 [[[[transition: output try(p3) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p3 setflag01))℄℄℄℄ End step 1 ℄℄℄℄[[[[ Begin step 2 [[[[transition: output try(p2) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p2 setflag01) (p3 setflag01))℄℄℄℄ End step 2 ℄℄℄℄[[[[ Begin step 3 [[[[transition: output try(p1) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2 setflag01) (p3 setflag01))℄℄℄℄ End step 3 ℄℄℄℄[[[[ Begin step 4 [[[[transition: internal setflag01(p1) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage01))p --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 setflag01) (p3 setflag01))℄℄℄℄ End step 4 ℄℄℄℄...[[[[ Begin step 52 [[[[transition: internal setflag2(p2) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage2) (p3 stage2))p --> (ArraySort (ConstantValue rem) (p1 hek) (p2 hek) (p3 leavetry))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2)) (p2 (p2)) (p3 (p1 p2 p3)))℄℄℄℄ End step 52 ℄℄℄℄[[[[ Begin step 53 [[[[transition: output rit(p3) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 hek) (p2 hek) (p3 rit))℄℄℄℄ End step 53 ℄℄℄℄[[[[ Begin step 54 [[[[transition: internal hek(p2, p1) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 hek) (p2 setflag01) (p3 rit))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2)) (p2 ()) (p3 (p1 p2 p3)))℄℄℄℄ End step 54 ℄℄℄℄[[[[ Begin step 55 [[[[transition: output exit(p3) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 hek) (p2 setflag01) (p3 reset))℄℄℄℄ End step 55 ℄℄℄℄[[[[ Begin step 56 [[[[transition: internal reset(p3) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage2) (p3 stage01))p --> (ArraySort (ConstantValue rem) (p1 hek) (p2 setflag01) (p3 leaveexit))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2)) (p2 ()) (p3 ()))℄℄℄℄ End step 56 ℄℄℄℄ 47



[[[[ Begin step 57 [[[[transition: internal hek(p1, p3) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 leavetry) (p2 setflag01) (p3 leaveexit))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2 p3)) (p2 ()) (p3 ()))℄℄℄℄ End step 57 ℄℄℄℄....[[[[ Begin step 62 [[[[transition: output rit(p1) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 rit) (p2 setflag2) (p3 leaveexit))℄℄℄℄ End step 62 ℄℄℄℄[[[[ Begin step 63 [[[[transition: output rem(p3) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 rit) (p2 setflag2) (p3 rem))℄℄℄℄ End step 63 ℄℄℄℄[[[[ Begin step 64 [[[[transition: internal setflag2(p2) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage2) (p3 stage01))p --> (ArraySort (ConstantValue rem) (p1 rit) (p2 hek) (p3 rem))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2 p3)) (p2 (p2)) (p3 ()))℄℄℄℄ End step 64 ℄℄℄℄[[[[ Begin step 65 [[[[transition: internal hek(p2, p1) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 rit) (p2 setflag01) (p3 rem))S --> (ArraySort (ConstantValue ()) (p1 (p1 p2 p3)) (p2 ()) (p3 ()))℄℄℄℄ End step 65 ℄℄℄℄[[[[ Begin step 66 [[[[transition: internal setflag01(p2) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage01) (p3 stage01))p --> (ArraySort (ConstantValue rem) (p1 rit) (p2 setflag2) (p3 rem))℄℄℄℄ End step 66 ℄℄℄℄[[[[ Begin step 67 [[[[transition: output try(p3) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 rit) (p2 setflag2) (p3 setflag01))℄℄℄℄ End step 67 ℄℄℄℄[[[[ Begin step 68 [[[[transition: output exit(p1) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 reset) (p2 setflag2) (p3 setflag01))℄℄℄℄ End step 68 ℄℄℄℄[[[[ Begin step 69 [[[[transition: internal reset(p1) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage01) (p2 stage01) (p3 stage01))p --> (ArraySort (ConstantValue rem) (p1 leaveexit) (p2 setflag2) (p3 setflag01))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 ()) (p3 ()))48



