
Advanced Scheme Techniques

Advanced Scheme Techniques

Some Naughty Bits

Jeremy Brown

January 12 & 14, 2004

Page 1 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Acknowledgements

Jonathan Bachrach, Alan Bawden, Chris Hanson, Neel

Krishnaswami, and Greg Sullivan offered many helpful suggestions

on an earlier version of this course.

These slides draw on works by
Hal Abelson, Alan Bawden, Chris Hanson, Paul Graham, Oleg Kiselyov, Neel

Krishnaswami, Al Petrofsky, Jonathan Rees, Dorai Sitaram, Gerry Sussman, Julie

Sussman, and the R5RS authors group

Thanks also to Scheme Boston, the Boston-area Scheme User’s

Group.

And of course to SIPB, for organizing.

All errors are, of course, my fault alone.

Page 2 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Advanced Scheme

Day 2:

Continuations

Page 3 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Scheme Requests for Implementation (SRFIs)

Several of the examples today will refer to SRFIs.

The SRFI documents represent the Scheme community’s de facto,

post-R5RS standards

Check them out at http://srfi.schemers.org/

Page 4 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Anatomy of a Closure

In Scheme, procedures are closures.

A closure expects to be invoked with a certain number of arguments.

A closure contains:

• a pointer to some code

• a pointer to an environment

Page 5 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Closure Example

((lambda (n)

(lambda (x) (+ x n))) 5) ==> #<procedure object>

The procedure object has pointers to::

• the code for adding x and n: (+ x n)

• the environment binding n to 5

Page 6 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Procedure Call

When a function invokes a closure, it a single return value.

(define (pairify x y)

(let ((val (cons x y)))

val))

E.g., pairify expects cons to return a single value.

Page 7 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Return Information

A function must save information to return a value to its caller:

• a pointer to some code: the return address in the caller’s code

• a pointer to an environment: the caller’s execution environment

This return-information:

• looks a lot like a closure (pointers to code and env)...

• that expects a single argument (the return value)...

• and never returns!

Page 8 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Return Information

A function must save information to return a value to its caller:

• a pointer to some code: the return address in the caller’s code

• a pointer to an environment: the caller’s execution environment

This return-information:

• looks a lot like a closure (pointers to code and env)...

• that expects a single argument (the return value)...

• and never returns!

Page 8 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Return Information

A function must save information to return a value to its caller:

• a pointer to some code: the return address in the caller’s code

• a pointer to an environment: the caller’s execution environment

This return-information:

• looks a lot like a closure (pointers to code and env)...

• that expects a single argument (the return value)...

• and never returns!

Page 8 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Return Information

A function must save information to return a value to its caller:

• a pointer to some code: the return address in the caller’s code

• a pointer to an environment: the caller’s execution environment

This return-information:

• looks a lot like a closure (pointers to code and env)...

• that expects a single argument (the return value)...

• and never returns!

Page 8 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Return Information

A function must save information to return a value to its caller:

• a pointer to some code: the return address in the caller’s code

• a pointer to an environment: the caller’s execution environment

This return-information:

• looks a lot like a closure (pointers to code and env)...

• that expects a single argument (the return value)...

• and never returns!

Page 8 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Continuations

Return-information represents the future path of a program.

Consider an actual closure which:

• expects a single argument, and

• never returns to its caller

Given this closure, we can view returning a value V as calling (k V).

Page 9 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Continuations

A continuation is a closure which:

• represents the “future” of a computation from a given point

• never returns to its caller

• (usually) expects one argument — the value to be returned from

the point at which the continuation was created

Page 10 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

A Quick Review of Tail Calls

Consider

(lambda (x y) (y x))

The lambda will return the value returned by (y x) — we call

(y x) a tail-call.

Since the lambda has done all its work by the time the tail-call is

called, its environment, etc., do not need to be preserved.

Scheme implementations are required to support unbounded

numbers of active tail calls.

Page 11 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

A Quick Review of Tail Calls

Consider

(lambda (x y) (y x))

The lambda will return the value returned by (y x) — we call

(y x) a tail-call.

Since the lambda has done all its work by the time the tail-call is

called, its environment, etc., do not need to be preserved.

Scheme implementations are required to support unbounded

numbers of active tail calls.

Page 11 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

A Quick Review of Tail Calls

Consider

(lambda (x y) (y x))

The lambda will return the value returned by (y x) — we call

(y x) a tail-call.

Since the lambda has done all its work by the time the tail-call is

called, its environment, etc., do not need to be preserved.

Scheme implementations are required to support unbounded

numbers of active tail calls.

