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Abstract—We present an algorithm that provides enhanced 
flexibility and robustness in the control of single-leg 
humanoid standing through the coordination of stance leg 
ankle torques and stabilizing movements of non-contact 
limbs.  Current control approaches generally assume the 
presence of explicitly specified joint reference trajectories or 
desired virtual force calculations that ignore system 
dynamics.  Here we describe a practical controller that 1) 
simplifies control of abstract variables such as the center of 
mass location using a two-stage model-based plant 
linearization; 2) determines motion of non-contact limbs 
useful for achieving control targets while satisfying dynamic 
balance constraints; and 3) provides robustness to modeling 
error using a sliding controller.  The controller is tested with 
a morphologically realistic, 3-dimensional, 18 degree-of-
freedom humanoid model serving as the plant.  It is 
demonstrated that the controller can use less detailed control 
targets, and reject stronger disturbances, than previously 
implemented controllers that employ desired virtual forces 
and static body calculations. 

I.  INTRODUCTION  
The control of balance for bipedal humanoid robots has 

been studied extensively.  In recent years, a number of 
humanoid robots capable of walking have been developed.  
These include the Honda P3 and Asimo robots [5, 6], the 
Sony SDR [22], and Tokyo University’s H6 [10].  These 
robots achieve balance control using a motion planner that 
generates reference joint trajectories, and by using simple 
PD controllers to track those desired trajectories. This 
approach results in stable walking as long as disturbances 
are not too large. 

Hi-fidelity dynamic simulations have been used for the 
study of bipedal balancing and locomotion.  Hodgins [7] 
developed a control algorithm for a simulated human 
runner that achieved a close match, in terms of motion 
trajectories, with real human motion capture data.  As with 

the previously discussed robots, this approach relied on 
closely tracking a set of reference trajectories, and 
robustness to disturbances was not addressed. 

Advances in hybrid position and force control [14] have 
addressed problems of robustness in the presence of 
disturbances and unstructured environments.  These 
include impedance control techniques applied to robotic 
arms [9], and a similar virtual model control algorithm 
applied to legged robots [15, 16].  These algorithms first 
compute a desired “virtual” force at some “reaction” point 
on a mechanism’s body, and then the required joint torques 
are computed to achieve that desired virtual force.  The 
former computation is typically based on a setpoint 
trajectory and virtual spring and damper elements that 
combine to implement simple feedback control laws.  The 
latter computation is a Jacobian-based static force 
computation that has been used extensively in robot 
manipulators [2, 13].  This type of algorithm has been 
extended to allow center of mass (COM) to be a reaction 
point [18]. 

Although the virtual model control algorithm has been 
applied successfully in the control of a number of legged 
robots, its usefulness for fast, dynamic motions is limited.  
The limitation of this approach is due to the fact that all 
computations are static in nature;  the approach assumes 
that the entire mechanism’s system of articulated links is a 
rigid body.  This assumption is reasonable for slow 
movements, or when the system is not moving at all.   
However, it breaks down with rapid movements where 
dynamic forces become more dominant.   

The problem of taking into account dynamics has been 
addressed using a variety of approaches.  A technique 
called “dynamic filtering” [10, 12] involves adjusting an 
input set of joint trajectories so that dynamic balance 
constraints are satisfied.  The input trajectories must be 
specified at a relatively high level of detail, and they have 



to be close to a correct solution.  Slotine [17] developed a 
sliding controller with feedback linearization for 
controlling robotic manipulators.  For legged systems, 
Kondak [11] implemented a balance controller for simple 
bipedal mechanisms using feedback linearization.  
However, due to the simplicity of the model, the issue of 
non-contact limb movement was not addressed.  In 
addition, control was in terms of joint state space rather 
than more abstract outputs  of interest, thus making it 
difficult to prioritize multiple goals.  Finally, model error 
was not taken into account. 

In this investigation, we describe a novel control 
architecture for legged systems where the acceleration of 
non-contact limbs is employed as a key stabilization 
strategy. We test the controller on a morphologically 
realistic humanoid model for the specific movement task of 
balancing on one leg. The controller incorporates feedback 
linearization, and quadratic programming-based optimal 
control, within a sliding control framework.  The feedback 
linearization component decouples and linearizes the 
dynamics of the plant in terms of the reaction points to be 
controlled.  The optimal controller observes constraints 
such as joint ranges, maximum joint torques, and the 
restriction that the foot rotation index (FRI) [4] be within 
the support polygon.  The sliding control framework 
ensures robustness, allowing for modeling inaccuracies. 