℄℄℄℄ End step 69 ℄℄℄℄...[[[[ Begin step 81 [[[[transition: output rit(p3) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 setflag2) (p3 rit))℄℄℄℄ End step 81 ℄℄℄℄...[[[[ Begin step 100 [[[[transition: internal setflag2(p3) in automaton DijkstraInt%%%% Modified state variables:flag --> (ArraySort (ConstantValue stage01) (p1 stage2) (p2 stage2) (p3 stage2))p --> (ArraySort (ConstantValue rem) (p1 hek) (p2 leavetry) (p3 hek))S --> (ArraySort (ConstantValue ()) (p1 (p1)) (p2 (p1 p2 p3)) (p3 (p3)))℄℄℄℄ End step 100 ℄℄℄℄No errorsA.5 Forward simulation from DijkstraInt to MutexEnv[[[[ Begin initialization [[[[%%%% Modified state variables for impl automaton:flag --> (ArraySort (ConstantValue stage01))p --> (ArraySort (ConstantValue rem))S --> (ArraySort (ConstantValue ()))%%%% Modified state variables for spe automaton:regionMap --> (ArraySort (ConstantValue rem))℄℄℄℄ End initialization ℄℄℄℄[[[[ Begin step 1 [[[[Exeuted impl transition: output try(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p2 setflag01))Exeuted spe transition: output try(p2) in automaton MutexEnv%%%% Modified state variables for spe automaton:regionMap --> (ArraySort (ConstantValue rem) (p2 try))℄℄℄℄ End step 1 ℄℄℄℄[[[[ Begin step 2 [[[[Exeuted impl transition: output try(p1) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2 setflag01))Exeuted spe transition: output try(p1) in automaton MutexEnv%%%% Modified state variables for spe automaton:regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2 try))℄℄℄℄ End step 2 ℄℄℄℄[[[[ Begin step 3 [[[[Exeuted impl transition: output try(p3) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2 setflag01) (p3 setflag01))Exeuted spe transition: output try(p3) in automaton MutexEnv%%%% Modified state variables for spe automaton:49



regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2 try) (p3 try))℄℄℄℄ End step 3 ℄℄℄℄...[[[[ Begin step 9 [[[[Exeuted impl transition: output rit(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 rit) (p3 setflag01))Exeuted spe transition: output rit(p2) in automaton MutexEnv%%%% Modified state variables for spe automaton:regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2 rit) (p3 try))℄℄℄℄ End step 9 ℄℄℄℄...[[[[ Begin step 59 [[[[Exeuted impl transition: internal hek(p2, p3) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p1 hek) (p2 leavetry) (p3 setflag2))S --> (ArraySort (ConstantValue ()) (p1 (p1)) (p2 (p1 p2 p3)) (p3 ()))℄℄℄℄ End step 59 ℄℄℄℄[[[[ Begin step 60 [[[[Exeuted impl transition: output rit(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p1 hek) (p2 rit) (p3 setflag2))Exeuted spe transition: output rit(p2) in automaton MutexEnv%%%% Modified state variables for spe automaton:regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2 rit) (p3 try))℄℄℄℄ End step 60 ℄℄℄℄[[[[ Begin step 61 [[[[Exeuted impl transition: internal hek(p1, p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2 rit) (p3 setflag2))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 (p1 p2 p3)) (p3 ()))℄℄℄℄ End step 61 ℄℄℄℄[[[[ Begin step 62 [[[[Exeuted impl transition: internal setflag01(p1) in automaton DijkstraInt%%%% Modified state variables for impl automaton:flag --> (ArraySort (ConstantValue stage01) (p1 stage01) (p2 stage2) (p3 stage01))p --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 rit) (p3 setflag2))℄℄℄℄ End step 62 ℄℄℄℄[[[[ Begin step 63 [[[[Exeuted impl transition: output exit(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 reset) (p3 setflag2))Exeuted spe transition: output exit(p2) in automaton MutexEnv%%%% Modified state variables for spe automaton:regionMap --> (ArraySort (ConstantValue rem) (p1 try) (p2 exit) (p3 try))℄℄℄℄ End step 63 ℄℄℄℄[[[[ Begin step 64 [[[[Exeuted impl transition: internal setflag2(p3) in automaton DijkstraInt%%%% Modified state variables for impl automaton:flag --> (ArraySort (ConstantValue stage01) (p1 stage01) (p2 stage2) (p3 stage2))50



