
Mechanical Translation of I/O Automaton
Specifications into First-Order Logic

Andrej Bogdanov1, Stephen J. Garland2, and Nancy A. Lynch2

1 UC Berkeley, EECS – Computer Science Division, Berkeley, CA 94720
2 MIT Laboratory for Computer Science, Cambridge, MA 02139

Abstract. We describe a tool that improves the process of verifying re-
lations between descriptions of a distributed algorithm at different levels
of abstraction using interactive proof assistants. The tool automatically
translates algorithms, written in the IOA language, into first-order logic,
expressed in the Larch Shared Language, in a style that facilitates rea-
soning with a theorem prover. The translation uses a unified strategy
to handle the various forms of nondeterminism that appear in abstract
system descriptions. Applications of the tool to verify safety properties
of three data management algorithms, including a substantial example
based on Lamport’s logical time algorithm, suggest that the tool can be
used to validate complicated, practical designs.

1 Introduction

High-level descriptions of distributed algorithms differ from their low-level coun-
terparts not only in level of detail, but also in style and syntax. The choice of
style and syntax is closely related to a description’s intended use. High-level de-
scriptions generally serve to specify a range of allowable abstract behaviors. For
this purpose, a declarative, nondeterministic style enhances clarity and general-
ity. On the other hand, low-level descriptions generally serve as input to code
generators (e.g., compilers). For this purpose, an imperative, deterministic style
works best. Program analysis tools, such as model checkers and theorem provers,
tolerate nondeterminism better than code generators. In practice, however, non-
determinism can result in search space explosion for model checkers, and it can
increase the need for user interaction with theorem provers. For these reasons,
designers generally produce different descriptions of an algorithm for different
tools—a dangerous practice, given the discrepancies that all too easily appear
in multiple descriptions of the same algorithm.
IOA [3], a high-level language based on the I/O automaton formalism [9],

intends to bridge the gap between the stages in the design of distributed algo-
rithms through a versatile syntax for describing algorithms, their properties, and
their interrelations. The language supports expressing designs at different levels
of abstraction, starting with a high-level abstract specification of desired system
behavior, appropriate for formal reasoning, and ending with a low-level version
which is translatable into real distributed code.

D.A. Peled and M.Y. Vardi (Eds.): FORTE 2002, LNCS 2529, pp. 364–368, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Mechanical Translation of I/O Automaton Specifications 365

The advantage of IOA is that it enables one to establish a formal connection,
within a single language, between specifications written at different levels of ab-
straction. The mathematical tool used for this purpose is the simulation relation
[10]. Since simulation proofs tend to be very stylized, they are amenable to the
application of computer-assisted proof tools. Generally, it is harder to write and
check formal proofs with mechanized proof assistants than to write unchecked
intuitive arguments. However, complicated distributed algorithms, such as data
management algorithms with strong coherence guarantees, or fault-tolerant dis-
tributed algorithms that are used in practice, can benefit greatly from the careful
reasoning style of formal proofs. Our goal is to combine the flexibility of informal
arguments with the credibility of formally checked proofs.
We describe ioa2lsl, a tool that translates IOA specifications into the Larch

Shared Language (LSL), a logical language for describing first-order theories.
LSL interfaces with the Larch Prover (LP), an interactive theorem proving as-
sistant for multisorted first-order logic. We have used this tool to verify the
correctness of three distributed data management algorithms, Dijkstra’s mutual
exclusion algorithm and a distributed spanning tree algorithm [7].
A significant feature of our translation procedure is its treatment of non-

determinism. Even though theorem provers are better equipped for handling
nondeterminism than other tools, such as model checkers and code generators,
the use of nondeterminism still incurs a number of technical difficulties. Gener-
ally, these difficulties stem from the representation of nondeterministic choices
by existential quantifiers, which require explicit instantiation in a proof session.
Our tool uses a simple extension to the mathematical I/O automaton model
that captures the essence of nondeterminism and reduces the need for explicit
instantiation in proofs.

2 Features of the Translation

Our tool is aimed at producing a translation that appears natural to the user
of the theorem proving tool. If the translation is cumbersome and unreadable,
interaction with the tool can become extremely difficult. A good translation
must preserve the illusion that what appears obvious to the user is also obvious
to the mechanized proof assistant. This becomes an especially important issue
in the translation of transition effects because the semantics of imperative code
may be quite complicated. For example, the proof assistant ought to establish
that a state variable was not modified by a transition automatically, without
user intervention.
In an IOA program, the conditions under which two states are related by a

labeled transition are specified by transition definitions. Transition definitions
consist of a precondition predicate specifying the enabling condition for the
transition and an effect specifying the relation between the initial and final
states, usually written as an imperative-style program. The specification may
depend on both explicit transition parameters and nondeterministically selected
hidden parameters.