We test the humanoid controller using a variety of 
disturbed initial states, including both forward and lateral 
COM displacements, and we compare the performance of 
the controller to a previously developed control approach 
that does not take dynamics into account [16].  Finally, we 
study the resulting model behaviors by analyzing the 
dynamics of the system. 

II. CONTROLLER ARCHITECTURE 
Simulation experiments were performed using a 

morphologically realistic humanoid model described in the 
next section.  Subsequent sections provide details of the 
humanoid control system. 

A. 3D Biped Model 
A model that captures the essential morphological 

features of the human lower body relevant for standing, 
balancing, and walking was developed [8].  The model is 
three-dimensional with 12 internal (controlled) and 6 
external (un-controlled) degrees of freedom.  The 12 
internal degrees of freedom correspond to joints that can 
exert torques.  The 6 external degrees of freedom 
correspond to the position and orientation of the trunk of 
the body.  Each leg is modeled with a ball-and socket hip 
joint, a pin knee joint, and a saddle-type ankle joint. Here 
the saddle joint architecture allows for ankle 
plantar/dorsiflexion motions and ankle inversion/eversion.  
The upper body (head, arms and torso), upper leg and 
lower leg are modeled with cylindrical shapes, and the feet 
are modeled with rectangular blocks.  The dimensions of 
each model segment were obtained by considering 
morphological data that describe average human 
proportions [19, 21, along with motion capture data [1, 20] 

used to derive segment lengths, and finally direct 
measurements on the test subject. 

B.  Plant Linearization 
The feedback linearization architecture of the controller 

is shown in Fig. 1.  The purpose of the feedback 
linearization is to make the plant appear linear to the 
controller,   . contf
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Fig. 1 – Feedback linearization controller architecture 

The linearization is accomplished in two stages.  First, 
the forward dynamics of the plant are linearized using an 
inverse dynamics model, resulting in an input-state 
linearized plant [17].  Thus, the plant is linear for a 
controller that selects desired joint accelerations.  A 
second, geometric transform is used to convert from 
desired accelerations of the outputs (the reaction points) to 
desired joint accelerations.  This transformation, indicated 
by  in fig. 1, is a specialized inverse kinematics 
transform. 

1Ψ−

Thus, using the above architecture, if we ignore joint 
and FRI constraints, the controller  sees the rest of the 
system as being completely linearized and decoupled.  
Thus, simple control techniques for SISO 2

contf

nd-order linear 
systems (pole placement, for example) can be used within 
this controller. 

We now discuss some details of these linearizations.  
The input-state linearization of the plant using inverse 
dynamics is straightforward.  The inverse dynamics for the 
plant are expressed in the following standard form: 

( ) ( ) ( ) τqgqqq,CqqH =++ &&&&   (1) 

where  is a vector of joint angles,  is a vector of joint 

torques (the control input to the plant),  is a matrix 

of inertial terms, 

q τ
( )qH

( )qq,C &  is a matrix of velocity-related 

terms, and ( )qg  is a vector of gravitational terms.  
Choosing eq. 1, (with q  replaced by ) as the control 
law and substituting into the forward dynamics yields 

&& desq&&

 desqq &&&& =     (2) 

Thus, the system is exactly linearized, and completely 
decoupled into a set of SISO systems.  This technique is 
sometimes called “computed torque”, “inverse dynamics” 
or “feedforward” control in the robotics literature [13]. 

This linearization is relatively straightforward due to the 
structure of the plant dynamics.  However, the problem is 



not solved, because the goal is not specifically to control 
plant state, but rather, to control outputs derived from plant 
state.  These outputs (COM, for example) are nonlinear 
functions of plant state, so a further transformation 
(indicated by  in fig. 1) is needed. 1Ψ−

The plant outputs (desired positions and orientations of 
reaction points) are given by 

     (3) ( )qhy =

where  is a forward kinematic transformation.  Taking 
partial derivatives yields, for each output  
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where j indicates the joint.  Differentiating this again yields 
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It is useful, at this point, to use spatial notation [3] to 

represent spatial accelerations of reaction points.  With this 
notation, the spatial acceleration of link i of an articulated 
mechanism is formulated as 

