
D-Expressions: Lisp Power, Dylan Style

Jonathan Bachrach
Artificial Intelligence Laboratory

Massachussetts Institute of Technology
Cambridge, MA 02139

jrb@ai.mit.edu

Keith Playford
Functional Objects, Inc.

86 Chandler Street
Somerville, MA 02144

keith@functionalobjects.com

1 Abstract

This paper aims to demonstrate that it is possible for a lan-
guage with a rich, conventional syntax to provide Lisp-style
macro power and simplicity. We describe a macro system
and syntax manipulation toolkit designed for the Dylan pro-
gramming language that meets, and in some areas exceeds,
this standard. The debt to Lisp is great, however, since
although Dylan has a conventional algebraic syntax, the ap-
proach taken to describe and represent that syntax is dis-
tinctly Lisp-like in philosophy.

2 Introduction

The ability to extend a programming language with new
constructs is a valuable tool. With it, system designers can
grow a language towards their problem domain and enhance
productivity and ease of maintenance. A macro system pro-
vides this capability in a portable, high-level fashion by al-
lowing new constructs to be implemented in terms of exist-
ing ones via programmer-defined source-to-source transfor-
mations.

Beyond the above, the ability to read, write, and eas-
ily manipulate the syntax of a language from within that
language can be especially powerful. It can allow the full
language to be brought to bear when implementing macros.
It can provide a convenient means of saving and restoring
structured data in text form. It can form the basis of code
analysis tools and be the starting point for experiments with
new language processors or into modified language seman-
tics.

2.1 Successes and Failures

Lisp is the only language family (cf [9], [10]) that has suc-
ceeded in providing integrated macro systems along with
simple and powerful syntax manipulation tools like these.
They are considered one of Lisp’s unique strengths, perhaps
even the most important and distinctive feature of the lan-
guage. But the key to their viability in Lisp is the simplicity
and regularity of its syntax. Recognizing their utility, at-
tempts have been made to provide powerful macro facilities

in languages with more conventional syntaxes like those of
C or Pascal, but in comparison with what Lisp provides, the
solutions have been restrictive, difficult to explain and use,
or both. None have been standardized. Further, the utility
of syntax manipulation tools independent of the macroex-
pansion process is typically forgotten.

2.2 Lisp Power, Dylan Style

This paper aims finally to demonstrate that it is possible for
a language with a richer, more conventional syntax to pro-
vide Lisp-style macro power and simplicity. We describe a
macro system and syntax manipulation toolkit designed for
the Dylan programming language (cf [13], [7]) that meets our
goals as well as, if not better than, those commonly found in
Lisps. The debt to Lisp is great, however, since although Dy-
lan has a conventional algebraic syntax, the approach taken
to describe and represent its syntax is distinctly Lisp-like in
philosophy.

Taking Dylan’s already capable rule-based pattern match-
ing and template substitution macro system as a starting
point, we explore its underpinnings. Within a broader com-
parison with other styles, we relate Dylan’s approach to the
Lisp model and show how their common basis can (and has,
in other contexts) be applied to a family of languages whose
syntax is based on what we term a skeleton syntax tree. We
go on to describe a library which provides a code representa-
tion (d-expressions), source-level pattern matching and code
construction utilities, and source code IO. Some models of
compile-time evaluation are proposed that are suitable for
Dylan, a language in which compiler and run-time are sep-
arated. Finally, putting the d-expressions library together
with a compile-time evaluation model leads us to a natu-
ral procedural macro extension of Dylan’s rule-based macro
system, one comparable to those available in Lisp.

2.3 Requirements and Goals

A macro facility provides a mechanism to extend a base
syntax. Such a facility can be measured along a set of axes,
covering such aspects as power, generality, reliability, and
ease of use.

Macro facilities differ greatly in their ability to perform
syntactic transformations. Their power can be judged by
the complexity of their underlying syntactic representations
and the extent of their programmability. Macro systems
have used input representations such as characters, tokens,
syntax, and semantic information, with the latter leading to

1

more powerful transformations than the impoverished for-
mer. First, the underlying syntax representation affects the
ability of the macro system to maintain source locations.
During debugging, a user should not have to step through
macro expanded cruft, no more than they should have to
step through code obfuscated by optimizations. Second, the
syntax representation determines the ease with which syntax
can be manipulated. Ultimately, in order to perform pow-
erful transformations, the underlying representation needs
to be at least rich enough to represent recursive structures
such as expressions.

A macro facility’s programmability is a function of the
strength of its transformational engine, starting from a pure-
ly substitution system (e.g., the C Preprocessor [11]) all the
way up to a full programming language. In between, some
macro systems augment substitution with support for rep-
etition and conditionals. The more powerful the transfor-
mational engine, the more expressive the macro facility will
be. A good test of a macro facility is the extent to which it
can represent the base language on which it was built. This
helps determine whether a language can be seamlessly ex-
tended or whether macro defined constructs will be confined
to a limited syntactic space.

A powerful macro facility should provide an ability to
read and write syntactic elements. Input facilities are obvi-
ously crucial for writing a file compiler, while output facili-
ties are useful for warnings and debugging. Ideally, a macro
facility could be provided as a separate library upon which
to base compilers and code analysis tools.

Another important axis along which to measure a macro
facility is its reliability. Will it produce syntactically correct
output and produce correct results in all cases? Can a macro
introduce a syntax error by way of an admissible usage? In
other words, users should only see syntax errors from the
actual code they write. Can syntactic constituents interfere
with each other? In some systems (e.g., C Preprocessor [11])
extra parentheses are required to prevent unwanted operator
precedence bugs.