Page 11 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Normal Factorial

Normal fact:

(define (fact n)

(if (= n 1)

1

(* n (fact (- n 1)))))

(fact 5) ==> 120

What if we made all the implicit returns into explicit continuation

calls? (Continuation-Passing Style)

Page 12 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Normal Factorial

Normal fact:

(define (fact n)

(if (= n 1)

1

(* n (fact (- n 1)))))

(fact 5) ==> 120

What if we made all the implicit returns into explicit continuation

calls? (Continuation-Passing Style)

Page 12 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Continuation Passing Style (CPS)

(define (cps-fact k n)

(cps-=

(lambda (eq-n-1)

(if eq-n-1

(k 1)

(cps--

(lambda (nval)

(cps-fact

(lambda (rval)

(cps-* k n rval)) nval)) n 1)))

n 1))

(cps-fact (lambda (x) x) 5) ==> 120

Note “inside-out” structure: every call is a tail call!

Page 13 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

CPS call-with-current-continuation

call-with-current-continuation (AKA call/cc) makes the return

continuation explicitly available as a closure.

The CPS version of call/cc is simple:

(define (cps-call/cc k func)

(func k k))

1

The “normal” version of call/cc is a language primitive.

We need an example...

Page 14 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

CPS call-with-current-continuation

call-with-current-continuation (AKA call/cc) makes the return

continuation explicitly available as a closure.

The CPS version of call/cc is simple:

(define (cps-call/cc k func)

(func k k))

1

The “normal” version of call/cc is a language primitive.

We need an example...

Page 14 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

CPS call-with-current-continuation

call-with-current-continuation (AKA call/cc) makes the return

continuation explicitly available as a closure.

The CPS version of call/cc is simple:

(define (cps-call/cc k func)

(func k k))

1

The “normal” version of call/cc is a language primitive.

We need an example...

Page 14 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

CPS call-with-current-continuation

call-with-current-continuation (AKA call/cc) makes the return

continuation explicitly available as a closure.

The CPS version of call/cc is simple:

(define (cps-call/cc k func)

(func k k))

1

The “normal” version of call/cc is a language primitive.

We need an example...

Page 14 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Early Return Using call/cc

Contrived example use of call/cc

(define evencount 0)

(let ((test 17))

(call/cc (lambda (return)

(if (odd? test) (return 5))

(set! evencount (+ evencount 1))

7)))

==> 5

(lambda (return...)) receives a continuation in return.

The continuation represents returning a value from the call/cc form.

When the continuation is invoked with the argument 5, the call/cc

form immediately returns 5. The set! is never executed!

Page 15 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Early Return Using call/cc

Contrived example use of call/cc

(define evencount 0)

(let ((test 17))

(call/cc (lambda (return)

(if (odd? test) (return 5))

(set! evencount (+ evencount 1))

7)))

==> 5

(lambda (return...)) receives a continuation in return.

The continuation represents returning a value from the call/cc form.

When the continuation is invoked with the argument 5, the call/cc

form immediately returns 5. The set! is never executed!

Page 15 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Continuations are First Class

Continuations...

• are first-class functions

• can be invoked many times

• can be used to create nearly any control-flow structure

Page 16 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Multiple-Value Continuations

Scheme limits normal functions to returning a single value.

In CPS-style, it’s easy to have multiple-value “return”:

(define (cps-values k . args)

(cps-apply k args))

...all you need is a continuation (k, above) that accepts multiple

values!

Scheme provides a language primitive “values” to return multiple

values:

(lambda (a b)

(values a b))

But how do we get the continuation that can accept them?

Page 17 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Multiple-Value Continuations

Scheme limits normal functions to returning a single value.

In CPS-style, it’s easy to have multiple-value “return”:

(define (cps-values k . args)

(cps-apply k args))

...all you need is a continuation (k, above) that accepts multiple

values!

Scheme provides a language primitive “values” to return multiple

values:

(lambda (a b)

(values a b))

But how do we get the continuation that can accept them?