∑ ∑∑
=

−

==

×⎥
⎦

⎤
⎢
⎣

⎡
+=

n

i
ii

i

j
jj

n

i
iin qqq

2

1

11

ˆˆˆˆˆ &&&& sssa   (6) 

where  is the spatial acceleration vector, and  is the 
Jacobian column for joint i.  All of these vectors are in 
global coordinates.  The vector  is the local axis vector, 

, for joint i transformed to global coordinates using the 

spatial transformation matrix : 
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Note the similarity between eqs. 5 and 6.  For any 
particular state of the mechanism, eq. 6 is a linear equation 
of the form 

    (8) constn ΨqΨa += &&ˆ

where  is the reaction point Jacobian Ψ
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Thus, eq. 8 provides the linear relation between joint and 
reaction point accelerations required for the controller 
architecture shown in Fig. 1.   

There is one additional complexity.  The angular 
acceleration given as part of the spatial acceleration vector 
in eq. 8 is an angular acceleration vector.  This is suitable 
for situations where the desired angular velocity of the 
reaction point is specified using such a vector.  Normally, 
however, this is not the case;  desired angular acceleration 
is specified in terms of second derivatives of roll, pitch, and 
yaw angles (a.k.a. Euler angles).   

To convert to this form, consider first the angular 
velocity vector ω .  This is related to first derivatives of 
roll, pitch, and yaw by 

   (11) 
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where α is a rotation (of the reaction point) about the z 
(yaw) axis, β  is a rotation about the y (pitch) axis, and γ  
is a rotation about the x (roll) axis.  The rotation 
convention used is rotation of β  about the global (fixed) 
y axis, followed by rotation of γ  about the global x axis, 
followed by rotation of α  about the global z axis [4].  
Using eq. 11 and taking partial derivatives yields 
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Note that for a particular system state, eq. 12 gives a 
linear relation between the angular acceleration vector, and 
the vector of second derivatives of Euler angles.  

Eq. 8 can be used to find the spatial acceleration of any 
reaction point.  If we choose the COM of each link in the 
mechanism as a reaction point, then the acceleration of the 
system COM, in the x, y, and z directions, is given by 
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For the experiments described here, the following 12 
values were chosen as the outputs  to be controlled (the 
elements of y  in fig. 1):   x and y COM position, body z 
position, body roll, pitch, and yaw angle, swing foot x, y, 
and z position, and swing foot roll, pitch, and yaw.  These 
outputs were controlled using simple PD control laws in 

, with feedback gains manually tuned. contf



C. Multivariable Optimal Controller 
Using the linearization techniques described in the 

previous section, the system appears to be completely 
linearized and decoupled to the controller  in fig. 1, 
but only if there are no constraints.  Unfortunately, there 
are bounds on plant inputs due to saturation limits, and this 
complicates the problem.  If the controller does not take 
these bounds into consideration, it could generate values to 
satisfy  that cause the bounds to be violated.  For 
example, if the controller does not take into account the 
fact that the foot support polygon is of finite size, it might 
generate ankle torques that are too large, and that cause the 
foot to roll.  The controller may be unable to satisfy the 
desired input while maintaining constraints.  To avoid this 
type of infeasibility, slack variables are introduced for each 
element of , so that the new controller output is 

contf
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desy&&

    (15) slackoutcontdes yyy &&&&&& += _

This provides flexibility in that  conforms to the 
controller’s linear PD control law (without regard to the 
actuation bounds), while , the true output of the 
controller, does obey actuation bounds.  The goal of the 
overall control system is then to minimize , taking 
into account the relative importance of each output.  Thus, 
it is important to decide which outputs are the “important” 
ones, and therefore need to be controlled most closely.  The 
goal for the overall control system is then to make the slack 
variables be 0 for the important outputs, and relatively 
small for the others. 

desy&&

outcont _y&&

slacky&&

The question now is how to formulate an optimization 
problem that minimizes the slack variables and obeys the 
actuation constraints.  There are three types of constraints:  
1)  constraints on joint angle positions, 2) constraints on 
joint torques,  and 3) constraints that keep the FRI within 
the support polygon.  The FRI is the point on the 
foot/ground contact surface where the net ground reaction 
force would have to act to keep the foot stationary [4].  
When in a single-support stance, if the FRI is outside the 
bounds of the actual support polygon, the support foot will 
begin to roll.  Thus, keeping the FRI within these bounds 
amounts to limiting ankle torques of the stance leg so that 
the stance foot does not roll.  The FRI is given by 
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where iω&  is the angular acceleration vector of link i, in 
global coordinates. 