From an ease of use point of view as well as a reliabil-
ity perspective, it is important that a macro facility ensures
that variable references copied from a macro call and from
a macro definition mean the same thing in an expansion. In
particular, the macro system should (1) avoid accidental col-
lisions of macro variables with program variables of the same
name regardless of the context in which a given macro is
used and (2) maintain consistency when macro variables re-
fer to identically named variables introduced within a given
macro definition. (1) is generally referred to as hygiene [12]
and (2) is generally referred to as referential transparency.
A violation of either is called a variable capture error. Vari-
able capture errors create subtle bugs that are difficult to
debug. Much has been written about how to avoid intro-
ducing these sorts of errors [8], but we maintain that there
is no reason to introduce them in the first place.

Other aspects that improve usability are intuitiveness of
a macro’s definition and ease with which it’s debugged. We
assert that a macro facility should enable a programmer to
write down what they want the input and output to look like
augmented only by substitution parameters. The alterna-
tive of constructing and manipulating representations man-
ually or specifying productions in terms of Abstract Syntax
Tree classes is too tedious and error prone requiring inti-
mate knowledge of an underlying syntactic representation.
Debugging shift/reduce errors is a daunting task for even
the best programmers. Furthermore, some form of a trace
of the transformation engine and selected expansions is a

great help to macro writers.

3 An Overview of Syntax Representations

We split the space of syntax representations into four broad
categories: text based, token based, abstract syntax trees,
and skeleton syntax trees. Each one in considered in turn
in the following sections and evaluated with respect to the
requirements set out above.

3.1 Text-Based Representations

The most basic representation of a piece of code is its origi-
nal text. Such unstructured text is difficult to analyse and
manipulate, and the simple string-based pattern matching
tools often used are neither syntax aware nor context aware.
Even simple things like matching only code, as opposed to
text contained within strings or comments, can be problem-
atical.

Repeated application of a full parser, if available, is ex-
pensive and may not be possible on subexpressions taken
out of context. Also, unless auxiliary data is maintained
somehow, source location information is lost by transforma-
tions.

Because of these problem and others, a text-based rep-
resentation clearly does not meet our requirements.

3.2 Token-Based Representations

In a token-based representation, code is manipulated as a
sequence of tokens as generated by a lexer. This has a num-
ber of benefits over straight text. For example, the lexer
typically strips out comments, leaving only code. Also, the
problem of accidental token merging when constructing new
phrases can be eliminated. The C preprocessor [11] and
Pop-11 [1] are examples of languages offering a token-based
macro system.

If each token is represented by a structure rather than a
simple string, it is possible to record its classification (e.g.
literal string, identifier, punctuation) and source location
along with it. This information can be maintained through
source-to-source transformations.

Processing an unstructured token stream is not very con-
venient, however. If a macro takes as its arguments a fixed
number of tokens following the macro name, it works cor-
rectly only when its arguments are single-token elements. If
a macro needs to work in terms of expressions, the number
of tokens it accepts is variable. Consider the following:

define token-macro increment!
(loc1, comma, loc2) => (replacement-tokens)

assert(comma = ",");
concatenate(loc2, ":=", loc1, "+", delta)

end token-macro;

// OK
increment! n, delta;

// Assertion fails, comma gets bound to "["
increment! a[i], delta;

C macros and one kind of Pop-11 macro actually con-
strain the shape of macro input to being of function call
form. This allows the parser to easily determine the extent
of a macro’s input and split it into comma-separated chunks
before finally passing these on to the macro.

At the other extreme, macros can be given full control
over the token stream. While this is the ultimate in versa-
tility, it presents some practical problems. For example, the

2

extent of forms cannot be determined without performing
macro expansion. This can be a problem for development
environments and code analysis tools, but also for program-
mers. The approach lacks modularity. Token macros be-
come, in essence, part of an ad-hoc recursive descent parser
and programmers must be aware of the implications of that.
They must always take care to respect any macro syntax
contained within the subexpressions manipulated because
those subexpressios are not isolated within nested structure.

One further problem familiar to most C programmers
is inadvertent expression merging. When bringing code to-
gether within a macro or when returning replacement code
to a macro call point, care must be taken to isolate the
inserted code from its surroundings. Wrapping with paren-
theses where appropriate is normally sufficient to avoid, typ-
ically, operator precedence related bugs. Failing to do so is
still a common source of bugs, however.

Token-based solutions can clearly be very powerful. How-
ever, we feel that the pitfalls and complexities that come
with that power make them an unlikely basis for a macro
system intended to be as simple and accessible as Lisp’s.

3.3 Abstract Syntax Tree Representations

Abstract syntax trees (AST’s) are highly structured repre-
sentations of source code. In an object-oriented implementa-
tion, there would typically be one class per definition, state-
ment, or other language construct. Down at the expression
level, there might be classes corresponding to function calls,
array accesses, literal references, and so on.

Typically with an AST, adding a new syntactic construct
requires extending the parser to understand it and adding
a new class to represent that construct. How difficult this
is is related to the complexity of the parser because there is
no intermediate form between tokens and full AST. Worst
case, there is no special support at all for modular macro
extensions, and new language constructs must be defined as
a cooperating element of the full language grammar [3]. It
could require extensive knowledge of the parser’s intricacies
to avoid or resolve problems like shift/reduce conflicts in an
LALR parser, for example. We don’t consider requiring such
knowledge of programmers to be reasonable.

3.4 Skeleton Syntax Tree Representations

The distinguishing feature of a skeleton syntax tree (SST) is
that it has few classes and corresponds to a very simple core
grammar. That grammar describes “shapes” rather than
particular language constructs. Many different constructs
may fit within the same basic shape.

The most extreme example of a language based on an
SST is, of course, Lisp. Lisp’s underlying grammar says
nothing about cond or defun, it simply specifies the single
basic shape of all Lisp constructs. Although not a program-
ming language, XML has much the same property.