Page 17 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

call-with-values

Scheme provides another primitive that works with values. From

R5RS:

(call-with-values

(lambda () (values 4 5)) ; producer

(lambda (a b) (+ a b))) ; consumer

; (continuation)

==> 9

call-with-values calls the producer, providing the consumer as its

continuation

SRFI-11 defines special forms LET-VALUES and LET*-VALUES

which hide the call-by-values form

Page 18 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

call-with-values

Scheme provides another primitive that works with values. From

R5RS:

(call-with-values

(lambda () (values 4 5)) ; producer

(lambda (a b) (+ a b))) ; consumer

; (continuation)

==> 9

call-with-values calls the producer, providing the consumer as its

continuation

SRFI-11 defines special forms LET-VALUES and LET*-VALUES

which hide the call-by-values form

Page 18 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Control Flow Structures

Page 19 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Control Flow Structures

We’ve already seen early-return using continuations. Coming up:

• Exceptions

• Iterators/Co-routining

• Backtracking

• Multi-threading

Page 20 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Exceptions

Page 21 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Simple Exception Semantics

Simplest possible scheme:

(define (le10-or-bust x)

(if (> x 10) (throw) x))

(let ((x 17))

(try (lambda () 5)

(le10-or-bust x)

12))

==> 5

First argument to “try” is the handler; remainder args are body. If

(throw) is not called, the body’s return-value is try’s return-value.

Handler is instantly invoked if (throw) is called while execution is in

the try-form. Handler’s return-value is then also returned by the try

expression.

Page 22 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Simple Exception Semantics

Simplest possible scheme:

(define (le10-or-bust x)

(if (> x 10) (throw) x))

(let ((x 17))

(try (lambda () 5)

(le10-or-bust x)

12))

==> 5

First argument to “try” is the handler; remainder args are body.

If

(throw) is not called, the body’s return-value is try’s return-value.

Handler is instantly invoked if (throw) is called while execution is in

the try-form. Handler’s return-value is then also returned by the try

expression.

Page 22 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Simple Exception Semantics

Simplest possible scheme:

(define (le10-or-bust x)

(if (> x 10) (throw) x))

(let ((x 17))

(try (lambda () 5)

(le10-or-bust x)

12))

==> 5

First argument to “try” is the handler; remainder args are body. If

(throw) is not called, the body’s return-value is try’s return-value.

Handler is instantly invoked if (throw) is called while execution is in

the try-form. Handler’s return-value is then also returned by the try

expression.

Page 22 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Simple Exception Semantics

Simplest possible scheme:

(define (le10-or-bust x)

(if (> x 10) (throw) x))

(let ((x 17))

(try (lambda () 5)

(le10-or-bust x)

12))

==> 5

First argument to “try” is the handler; remainder args are body. If

(throw) is not called, the body’s return-value is try’s return-value.

Handler is instantly invoked if (throw) is called while execution is in

the try-form. Handler’s return-value is then also returned by the try

expression.

Page 22 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Simple Exception Implementation

(define top-exception-handler (lambda () (error "unhandled")))

(define (throw) (top-exception-handler))

(define-syntax try

(syntax-rules ()

((try catch-clause body ...)

(let* ((result #f)

(old-handler top-exception-handler)

(success (call/cc (lambda (cont)

(set! top-exception-handler

(lambda () (cont #f)))

(set! result (begin body ...))

#t))))

(set! top-exception-handler old-handler)

(if success result (catch-clause))))))

Page 23 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Simple Exception Implementation

(define top-exception-handler (lambda () (error "unhandled")))

(define (throw) (top-exception-handler))

(define-syntax try

(syntax-rules ()

((try catch-clause body ...)

(let* ((result #f)

(old-handler top-exception-handler)

(success (call/cc (lambda (cont)

(set! top-exception-handler

(lambda () (cont #f)))

(set! result (begin body ...))

#t))))

(set! top-exception-handler old-handler)

(if success result (catch-clause))))))

Page 23 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

SRFI-34 Exceptions

SRFI-34 defines a more sophisticated exception-handling suite:

• Thrown exceptions include values

• Exception handlers can dispatch on values

• etc.

Check it out.

Page 24 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Backtracking

Page 25 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Backtracking: a Teaser

The “amb” operator always picks an acceptable value:

(let ((value (amb 0 1 2 3 4 5 6)))

(assert (> value 2))

(assert (even? value))

value)

==>

4

And you can ask for more:

(next)

==> 6

Page 26 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Backtracking: a Teaser

The “amb” operator always picks an acceptable value:

(let ((value (amb 0 1 2 3 4 5 6)))

(assert (> value 2))

(assert (even? value))

value)

==> 4

And you can ask for more:

(next)

==> 6

Page 26 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Backtracking: a Teaser

The “amb” operator always picks an acceptable value:

(let ((value (amb 0 1 2 3 4 5 6)))

(assert (> value 2))

(assert (even? value))

value)

==> 4

And you can ask for more:

(next)

==> 6

Page 26 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Backtracking: An Application

(define (three-dice sumto)

(let ((die1 (amb 1 2 3 4 5 6))

(die2 (amb 1 2 3 4 5 6))

(die3 (amb 1 2 3 4 5 6)))