Fortunately, all bounds can be expressed using linear 
inequality constraints.  Since the equality constraints used 
for the linearization described in the previous section are 
all linear, it is possible to formulate the optimization 
problem as a quadratic program.  The variables (columns) 
of this formulation are as follows:   (the slack 

variables),  (the specified acceleration output by 

the controller to the linearized plant), (the joint 
accelerations), , ,  (the COM reaction 

point x, y, and z accelerations for each link),  and  
(the x and y components of angular acceleration of each 
link), and  (the joint torques).  Linear equality constraints 
of the quadratic programming formulation are as follows.  
Eq. 15 relates  and  through , which is 
determined, outside the quadratic programming 
optimization, based on simple PD control laws that take 

slacky&&

outcont _y&&

desq&&
xRP && yRP && zRP &&

xω& yω&

τ

slacky&& outcont _y&& desy&&

y  

and as input.  Eqs. 8 and 12 relate  to , 

and to , , , , and .  Eq. 1 relates 

 to . 

desy desq&& outcont _y&&
xRP && yRP && zRP && xω& yω&

desq&& τ

Linear in-equality constraints of the formulation 
represent the bounds on joint angle positions, joint torques, 
and FRI.  Bounds on FRI are represented using eq. 16.  
Bounds on joint torques are represented simply as bounds 
on the  variables in the quadratic program.  Bounds on 
joint angle position are translated to bounds on joint 
angular accelerations which are set as bounds on the  
variables. 

τ

desq&&

A quadratic cost function is used with costs assigned to 
the slack variables and also the joint torques.  Slack costs 
for “important” outputs are higher than for the other 
outputs.  In these experiments, the important outputs are 
COMx and COMy.  These outputs also have 
correspondingly higher PD gains. 

D. Sliding Control Framework 
Feedback linearization is a powerful technique, but it 

can be insufficient for real plants because it assumes a 
perfect plant model.  The sliding control algorithm [17] 
addresses this problem using a two-part structure.  The first 
part is the nominal part;  it assumes the model is perfect, 
and issues control commands using a feedback 
linearization based on this model.  The second part 
contains additional corrective control terms that 
compensate for model inaccuracy.   

For this problem, the nominal or feed-forward control 
input to the plant is , the joint torque vector output by the 
inverse dynamics block in Fig. 1.  The corrective control 
terms are feedback torques, , which are combined with 

τ

fbτ



the feed-forward torques to get the new, combined plant 
input torque . plantτ

     (17) fbplant τττ +=

Note that the corrective control terms must be applied 
directly to the torques, the actual inputs to the plant.  Thus, 
these terms bypass the kinematic and inverse dynamics 
models , and any associated inaccuracies in these models 
(see Fig. 1).  For this study, the inverse dynamics block in 
Fig. 1 used a slightly simplified model compared with the 
one used in the forward dynamics plant simulation, so 
some model inaccuracies were introduced, just as would be 
the case with an actual plant.  The corrective terms are of 
the form 

)sgn(~ skqλτ −−= &
fb    (18) 

where q~  is the tracking error, defined as the difference 
between the actual and nominal joint angles 

 nomqqq −=~     (19) 

and  is computed by integrating in Fig. 1.  
The constants in the diagonal matrix 

nomq desq&&
λ control 

convergence while on the sliding surface.  The vectors  is 
the distance from the sliding surface, defined as 

 qλqs ~~ += &     (20) 

The constants in the diagonal matrix k are made large 
enough to account for model uncertainty [17]. 

E. Static Jacobian Controller for Comparison 
In order to compare performance of the controller with 

that of previous approaches, a second controller, based on 
static Jacobian linearizations [15, 16] was implemented.  
This controller had the same outputs as the new one, and 
setpoints and PD gains for each output were specified in 
the same way.  A wide range of gain combinations was 
explored by manual tuning to optimize performance.  For 
example, proportional (spring) gain for lateral components 
of COM ranged from 100 to 1000 N/m.  Damping gains 
ranged from 0.1 to 1 times the proportional gains. 