SST’s define the axioms to which all syntax must con-
form. In Lisp, it is, essentially, that brackets match. In
XML, that tags must match. The simplicity of the axioms
makes the overall structure of the language easy for people
to understand and to remember and also for programs to
work with.

Language-level constructs are defined modularly, above
the core grammar and without requiring any changes to it.
User-defined constructs have the same status as standard
syntactic forms.

Referring back to a previous section, another way to look
at an SST is as a lightly-structured, token-based representa-
tion. SST’s have most of the power of general token-based
approaches, but without many of the pitfalls discussed. The
challenge is to define a simple SST upon which it is possible
to build a language with a conventional algebraic syntax.

It is worth noting that although Lisp is SST-based, the
SST used in most Lisps would not meet our requirements.
Because standard run-time objects (numbers, symbols, lists)
are reused to represent the Lisp SST, there is no reliable
way to record auxiliary information like source location or
hygiene context. Scheme macro systems [5] that implement
automatic hygiene have to face this deficiency and work in
terms of special-purpose syntax objects rather than lists and
symbols.

4 Dylan’s Rewrite-Rule Only Macro System

Dylan macros provide a way to define new syntactic forms.
Their definitions are called macro definitions and their us-
ages are called macro calls. At compile-time, macro ex-
pansion replaces macro calls with other constructs per their
definition. This macro expansion process is repeated until
the resulting expansion contains no more macro calls.

4.1 Dylan’s Rewrite Rules

The macro system defined in the Dylan Reference Manual
(DRM) [13] is a rewrite-rule only pattern matching template
substitution system. Macros are named with module bind-
ings using the usual Dylan namespace mechanism. Each
macro is comprised of a sequence of rewrite rules where the
left-hand side of a rule is a pattern that matches a fragment
of code and the right-hand side of a rule is a template which
is substituted for the matched fragment. Pattern variables
in the left-hand side serve as macro arguments. Pattern vari-
ables appearing on the right-hand side substitute arguments
into the expansion. The rules are attempted in order until
a given rule’s pattern is found to match, at which time, the
matched fragment is replaced with the corresponding tem-
plate. If no patterns are found to match, then an error is
raised.

4.2 Dylan’s Skeleton Syntax Tree

Before we delve into the intricacies of the rewrite-rule only
macro system, it is important to explore Dylan’s SST. Dy-
lan’s SST is a richer version of Lisp’s s-expression based
SST. Lisp’s SST can roughly be described as follows:

form: symbol
form: literal
form: "(" elements ")"

elements: form ...

Dylan adds to this a few more basic shapes:

form: identifier
form: literal
form: "(" elements ")"
form: "define" modifiers LIST-DEFINITION elements ";"
form: "define" modifiers BODY-DEFINITION elements "end" ";"
form: STATEMENT elements "end" ";"

elements: [form | punctuation] ...

3

where modifiers are a sequence of adjective names. Consult
the DRM [13] for the full grammar.

Although, the Dylan rule-based macro system could be
made to work with more involved and stricter grammars, a
skeleton syntax tree offers a number of advantages. First,
an SST modularizes parsing, that is, descending structures
without doing an expansion is now possible, changes in a
given expansion algorithm don’t require redoing a top-level
parse, and syntax errors can be kept localized. Second, an
SST gives the user a lot of latitude to choose an appropriate
grammar for a given macro, that is, the Dylan grammar
does not dictate the precise form of templates, but instead
very loosely constrains their basic shape.

4.3 Source-level Pattern Matching

Now that we have described Dylan’s SST we are in a position
to describe the constituents of rules. Patterns appearing on
the left hand side of rules provide a “what you see is what
you get” (WYSIWYG) mechanism for specifying the desired
input of a macro in terms of concrete syntax. A pattern ba-
sically looks like the construct that it is to match augmented
by pattern variables which match and bind to appropriate
parts of the construct. Pattern variables are denoted with a
? prefixing their names. Pattern variables have constraints
that restrict the syntactic type of fragments (based on the
Dylan grammar) that they match when appearing in a pat-
tern. Some of the various pattern constraints are token,
name, variable, expression, and body. Constraints are de-
noted with a : separated pattern variable name’s suffix.

An example pattern (forming the basis of a complement
to Dylan’s unless macro) is the following:

{ when (?test:expression) ?body:body end }

where the following would be a well-formed when macro call:

when (close?) close(stream) end

Patterns match their input based on a simple matching
procedure. In order to avoid easily constructed ambiguous
patterns, patterns are matched using left to right processing
combined with a match shortest first priority for matching
wildcard pattern variables. A pattern matches if and only
if all of its sub-patterns match. For more details, please
consult the DRM [13] .

4.4 Source-level Code Generation

Templates appearing on the right hand side of rules provide
a WYSIWYG mechanism for specifying the desired output
of a macro in terms of concrete syntax. A template basically
looks like the construct that it produces augmented by pat-
tern variables that stand in for parts of the construct bound
to the same pattern variables in the corresponding left hand
side pattern. For example, the full macro containing the
example pattern from above would be:

define macro when
{ when (?test:expression) ?body:body end }

=> { if (?test) ?body end if }
end macro;

where

when (close?) close(stream) end

would expand into

if (close?) close(stream) end if

with ?test bound to close? and ?body bound to close(stream).
Templates do not produce a parsed output but instead

produce a well formed sequence of tokens whose parsing
is delayed, where well-formed means that all occurrences
of Dylan brackets match. Delaying their parsing permits
fewer inter-macro dependencies thereby allowing macros to
be compiled independent of each other and permitting re-
cursive macros without forward declarations.