(assert (= sumto (+ die1 die2 die3)))

(list die1 die2 die3)))

(initialize-amb-fail)

(three-dice 4) ==> (2 1 1)

(next) ==> (1 2 1)

(next) ==> (1 1 2)

(next) ==> ERROR:

amb tree exhausted

Page 27 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Amb: Principle of Operation

Amb works by backtracking

Think of amb as a glorified exception handler:

1. Pick a value and run forward

2. If no exception is thrown, great

3. If an exception is thrown, pick another value and run forward

again

Page 28 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Amb: Framework

Everything but the definition of amb:

(define amb-fail ’())

(define (initialize-amb-fail)

(set! amb-fail

(lambda (x)

(error "amb tree exhausted"))))

(define (assert pred)

(if (not pred) (amb)))

(define (fail) (amb))

(define (next) (amb))

Adapted from “Teach yourself Scheme in Fixnum Days (TYSiFD)”, by Dorai Sitaram

Page 29 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Amb: The Macro

(define-syntax amb

(syntax-rules ()

((amb argument ...)

(let ((old-amb-fail amb-fail))

(call/cc (lambda (return)

(call/cc (lambda (next)

(set! amb-fail next)

(return argument))) ...

(set! amb-fail old-amb-fail)

(amb-fail #f)))))))

Each ambiguous decision point adds to the stack.

Each failure backtracks to the last decision point.
Adapted from “Teach yourself Scheme in Fixnum Days (TYSiFD)”, by Dorai Sitaram

Page 30 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

bag-of: Getting All the Options

bag-of gives you a list of all acceptable solutions:

(bag-of (three-dice 4))

==> ((1 1 2) (1 2 1) (2 1 1))

And it’s recursive:

(bag-of

(let ((sum (amb 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)))

(bag-of (three-dice sum))))

(let loop ((die 18))

(if (>= die 3)

(cons (bag-of (three-dice die)) (loop (- die 1)))

’())))

==> ((((6 6 6)) ((5 6 6) (6 5 6) (6 6 5)) ((4 6 6) (5 5 6)

Page 31 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

bag-of: Getting All the Options

bag-of gives you a list of all acceptable solutions:

(bag-of (three-dice 4))

==> ((1 1 2) (1 2 1) (2 1 1))

And it’s recursive:

(bag-of

(let ((sum (amb 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)))

(bag-of (three-dice sum))))

(let loop ((die 18))

(if (>= die 3)

(cons (bag-of (three-dice die)) (loop (- die 1)))

’())))

==> ((((6 6 6)) ((5 6 6) (6 5 6) (6 6 5)) ((4 6 6) (5 5 6)

Page 31 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

bag-of: The Macro

(define-syntax bag-of

(syntax-rules ()

((bag-of expr)

(let* ((old-amb-fail amb-fail)

(result ’()))

(if (call/cc (lambda (ifcondcont)

(set! amb-fail ifcondcont)

(let ((e expr))

(set! result (cons e result))

(ifcondcont #t))))

(amb-fail #f))

(set! amb-fail old-amb-fail)

result))))

Page 32 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Iterators

Page 33 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Traversals

It’s easy to traverse a data structure recursively:

(define (list-traverse list)

(if (pair? list)

(list-traverse (cdr list))))

(define (tree-traverse tree)

(if (pair? tree)

(begin

(tree-traverse (car tree))

(tree-traverse (cdr tree)))))

Not that these do anything useful

Page 34 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Traversals

It’s easy to traverse a data structure recursively:

(define (list-traverse list)

(if (pair? list)

(list-traverse (cdr list))))

(define (tree-traverse tree)

(if (pair? tree)

(begin

(tree-traverse (car tree))

(tree-traverse (cdr tree)))))

Not that these do anything useful

Page 34 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Traversals

It’s easy to traverse a data structure recursively:

(define (list-traverse list)

(if (pair? list)

(list-traverse (cdr list))))

(define (tree-traverse tree)

(if (pair? tree)

(begin

(tree-traverse (car tree))

(tree-traverse (cdr tree)))))

Not that these do anything useful

Page 34 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

A List Iterator

(define (list-iter list)

(lambda ()

(if list

(let ((value (car list)))

(set! list (cdr list))

value)

’())))

(define li (list-iter ’(1 2 3)))

(li) ==> 1

(li) ==> 2

(li) ==> 3

(li) ==> ()

This is pretty clean, but...

Page 35 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

A List Iterator

(define (list-iter list)

(lambda ()

(if list

(let ((value (car list)))

(set! list (cdr list))

value)

’())))

(define li (list-iter ’(1 2 3)))

(li) ==> 1

(li) ==> 2

(li) ==> 3

(li) ==> ()

This is pretty clean, but...