III. RESULTS 
A series of tests was performed with initial conditions 

such that the ground projection of the COM was outside 
the support polygon, and all velocities were set to zero.  
For such initial conditions, the COM cannot be stabilized 
by stance ankle torques alone without the foot rolling and 
the model going unstable.  Simple reference trajectories 
consisting of single, time invariant setpoints were selected 
for the controller.  These setpoints specified the desired 
equilibrium positions and velocities of the model’s COM 
and swing leg foot. Because the desired final equilibrium 
posture was to stand on one leg assuming a static pose, all 
setpoint velocities were set to zero. 

Fig. 2 shows the system’s recovery from an initial 
displacement in the lateral (positive y) direction..  From the 
model’s perspective, the left most edge of the foot support 
polygon is at 0.05m.  As is shown in Fig. 2B, the FRI 
remains within the foot support polygon, while the laterally 
displaced COM position begins outside the stance foot, but 
is brought quickly to zero by the controller.  Fig. 2C shows 
the desired, actual, and slack values for the lateral COM 
acceleration.  Note how the slack goes to zero quickly, due 
to its high penalty.  Fig. 2D shows the roll angle of the 
body.  Because roll angle is less tightly controlled, the 
angle converges, but more slowly than the lateral COM 
position. 

Fig. 3 shows the system’s recovery from a forward 
initial displacement.  The front most edge of the foot 
support polygon is at 0.22 m.  As is shown in Fig. 3B, the 
FRI remains within the foot support polygon, while the 
forward COM position begins outside the foot, but is 
brought quickly to zero by the controller.  Fig. 3C shows 
the desired, actual, and slack values for forward COM 
acceleration.  Note how the slack goes to zero quickly, due 
to its high penalty.  Fig. 3D shows the pitch angle of the 
body.  Pitch converges, but more slowly than forward 
COM position because it is less tightly controlled. 

Fig. 4 shows the system’s recovery from a combined 
forward and lateral displacement, and Fig. 5 compares the 
performance of the sliding controller with that of a simpler 
controller that uses a static Jacobian linearization.  As is 
shown in Fig. 5, the static Jacobian controller fails to 
stabilize the model from the same initial conditions 
outlined in Fig. 4;  the forward COM output becomes 
unstable, and the model falls down.   

IV. DISCUSSION 
In this paper, we present a controller that employs 

acceleration of non-contact limbs and stance leg ankle 
torques as key stabilization strategies. The controller 
incorporates feedback linearization, and quadratic 
programming-based optimal control, within a sliding 
control framework.  The feedback linearization component 
decouples and linearizes the plant dynamics, the optimal 
controller ensures that important constraints are observed, 
and the sliding control framework ensures robustness, 
allowing for modeling inaccuracies. 

The results show that the controller makes appropriate 
use of non-contact limbs and stance leg ankle torques to 
stabilize the system.  The non-contact limbs are used in two 
ways:  to shift the FRI, and to shift the COM.  Consider, 
for example, the numerical simulation experiment shown in 
Fig. 2.  From the model’s perspective, the model stands on 
its left foot, leaning to the left (positive y direction).  If the 
controller were to take no action, it would tip further to the 
left and fall down.  Due to the action of the controller, the 
upper body leans further to the left, and the swing leg 
swings out to the right.  Both of these actions correspond, 
initially, to a negative angular acceleration about the x axis. 
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Fig. 2: Lateral disturbance recovery.  In 2A, several frames of the model 
are shown, starting from the maximally displaced COM posture (left most 
image) to the final static equilibrium posture (right most image). From the 
perpective of the model, the right leg is the swing leg and the left the 
stance leg. In 2B, the lateral direction COM (dotted line) and the FRI 
(solid line) are plotted versus time. In 2C, the desired COM acceleration 
(solid line), the actual COM acceleration (heavy dashed line), and the 
slack value (dotted line) are plotted, showing the stabilization of the 
model’s COM. Finally in 2D body roll is plotted, showing the corrective 
measures taken by the controller. 
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Fig. 3: Forward disturbance recovery.  In 3A, several frames of the 

model are shown, starting from the maximally displaced COM posture 
(left most image) to the final static equilibrium posture (right most image).  
From the perspective of the model, the right leg is the swing leg, left is 
stance leg.  In 3B, the forward direction COM (dotted line) and the FRI 
(solid line) are plotted.  In 3C, the desired COM acceleration (solid line), 
the actual COM acceleration (heavy dashed line), and the slack value 
(dotted line) are plotted, showing the stabilization of the model’s COM.  
Finally, in 2D, body pitch is plotted.   