4.5 Example Macros

We present a number of Dylan macros in order to give a
sense of the range of their uses. Graham’s book [8] is an
excellent source for macro motivation and examples. An
example of a function macro is increment!:

define macro increment!
{ increment!(?place:expression) }

=> { ?place := ?place + 1 }
{ increment!(?place:expression, ?amount:expression) }

=> { ?place := ?place + ?amount }
end macro;

increment!(x);
increment!(height(x), 10);

which is the Dylan equivalent of C’s ++.
An example statement macro is with-open-file:

define macro with-open-file
{ with-open-file (?stream:name, ?options:*) ?:body end }

=> { let ?stream = #f;
block ()

?stream := make(<file-stream>, ?options);
?body

cleanup
?stream & close(?stream)

end block }

end macro;

with-open-file (stream, locator: "phonenumbers")
process-phone-numbers(stream);

end with-open-file;

where the * constraint on the pattern variable ?options
means that options can match any parsed fragment. This
macro is typical of a whole range of macros, called with-
macros, where resources, datastructures, or special variables
must be managed (and cleanups performed) or more gener-
ally where context needs to be built.

The following define macro:

define macro functional-variable-definer
{ define functional-variable ?var:name = ?init:expression }

=> { define variable ?var ## "-value" = ?init;
define method ?var ()

?var ## "-value"
end method;
define method ?var ## "-setter" (new-value)

?var ## "-value" := new-value;
end method }

end macro;

? define functional-variable time = 0;
? time();
> 0
? time() := 25;
> 25

provides a functional interface to variables, defining acces-
sors for variables, and thus hiding implementation details.
The above example demonstrates how to create new identi-
fiers through the ## concatenation operator.

4

4.6 Hygiene

Dylan’s macro system is hygienic and maintains referen-
tial transparency such that variable references copied from
a macro call and from a macro definition mean the same
thing in an expansion. For an example of hygiene, consider
the following macro:

define macro or
{ or(?x:expression, ?y:expression)

=> { let tmp = ?x;
if (tmp) tmp else ?y end }

end define;

where a temporary binding, called tmp, is introduced in or-
der to avoid multiple evaluations of the first argument, x.
The macro system ensures that tmp introduced by the or
macro does not collide with visible bindings named tmp in
the enclosing program. For example, the following

begin
let tmp = 5;
or(1, 2);
tmp

end

returns 5.
For an example of referential transparency, consider the

following increment! macro from above. The + in the re-
sulting template refers to + in the defining macro’s names-
pace regardless of where the macro is used. In other words,
even in the face of + being renamed or even not imported
at all into the namespace of a macro call, the macro system
ensures that increment!’s + is the same and is available.

Sometimes it is necessary to circumvent hygiene in order
to permit macros to introduce variables accessible by the
lexical context from which the macro was called. For exam-
ple, imagine writing a loop macro that provides a standard
named function, called break, for calling when terminating
iteration:

define macro repeat
{ repeat ?:body end }

=> { block (?=break)
local method repeat () ?body end;
repeat();

end block }
end macro;

A user can then write the following:

repeat
if ((input := read(*standard-input*, eof: #f)) == #f)

break()
else

write(input, *standard-output*)
end if

end repeat;

and have it terminate upon eof by calling the repeat macro’s
provided exit function, break. This mechanism can also be
used for writing anaphoric macros [8].

4.7 Local Rewrite Rules

Dylan provides a mechanism for defining local named rewrite
rule sets which act like local subroutines. These help in
breaking a macro up into rewrite rule subproblems and per-
mit a form of modularization. They are invoked after an
initial pattern matching using the main rule set and before
template substitution. Instead of backtracking, a macro is
deemed invalid if none of a given local rewrite rules match.

Consider the following example:

define macro defaulted-variable-definer
{ define defaulted-variable ?:name ?default }

=> { define variable ?name = ?default }
default:
{ } => { #f }
{ = ?:expression } => { ?expression }

end macro;

Instead of adding more main rules, only extra rules for the
varying fragments need to be written.

It turns out though that local rewrite rule sets are partic-
ularly useful for macros involving iterating over a sequence
of constituent fragments:

define macro properties-definer
{ define properties ?kind:name ?properties end }

=> { define variable ?kind = list(?properties) }
properties:
{ } => { }
{ ?prop:name; ... } => { ?#"prop", ... }

end macro;

where, the substitution ?#"property" coerces the identifier
into a similarly named symbol. The ellipses ... are a short-
hand for aux-rule recursion, that is,

properties:
{ } => { }
{ ?prop:name; ... } => { ?#"prop", ... }

is a shorthand for
properties:
{ } => { }
{ ?prop:name; ?properties } => { ?#"prop", ?properties }

5 The D-Expressions Library

In order to write macros that require more complicated
macro expansion processing, we introduce d-expressions and
later a full procedural macro facility. The d-expressions li-
brary provides a collection of classes suitable for representing
fragments of source code in skeleton syntax tree form. If de-
sired, skeleton syntax trees may be constructed and pulled
apart manually using the exported interface of these classes.

In addition to the raw, skeleton syntax class hierarchy,
source level tools are provided for easier parsing and con-
struction of source code fragments held in that form. These
tools are the moral equivalents of the destructuring-bind and
backquote macros familiar to Lisp programmers.

The final facility provided is source code IO. An input
method is defined that is parameterizable with syntactic
context (i.e. a map from identifiers to their syntactic cate-
gories) and also, optionally, with a home context (e.g. the
code’s top level module context) and source location context.
An output method is also defined and writes a re-readable
text form of any given skeleton tree. These methods are the
moral equivalents of Lisp’s read and write functions.