Page 35 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

A List Iterator

(define (list-iter list)

(lambda ()

(if list

(let ((value (car list)))

(set! list (cdr list))

value)

’())))

(define li (list-iter ’(1 2 3)))

(li) ==> 1

(li) ==> 2

(li) ==> 3

(li) ==> ()

This is pretty clean, but...

Page 35 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Iterating Over a Tree

(define (tree-iter tree)

(let ((cell-stack (list tree)))

(lambda ()

(if cell-stack

(let loop ((node (pop! cell-stack)))

(if (pair? node)

(begin

(push! (cdr node) cell-stack)

(loop (car node)))

node))

’()))))

(define ti (tree-iter ’((1 . 2) . (3 . 4))))

(ti) ==> 1 etc.

...now we’re keeping a history of the computation in cell-stack!

Page 36 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Tree Iterator Using Continuations and Macros

We add four lines to the tree-traverse routine:

(define (tree-iter tree)

(with-caller caller loopstate ; save calling cont.

(let loop ((node tree))

(if (pair? node)

(begin

(loop (car node))

(loop (cdr node)))

(begin ; sequence

(send caller loopstate node) ; send value

’()))))) ; ’done’ value

Adapted from “Teach yourself Scheme in Fixnum Days (TYSiFD)”, by Dorai Sitaram

Page 37 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Helper Macro: Send

(send caller localstate value)

Send gives the value to the ’caller’ continuation, storing the current

continuation in the localstate variable:

(with-caller caller localstate body ...)

with-caller saves the calling continuation into caller, constructs the

lexical execution environment in which localstate is bound, etc.

Page 38 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

send

(define-syntax send

(syntax-rules ()

((send to from value)

(call/cc

(lambda (state)

(set! from (lambda () (state 0)))

(to value))))))

Page 39 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

with-caller

(define-syntax with-caller

(syntax-rules ()

((with-caller caller iterator body ...)

(let ((caller #f))

(letrec ((iterator

(lambda ()

body ...)))

(lambda ()

(call/cc

(lambda (caller-cont)

(set! caller caller-cont)

(iterator)))))))))

Page 40 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Tree Iterator Expansion I

(define (tree-iter-k list)

(let ((caller #f)) ; caller continuation

(letrec ((iterator

(lambda ()

(let loop ((list list))

(if list

(begin

(call/cc

(lambda (iter)

(set! iterator (lambda () (iter 0)))

(caller (car list))))

(loop (cdr list)))

(caller ’()))))))

... more

Page 41 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Tree Iterator Expansion II

...

(lambda ()

(call/cc

(lambda (caller-cont)

(set! caller caller-cont)

(iterator)))))))

Page 42 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Cooperative Multi-Threading

Page 43 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Simple Goal

Three routines:

(start-scheduling thunk)

(spawn thunk)

(yield)

• start-scheduling kicks off the threading system running thunk

• spawn may be called to create an additional thread from thunk

• yield may be called by one thread to let others run

Page 44 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Global State

(define thread-set ’())

(define scheduler-context #f)

Page 45 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

start-scheduling

(define (start-scheduling thunk)

(set! thread-set ’())

(call/cc

(lambda (scheduler)

(set! scheduler-context scheduler)

(spawn thunk)))

(if (not (empty-stack? thread-set))

(begin

((pop! thread-set))

(loop)

(display "**Scheduler exiting**."))))

Page 46 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

spawn

(define (spawn thunk)

(push! (lambda () (thunk) (scheduler-context 0))

thread-set))

Page 47 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

yield

(define (yield)

(call/cc

(lambda (this-thread)

(if (not (empty-stack? thread-set))

(let ((next-thread (pop! thread-set)))

(push! (lambda () (this-thread 0)) thread-set)

(next-thread))))))

Page 48 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Example Code

(start-scheduling

(lambda ()

(spawn (lambda ()

(display "sub-thread")

(yield)

(display "more sub-thread")

(yield)))

(display "first thread")

(yield)

(display "and more first")))

Page 49 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Example Output

first thread

sub-thread

and more first

more sub-thread

Page 50 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Homework

Can you figure out how to implement locks in this system?

Page 51 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

Other Continuation-Related Functions

Look these up sometime...

• dynamic-wind

• fluid-let

Page 52 Jeremy H. Brown January 12 & 14, 2004

Advanced Scheme Techniques

The End!

Page 53 Jeremy H. Brown January 12 & 14, 2004