p --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 reset) (p3 hek))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 (p1 p2 p3)) (p3 (p3)))℄℄℄℄ End step 64 ℄℄℄℄[[[[ Begin step 65 [[[[Exeuted impl transition: internal reset(p2) in automaton DijkstraInt%%%% Modified state variables for impl automaton:flag --> (ArraySort (ConstantValue stage01) (p1 stage01) (p2 stage01) (p3 stage2))p --> (ArraySort (ConstantValue rem) (p1 setflag2) (p2 leaveexit) (p3 hek))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 ()) (p3 (p3)))℄℄℄℄ End step 65 ℄℄℄℄...[[[[ Begin step 100 [[[[Exeuted impl transition: internal hek(p3, p1) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p1 setflag01) (p2 hek) (p3 setflag01))S --> (ArraySort (ConstantValue ()) (p1 ()) (p2 (p2)) (p3 ()))℄℄℄℄ End step 100 ℄℄℄℄>>>> No errorsB Trait NonDetNonDet : tra i tintroduesrandomNat : Nat , Nat ! Nat% uniformly random natural number in given rangequeryNat : Nat , Nat ! Nat% query user for natural number in given rangerandomInt : Int , Int ! Int% uniformly random integer in given rangequeryInt : Int , Int ! Int% query user for integer in given rangerandomBool : ! Bool% random boolean ( eah value with probability 0.5)Referenes[Che98℄ A. E. Chefter. A simulator for the IOA language. Master's thesis, Massahusetts Instituteof Tehnology, Cambridge, MA, 1998.[Dea01℄ Laura G. Dean. Improved simulation of Input/Output automata. Master's thesis, Mas-sahusetts Institute of Tehnology, 2001.[GL98℄ Stephen J. Garland and Nany A. Lynh. The IOA language and toolset: Support for de-signing, analyzing, and building distributed systems. Tehnial Report MIT/LCS/TR-762, Laboratory for Computer Siene, Massahusetts Institute of Tehnology, Cam-bridge, MA, August 1998. URL http://theory.ls.mit.edu/tds/papers/Lynh/IOA-TR-762.ps.
51



[GL00℄ Stephen J. Garland and Nany A. Lynh. Using I/O automata for developing distributedsystems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-Based Systems, hapter 13, pages 285{312. Cambridge University Press, USA, 2000.[GLV01℄ S. Garland, N. Lynh, and M. Vaziri. IOA: A Language for Speifying, Programming,and Validating Distributed Systems. MIT Laboratory for Computer Siene, Cambridge,MA, 2001. URL http://theory.ls.mit.edu/tds/ioa.html.[JUn02℄ JUnit. Junit. www.junit.org, 2002.[KCD+℄ D. Kaynar, A. Chefter, L. Dean, S. Garland, N. Lynh, T. Ne Win, andA. Ram��rezRobredo. Simulating nondeterministi systems at multiple-levels of abstra-tion. Submitted for publiation.[LAB+81℄ B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C. Sha�ert, R. Sheier, and A. Snyder.CLU Referene Manual. Springer-Verlag, 1981.[LT89℄ N. Lynh and M. Tuttle. An introdution to input/output automata. CWI-Quarterly,2(3):219{246, 1989.[Lyn96℄ N. Lynh. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.[PAG℄ PAG. Home page of the Daikon invariant detetor projet. Maintained by the ProgramAnalysis Group at MIT Laboratory for Computer Siene (leader Mihael Ernst). URLhttp://pag.ls.mit.edu/daikon/.[RR00℄ J. Antonio Ram�rez-Robredo. Paired simulation of I/O automata. Master's thesis,Massahusetts Institute of Tehnology, 2000.[TDS℄ TDS. Home page of the IOA projet. Maintained by the Theory of Distributed SystemsGroup at MIT Laboratory for Computer Siene (leader Nany Lynh). URL http://theory.ls.mit.edu/tds/ioa.html.[Tsa01℄ Mihael Tsai. Abstrat data types for IOA ode generation. Tehnial report, MITLaboratory for Computer Siene, 2001.[Win02℄ Toh Ne Win. Assisting IOA design and veri�ation with Daikon. Presentation Slides,Marh 2002.[WS01℄ Toh Ne Win and Gustavo Santos. The IOA-Daikon onnetion: Enabling dynamiinvariant disovery in IOA programs. Tehnial report, MIT Laboratory for ComputerSiene, 2001.

52