5.1 Skeleton Syntax Tree Classes

The basic d-expression AST class hierarchy is agreeably sim-
ple:

<d-expression> [Abstract]
<d-leaf> [Abstract]

<d-identifier>
<d-literal>
<d-punctuation>

<d-compound> [Abstract]
<d-nested>
<d-macro-call>
<d-sequence>

5

As an example, given the input source:

f(x, y) + g(z) + h[0];

and a syntactic context in which none of the identifiers in-
volved is associated with a macro category, the object tree
is:

{<d-sequence>
{<d-identifier> "f"}
{<d-nested> "(" ")"
{<d-identifier> "x"}
{<d-punctuation> ","}
{<d-identifier> "y"} }
{<d-identifier> "+"}
{<d-identifier> "g"}
{<d-nested> "(" ")"
{<d-identifier> "z"} }
{<d-identifier> "h"}
{<d-nested> "[" "]"
{<d-literal> "0"} }
{<d-punctuation> ";"} }

On the other hand, if f were associated with a function-
form macro, this would be the result:

{<d-sequence>
{<d-macro-call> "f"
{<d-nested> "(" ")"
{<d-identifier> "x"}
{<d-punctuation> ","}
{<d-identifier> "y"} } }

{<d-identifier> "+"}
{<d-identifier> "g"}
{<d-nested> "(" ")"
{<d-identifier> "z"} }
{<d-identifier> "h"}
{<d-nested> "[" "]"
{<d-literal> "0"} }
{<d-punctuation> ";"} }

Note how the macro call becomes a single syntactic entity at
top level, but containing nested structure. This is consistent
with our earlier-stated intuition that macros introduce “new
kinds of bracket” to the syntax.

5.2 Source-level Tools for Parsing

Working with AST classes directly is tedious and error-
prone. Where possible, it is desirable for a programmers
to be able to work in terms of the source code shapes they
are already familiar with.

As shown earlier, an intuitive and accessible way of ex-
pressing a parser is with patterns. This allows a programmer
to write out the general shape of input expected, but with
pattern bindings in place of the variable parts of the code.
The source-level parsing tools provided in the d-expressions
library take this approach.

The primary parsing tool offered is expression-case.
This is a simple example:

expression-case (d-expr)
{ always-assert(?test:*) }

=> generate-always-assertion(test);
{ debug-assert(?test:*) }

=> generate-debug-assertion(test);
end expression-case;

The input expression, d-expr in this case, must evaluate to a
valid d-expression. This d-expression is tested against each
of the left hand side patterns in turn. If one of the patterns
matches, its pattern variables are bound to local variables
of the same name and the corresponding right hand side
expression is run in the context of those bindings.

Pattern syntax and pattern matching behaviour in expression-case
are as specified for Dylan’s rewrite-rule only macros. To re-
cap, pattern variables are introduced with ? and have an
associated constraint. The most liberal constraint is the
wildcard constraint, *, which matches anything, as used in
the example.

To illustrate how expression-case relates to the un-
derlying skeleton syntax classes, consider this hypothetical
expansion of the first case in the above:

// Fail is bound to an exit procedure that skips and
// moves on to try the next pattern. If a match-xxx
// function can’t match, it invokes its fail argument.
let elements = d-top-level-elements(d-expr);
let elements-after
= match-identifier(#"always-assert", elements, fail);

let (elements-inside, elements-after)
= match-nested(#"(", #")", elements-after, fail);

match-empty(elements-after, fail);
// Matched, so bind the pattern variables.
let test = elements-inside;
// The right hand side code. The values returned are
// the values returned by expression-case.
generate-always-assertion(test);

The utility functions match-xxx use the skeleton syntax ac-
cessor methods to do their work.

5.3 Source-level Tools for Code Generation

A similarly intuitive and accessible way of generating param-
eterized code is with templates. These allow a programmer
to write out a prototype of the form they want to generate,
but with substitutions in place of the variable parts of the
code.

The d-expressions library implements the special syntax
{ } for templates. This is a simple example:

{ if (?test) error("Assertion failed!") end }

The template is replaced with code that generates the cor-
responding d-expression. Subcomponents of that expres-
sion will be elements obtained by evaluating the substitu-
tion variables in the lexical environment in place where the
template appears.

Substitution syntax and insertion matching behaviour
in templates are as specified for Dylan’s rewrite-rule only
macros. To recap, substitutions are introduced with ? fol-
lowed by a variable name. Here, however, the substituted
variable name need not have been bound by pattern match-
ing. Any variable bound to a d-expression, however its value
was computed, is allowable.

To illustrate how { } relates to the underlying skeleton
syntax classes, consider this hypothetical expansion of the
above:

process-template
(substitute-identifier(#"if"),
process-nested

(#"(", #")",
substitute-identifier(#" "),
test), // Reference to test

substitute-identifier(#"error"),
process-nested(#"(", #")",
substitute-literal("Assertion failed!")),
substitute-identifier(#"end"));

There are subtleties to be aware of to do with template
processing. Note that if and end in the above have been
code-generated as independent top level identifiers rather
than as components within a macro call. This is because
the syntactic classification of identifiers is not known at code

6

generation time. This canonicalization is delayed to execu-
tion time when a syntactic context within which to analyse
the generated code must have been established.

In particular, the static checking of templates attempted
in [14] cannot be usefully applied here. On execution, tem-
plate identifiers are “read” within a syntactic context estab-
lished at runtime by the program containing the template,
not in the static syntactic context of the program’s source
code. For example, in the mapping of names to syntactic
classifications put in place at runtime, if may have no spe-
cial association, or an association that differs from that of
standard Dylan syntax.

Because it matches typical usage patterns well, we have
elected to allow syntactic template contexts to be estab-
lished with dynamic scope. That is, a syntactic context may
be established with a single dynamic binding for all tem-
plates executed within its scope. Similar dynamic binding
forms can be used to establish new, shared hygiene contexts
and source location annotations for template-generated code
run within their scope.