 

 

 

 

 

 

 



A. 

 
B. 

 
C. 

 
Fig. 4:  Forward and lateral disturbance recovery.  In 4A, several 

frames of the model are shown, starting from the maximally displaced 
COM posture (left most image) to the equilibrium posture.  In 4B, the 
forward direction COM (dotted line) and the FRI (solid line) are plotted.  
4C shows lateral COM and FRI. 

 
Fig. 5: Forward and lateral disturbance recovery.  Trajectory for 

forward COM using controller based on static Jacobian linearization (solid 
line), and using controller described here (dotted line).  Initial conditions 
are the same as those in Fig. 4. 

From equation (16), it is easy to see that this negative 
angular acceleration about the x axis allows a linear 
acceleration of the COM to the right (in the negative y 
direction) while not requiring the FRI to shift further to the 
left (positive y direction).  This is important since, as 
shown in Fig. 2, the FRI begins up against the left-most 

edge of the foot support polygon.  As the COM approaches 
the desired position, the FRI moves away from the edge 
and towards the center of the foot support polygon.  At this 
point, the swing leg and body are able to return to their 
nominal neutral positions.   

The lateral acceleration of the swing leg to the right 
(negative y direction) is also beneficial in that it moves part 
of the model’s mass to the right, and so, helps move the 
COM in the right direction.  The net effect of the swing leg 
and body movements is an overall angular acceleration at 
the ankle joint that, together with the action of the stance 
ankle torque, moves the COM back to the center of the foot 
support polygon. 

The extreme case of non-contact limb movement 
occurs when the support polygon becomes very small, as is 
the case for a tight-rope walker.  A tight-rope walker’s 
support polygon is very narrow, and therefore, little stance 
ankle torque can be exerted.  Lateral forces by the foot 
against the tight-rope move the COM, but also create 
torques of the COM about the contact point.  This must be 
countered by spin angular accelerations (angular 
accelerations about the COM), so that overall angular 
momentum is conserved.  The spin angular accelerations 
are generated by movement of the non-contact limbs.  
Thus, a tight-rope walker extends his arms, and moves his 
arms, body, and non-contact leg to generate appropriate 
spin angular accelerations. 

An important feature of the controller is that the 
coordinated behavior of the stance leg and non-contact 
limbs is not controlled explicitly, but rather, emerges 
indirectly from a high-level specification of desired 
behavior.  This specification is given in terms of setpoints 
and PD gains for the COM, body orientation, and swing leg 
control outputs, in terms of constraints such as the one on 
the FRI (equation 16), and in terms of penalties for slacks 
and torques in the optimization cost function.   

Another important feature of the controller is that, due 
to its extended range of operation, it can reject significant 
disturbances more easily than simpler controllers (as shown 
in Fig. 5).  This feature also means that reference 
trajectories for the new controller need not be as detailed as 
those for simpler controllers.  The reference “trajectories” 
for the tests of Figs. 2 through 5 were single, time invariant 
setpoints for COM, body orientation, and swing leg  
outputs.  Simpler controllers require more detailed 
reference trajectories, with more waypoints as a function of 
time.  For example, the static Jacobian controller that failed 
in the test of Fig. 5 could be made to work for this case if 
more detailed reference trajectories for stance leg, swing 
leg, and body were provided.  However, this level of detail 
puts significant computational burden on the motion 
planning component of an integrated motion planning and 
control system.  The motion planner has to be executed 
more frequently, when there are disturbances, and it must 
produce more detailed reference trajectories. 

Detailed evaluation of the sliding control framework’s 
ability to handle model uncertainty was beyond the scope 
of this investigation.  We plan to perform such an 
evaluation by testing the algorithm on simulations where 
model errors are introduced, and on actual robots.  



Additionally, it would be interesting to investigate the 
extent to which this framework allows for use of simplified 
dynamics models, where some of the terms in equation (1) 
are simplified or omitted. 

In the future, we plan to conduct a series of tests using 
human subjects, where the COM of the subject is initially 
displaced in a manner similar to that for the above-
described tests.  We will analyze the stabilizing motions of 
these subjects and compare them with those of the 
controller.  We expect that this will be useful for fine-
tuning the controller’s PD gains and slack variable costs.  
We also plan to combine this controller with a fully 
integrated motion planning system, and evaluate its 
performance for more complex maneuvers such as walking 
and running. 
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