366 A. Bogdanov, S.J. Garland, and N.A. Lynch

In many formalisms, the precondition and effect of a transition are lumped
into a single predicate describing the condition under which a labeled transition
is allowed between two states. Our translation produces, for each transition
definition, a separate enabled clause containing the enabling condition and an
effect clause specifying the change in the state variable. This allows us to
represent effect as a function, rather than a predicate, that maps an initial
state and a transition label into a final state. This functional representation is
useful in the theorem proving session, where effect clauses turn into rewrite
rules expressing post-state variables in terms of pre-state variables. The utility
of these rewrite rules in inductive proofs, including proofs of invariants and
simulation relations, is our principal motivation for this design decision.
A fundamental feature of the IOA language is its support for nondetermin-

istic choices. There are two sources of nondeterminism in IOA programs: (1)
at a given state, more than one action may be enabled, and (2) a transition
definition may contain explicit nondeterministic choices, indicated by choose
statements. Nondeterminism of the first kind causes no difficulty for theorem
proving (although code generators must provide some way to schedule actions
when more than one is enabled). Nondeterminism of the second kind can compli-
cate theorem proving, particularly because standard techniques for translating
choose statements (cf. [5], page 312) introduce explicit universal or existential
quantifiers.
We avoid the introduction of additional quantifiers by transforming explicit

nondeterministic choices into transition parameters. For example, consider the
following transition of an automaton with a single state variable x of type Int:
input chooseroot

eff x := choose t: Int where t * t = 1

This transition definition is nondeterministic because it specifies two possible
post-states: x′ = −1 and x′ = 1. We can interpret this nondeterministic choice
using a transition parameter t by rewriting the transition definition in the fol-
lowing form:
input chooseroot(t: Int)

pre t * t = 1
eff x := t

The two specifications are almost the same: the only difference is that we
have replaced the action chooseroot with a family of actions chooseroot(t),
where t ranges over the sort Int.
We note that our translation scheme avoids the use of quantifiers to specify

either bounded or unbounded nondeterministic choices, as in earlier approaches
[5,2,4]. This translation benefits theorem proving, since establishing statements
involving existential quantifiers often requires explicit user instantiation.

3 Applications of the Tool

We have used our translation tool to verify three distributed data management
algorithms of successively increasing complexity: a simple caching algorithm, a



Mechanical Translation of I/O Automaton Specifications 367

majority voting algorithm, and a replicated storage algorithm based on Lam-
port’s logical time transformation. In each case, we verified that the implemen-
tations of read/write operations were atomic. In the spirit of successive refine-
ment, we wrote an abstract specification for an atomic variable and showed that
each of the algorithms implements the atomic variable. The proofs use forward
simulation relations.
In the majority voting algorithm (cf. [8], page 573), each concurrent process

employs a local copy of the data, and the algorithm preserves the invariant that
the most recent value is always present in a majority of the processes. To verify
this invariant, it is necessary to argue that any majority of processes intersects
the set of processes containing the most recent value. Establishing set theoretic
properties such as this requires a number of lemmas, which constitute the bulk
of our simulation proof script. The sections of the proof owing to our choice of
representation for automata and their properties were straightforward, with one
exception: the prover required a great deal of assistance to establish intuitively
clear properties of a for loop used to store values at a majority of processes
during the write operation.
Our most challenging example was the replicated storage algorithm. The

atomicity assumptions in this algorithm are much less strict, and closer to actual
practice, than in the other two. In particular, no action involving more than one
process is required to be atomic. The algorithm ensures consistency with the
help of Lamport’s logical time algorithm [6].
Originally, the correctness of this algorithm was established by demonstrating

indistinguishability with respect to certain orderings of events [6], an approach
quite different from the techniques supported by our tool. We developed a new
correctness proof based on successive refinement and forward simulation rela-
tions. Our proof introduces an auxiliary data management model that preserves
the data replication features of the replicated storage algorithm, but pretends
that the interactions are synchronous. We first establish that this auxiliary model
implements an atomic variable. The mathematics of the proof are quite intri-
cate, and this is reflected in the proof script ([1], Appendix B), which is 800
lines in length. As in the proof of the majority voting algorithm, most of the
proof script is concerned with establishing lemmas about data structures; rela-
tively little work is required because of our translation process. Another proof,
dealing with synchronization properties, establishes that the replicated storage
algorithm implements the auxiliary algorithm. This proof is complicated math-
ematically, and we have not yet attempted to verify it mechanically.

References

1. Andrej Bogdanov. Formal verification of simulations between I/O automata. Mas-
ter of engineering thesis, Massachusetts Institute of Technology, 2001.
http://theory.lcs.mit.edu/˜adib/thesis.

2. Marco Devillers. Translating I/O automata to PVS. Preliminary report, Comput-
ing Science Institute, University of Nijmengen, 1999.



368 A. Bogdanov, S.J. Garland, and N.A. Lynch

3. Stephen J. Garland and Nancy A. Lynch. Using I/O automata for developing dis-
tributed systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, pages 285–312. Cambridge University Press, 2000.

4. Stephen J. Garland, Nancy A. Lynch, and Mandana Vaziri. IOA: a language for
specifying, programming, and validating distributed systems. MIT Laboratory for
Computer Science, 1997 (revised January, 2001).

5. David Gries. The Science of Programming. Springer-Verlag, 1981.
6. Leslie A. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

7. Chris Luhrs. Distributed spanning tree algorithms coded in IOA: Challenge prob-
lems for software analysis and synthesis methods. Technical Note, 2001.

8. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufman Pubishers Inc., 1996.
9. Nancy A. Lynch and Mark Tuttle. Hierarchical correctness proofs for distributed
algorithms. Technical Report MIT/LCS/TR-387, MIT Laboratory for Computer
Science, 1987.

10. Nancy A. Lynch and Frits Vaandrager. Forward and backward simulations – part
I: Untimed systems. Information and Computation, 121(2):214–233, September
1995.


	Introduction
	Features of the Translation
	Applications of the Tool