5.4 D-Expression IO

A method is provided for reading d-expressions from an in-
put stream. Reading requires parameterization with the fol-
lowing:

• A syntactic context is a mapping between identifier
names and their syntactic category. The set of avail-
able categories is fixed and corresponds to the set of
broad “shape” categories offered by the skeleton syn-
tax, as described above.
This mapping is all that is needed for the reader to be
able to parse and return a single, complete d-expression.
In particular, macroexpansion does not have to be per-
formed during parsing.
A read identifier remembers its syntactic category. This
category is preserved through template substitutions
so that it may be re-read correctly if inserted as part of
a newly constructed piece of source code (e.g. through
macroexpansion).

Reading may be parameterized optionally with the follow-
ing:

• A home context, if meaningful, can be specified for
the code read. This context object is remembered by
and can be recovered from the identifiers within the
returned d-expression. The home context is intended
to allow a top level binding context or container to
be associated with code. If reading full Dylan code,
the home context would typically identify the module
in which the code lives and be used when resolving
identifiers to module variables.

• A source location context, if desired, can be specified
for the code read. A context object together with a
seed line/column source location are used to record
detailed source location information about each ele-
ment of the d-expression read. The context object
would typically identify a file or other physical source
container.

A method is also provided for writing d-expressions to
an output stream as re-readable text. The only parameter-
ization available on output is involved with specifying the
layout of the resulting text and has no semantic impact.

6 Models of Compile-time Evaluation

The preceding sections outline a utility library for reading,
writing, and manipulating code representable by our skele-
ton syntax tree form. As previously suggested, this library
is useful for a number of purposes, from simple storage and
retrieval of data in text form to parsing for a full-scale Dy-
lan compiler (the Functional Objects Dylan compiler was in
fact based on such a library), or indeed a compiler for any
language with a Dylan-like syntax.

But in order to meet our goals, the task remaining is to
describe a Lisp-strength procedural macro system for Dylan.
The source-level code manipulation tools may be available
in the form of the d-expressions library as we have seen,
but some model of compile-time evaluation is required be-
fore they can be used to implement macros. In the following
sections we consider some approaches to compile-time eval-
uation.

6.1 Compile-time is Run-time

It is not uncommon for languages originally or convention-
ally implemented using an interpreter, or where an inter-
preter or dynamic compiler is available during program exe-
cution, to allow programs to construct and then execute new
code at runtime. A macro in such a language can be thought
of as a runtime function flagged such that it gets passed the
unevaluated source code of its arguments. The code of the
macro function rewrites the input source and then, either
explicitly or implicitly, re-invokes the interpreter/compiler
on the result.

Older dialects of Lisp used to support this approach, call-
ing such functions fexpr ’s. However, more recent dialects
like Common Lisp no longer support them. Fexpr’s can
have the semantic problem of “losing” the local binding en-
vironment of their input expressions in lexically-scoped lan-
guages, but more importantly they defeat optimized com-
pilation and impose the overhead of some form of language
processor having to be available at runtime along with any
of the code rewriting tools used.

Dylan is very much designed with compilability and min-
imal runtime overhead in mind, so this approach to arbi-
trary computation during macroexpansion is not acceptable.
These days, the fexpr approach tends to be limited to in-
terpreted or dynamically compiled scripting languages like
TCL.

6.2 Static Compiler Plugins

Probably the simplest approach to compile-time evaluation,
for the language implementor at least, is to admit to the
existence of the compiler and allow programmers to write
compiler “plugins”. In this model, procedural macro code
cannot be interleaved with the runtime source - it must be
compiled separately and thought of as a compiler extension
that will later be applied to the runtime source.

Compile time code and runtime code are therefore very
clearly distinguished, being contained within entirely dif-
ferent programs. Compile-time dependencies and run-time
dependencies can’t easily be confused. A plugin model also
opens the door on other interesting compiler extensions and
customisations not necessarily related to macros.

Because a macro implemented in a plugin is defined in
a context away from its logical home, extra annotation is
required to identify the module where it should be bound.
For example:

7

Module: parsergen-plugin

define macro parser-definer in parsergen, parsergen
{ define parser ?:name ?rules:* }
=> let compiled-grammar = compile-grammar(name, rules);

let tables = generate-grammar-tables(compiled-form);
let driver = generate-parser-engine(compiled-form);
{ ?tables;

?driver; }
end macro;

The macro is implemented in the parsergen-plugin mod-
ule, but through the addition of an “in” clause, parsergen-
definer will be bound in the parsergen module of the parser-
gen library. The macro will not be bound or available within
parsergen-plugin.

The compiler maintains a table of macros defined by plu-
gins which it queries when compiling a module definition in
a program under development. If the module matches the
“in” clause of a macro, that macro is bound in the module’s
namespace and becomes available to all code within that
module and to the module’s clients (assuming the macro
binding is exported by the module).

A further implication of the “in” clause is that template
code generated while expanding a call to the macro will be
resolved as if the code had appeared within the target mod-
ule. This is important since the namespace and syntactic
context of the target module is likely to be quite different
from that of the implementing module. Further, details of
the target module will not be known until after compilation
of the plugin macro, and then may vary from compile to
compile of the program under development. The ability to
delay interpretation of templates is crucial in enabling this
compilation model.

Although managing a separate runtime program and a
parallel compiler plugin sounds like a headache, most of the
details can be hidden by development environment support.
The source of the plugin library can be shown along with
the source of the target and the two compiled together as
a single action. The plugin is compiled first and the result-
ing library dynamically loaded into the compiler to ensure
that the macros defined are available when compilation of
the runtime program begins. Procedural macros that define
other procedural macros are possible, with plugins being
loaded in order to compile other plugins.

If cross-compiling, two compiler back-ends may need to
be loaded simultaneously in order to compile plugins. How-
ever, in a situation where the runtime target platform is
resource constrained, running large or otherwise resource-
hungry compile-time code only on the development host can
be a necessity.

There are two main drawbacks to the plugin approach.
The first is that the transition from Dylan’s rewrite-rule only
macro system to procedural macros cannot be seamless. As
soon as general compile-time evaluation is used, the macro
must be moved out of the runtime source into the plugin
source.

The second drawback is the danger involved in running
arbitrary user code within the compiler/development envi-
ronment process. Instability may result.

6.3 Compile Time Loading and Eval-When

To achieve a seamless transition between Dylan’s rewrite-
rule only macro system and full procedural macros it must
be possible to use procedural facilities while still interleaving
macros with runtime code.

While such integration is desirable, maintaining as clear
a distinction as possible between compile-time and runtime
dependencies is also important. Code within a library must

be annotated as to whether it is compile-time code, runtime
code, or both. The definition of the library itself must dis-
tinguish compile-time only dependencies from runtime de-
pendencies.

For simplicity, with the exception of macro bindings them-
selves, we allow only runtime definitions to be exported from
libraries. However, those runtime definitions may be im-
ported into a library for use either during compilation or
at runtime or both. For example, if a library defined pars-
ing utilities intended for use during macro expansion, those
utilities would be defined and exported as ordinary runtime
definitions. In order to make those utilities available to its
macros and other compile-time code, a client library would
employ a compile-stage use. For example:

define library parsergen
use dylan, stage: both;
use io; // runtime only by default.
use parsing-tools, stage: compile;

export parsergen;
end library;

Code on the right hand side of rules within a macro def-
inition are implicitly compile-stage code and so have ac-
cess only to bindings imported through a compile-stage use.
Other top level definitions can be made into compile-stage
definitions by wrapping them in a compile-stage form. For
example:

define macro parser-definer
{ define parser ?:name ?rules:* }

=> let compiled-grammar = compile-grammar(name, rules);
let tables = generate-grammar-tables(compiled-form);
let driver = generate-parser-engine(compiled-form);
{ ?tables;

?driver; }
end macro;

compile-stage

define class <compiled-grammar> (<object>)
// ...

end class;

define method compile-grammar (name, rules) => (grammar)
// ... calls to parsing-tools ...

end method;

// etc.

end compile-stage;

Compilation of a library containing both compile-stage
and run-stage code can be thought of as proceeding as fol-
lows. Any procedure with the same effect is equally valid.

If the library definition has compile-stage uses, a compile-
stage version of the library in the form of an application is
needed in order to compile the run-stage portion of the li-
brary. The compiler processes each top level form of the li-
brary in turn. As it encounters run-stage code, it processes it
normally. As it encounters macros or explicit compile-stage
code, that code is compiled and then immediately dynami-
cally loaded into the compile-stage app. If the compiler finds
a call to a procedural macro in run-stage code, a macro call
is packaged and sent to the macro function in the compile-
stage app where it is expanded before the results are sent
back to the compiler. When compilation is complete, two
binaries are saved: one for the run-stage code and one for
the compile-stage code. The compile-stage aspect will be
loaded when compiling client libraries if procedural macros
are exported.

8

One likely variation on this is to dynamically load the
compile-stage code directly into the compiler process rather
than start a separate application. Also, under certain cir-
cumstances it may be possible to determine the compile-
stage code of a library by a pre-pass, avoiding the need for
incremental compilation of the compile-stage code.

The problem with this approach is clearly its complex-
ity for implementors. In the general case, it requires either
incremental compilation or interpretation of compile-stage
code interleaved with another ongoing compilation; new and
challenging requirements for Dylan implementations, which
currently can be as simple as straightforward batch compil-
ers.

7 Status

Our current status is that we have implemented a d-expressions
library and have used it to write our compiler. We sup-
port the plugin model of compile-time evaluation, but don’t
yet support the full strength compile-time evaluation model.
Nevertheless, we are capable of it since we already support
incremental compilation and dynamic update.

The Dylan language is out there and the rewrite-rule only
macros are part of the Dylan culture just as much as they are
the Lisp culture. There are people out there really writing
non-trivial macros in Dylan for themselves. So it has proved
to be a very usable system. What’s more, there’s more than
one implementation.

8 Related Work

In this section we survey the most related macro systems.

8.1 Lisp Macros

Dylan was very much inspired by Lisp’s destructuring and
backquote facilities. Their advent was a quantum leap in
macro systems and played a big part in popularizing macros
and Lisp itself [2]. We maintain that our patterns and tem-
plates are as natural to use as Lisp’s destructuring and back-
quote. In fact, we feel that our splicing operator is an easier
to use unification of backquote’s unquote (,) and splicing
(,@) operators. The reason this is possible in Dylan is be-
cause pattern variables can be bound to the actual elements
of a sequence and not the sequence itself. For example, in
Lisp, in order to splice in elements to the end of a parameter
list, one uses the splicing operator on a whole sequence as
follows:

(let ((more ’(c d e)))
‘(a b ,@more))

while in Dylan, one could do the same with the following:

begin
let more = {c, d, e};
{(a, b, ?more)}

end

without the need for a different splicing operator. In order
to better relate Dylan’s templates to Lisp’s backquote, we
present the following table showing a loose correspondence
between the two:

Name Lisp Dylan
backquote ‘() {}
unquote , ?
splicing ,@ ?
quote ’ \

For an example of where quoting is necessary, consider the
case of nested macros, that is, macros that define other
macros. Suppose we find that several macros have a similar
form. We can abstract this macro pattern into a macro-
defining macro. For example, consider a macro that defines
macros that pass a thunk to a given procedure [2]:

define macro caller-definer
{ define caller ?abbrev:name ?proc:expression end }

=> { define macro ?abbrev
{ ?abbrev (\?var:name) \?:body end }

=> { ?proc(method (\?var) \?body end) }
end macro }

end macro;

define caller collect call-with-new-collector end;
define caller catch call-with-current-continuation end;

where \ is used to prevent evaluation of pattern variables in
the inner macro definition.

Unfortunately, several limitations restrict Lisp macros’
ease of use. First, variable capture is a real problem and
leads to difficult to debug macros. Second, macro calls are
difficult to debug as Lisp macros do not offer a mechanism
for correlating between macro expanded code and a user’s
original source code.

Several other researchers have reported on systems that
generalize the backquote mechanism to infix syntaxes. Weise
and Crew [14] are discussed below. Engler, Hsieh, and
Kaashoek [6] employ a version of backquote to support a
form of partial evaluation in C.

8.2 Scheme

Scheme’s macro system (i.e., syntax-case and syntax-rules)
comes the closest to offering the power and ease of use of
Dylan’s macro system. We feel though that the combina-
tion of our rewrite-rule only and procedural macro systems
provides a much more cohesive whole that gracefully pro-
gresses from a self-contained pattern language to the full
power of procedural macros. Scheme’s system, on the other
hand, uses a different notation for their pattern language,
syntax-rules, than from their procedural macro system,
syntax-case. In Dylan, the same basic pattern match-
ing language naturally incorporates the full Dylan language
when writing procedural macros. In particular, Scheme’s
system requires a programmer to introduce local pattern
variables using with-syntax whereas, in Dylan, a program-
mer merely introduces them with the usual local variable
(i.e., let) definition syntax. For example in Scheme one
must write the following:

(lambda (f)
(with-syntax ((stuff f))

(syntax stuff)))

where in Dylan one could do the equivalent with the follow-
ing:

method (f) { ?f } end

This stems from the fact that Scheme requires users to spec-
ify reserved intermediate words up front otherwise names
occurring within a pattern or template are interpreted as
pattern variables. In Dylan, pattern variables have a spe-
cial notation and thus reserved intermediate words do not
need to be declared ahead of time, that is, they’re the names
without the special notation.

Scheme’s system provides a nice solution to hygiene that
automatically avoids most variable capture errors. Dylan

9

improves on this in a couple ways. First, it handles the
more general problem of referential transparency in the face
of modules (a.k.a., namespaces), ensuring that variables ref-
erenced within a macro definition mean the same thing in
macro calls regardless of their namespace context. Second,
Dylan provides a much more natural mechanism for intro-
ducing hygiene escapes using an intuitive notation, ?=. Con-
sider the Scheme the following version of the Dylan repeat
macro defined above:

(define-syntax repeat
(lambda (x)

(syntax-case x ()
((k e ...)

(with-syntax
((break (datum->syntax-object (syntax k) ’break)))

(syntax
(call-with-current-continuation

(lambda (break)
(let repeat () e ... (repeat))))))))))

Notice how Scheme must use a long-winded call and with-syntax
binding to produce the desired break variable.

Although Scheme’s repeated pattern matching mecha-
nism (i.e., ...) is cute, it is unfortunately brittle. Scheme’s
repeated patterns only win if every input in a given sequence
has the same general shape; as soon as this isn’t the case,
one must resort to general traversal. As an example of why
the Dylan approach is more general, consider the case of
sequences of heterogeneous input. For example, imagine ex-
tending the common define-structure example [4] such
that constant structure slots can be optionally defined, say,
and then compare the code. That is, a Scheme macro call
to define-structure would look like:

(define-structure foo x y (const z))

whereas an equivalent Dylan macro call would look like:

define structure foo x, y, const z end;

The usual Scheme define-structure involves the following
pattern:

(name field ...)

used in a template in the following fashion:

(syntax
(begin

(define constructor
(lambda (field ...) (vector ’name field ...)))

;; ...
))

will not work for this case. The Scheme code has to emulate
Dylan’s more general traversal over the input in order to
handle this possibility.

One advantage Scheme macros have over Dylan macros
is that one can limit a macro’s visibility to a lexically lo-
cal region of code using let-syntax and letrec-syntax.
Dylan macros could be extended to provide local scoping
for limited macro shapes. In particular, because of the re-
quirements of an initial skeletal parse, a local macro could
not be defined that introduced new end brackets, such as
statement macros. It would be possible though to introduce
local function macros to Dylan as these are unambiguously
parseable.

8.3 Weise and Crew

Weise and Crew [14] describe a macro system for infix syntax
languages such as C. Their macro system is programmable
in an extended form of C, guarantees syntactic correctness

of macro produced code, and provides a template substi-
tution mechanism based on Lisp’s backquote mechanism.
Their system lacks support for hygiene, but instead requires
programmer intervention to avoid variable capture errors.

Unfortunately, their system is restrictive. Their macro
syntax is constrained to that describable by what is, essen-
tially, a weak regular expression. In contrast, in our system,
within the liberal shapes of an SST, just about anything
goes, and further, the fragments can be parsed using any
appropriate technique. Finally, because templates are ea-
gerly parsed, it’s not clear that forward references within
expanders (and so mutual recursion, say) works in their sys-
tem. It could be made to work, however (by forward declar-
ing the input syntax apart from the transformer), but this
would be awkward to use.

Their system requires knowledge of formal parsing intri-
cacies. They say:

The pattern parser used to parse macro invoca-
tions requires that detecting the end of a repe-
tition or the presence of an optional element re-
quire only one token lookahead. It will report an
error in the specification of a pattern if the end
of a repetition cannot be uniquely determined by
one token lookahead.

It is not a reasonable requirement that programmers must
understand and solve static grammar ambiguities like this.

We believe that as far as possible, programmers should
only have to know the concrete syntax, not the abstract syn-
tax. Unfortunately, their system requires programmers to
use syntax accessors to extract syntactic elements, whereas
our system allows access through pattern matching concrete
syntax.

Their system requires templates to always be consistent.
We feel that it’s often useful to be able to generate incom-
plete templates containing macro parameters for instance,
that are spliced together at the end of macro processing to
form something recognizable. Weise and Crew’s insistence
that the result of evaluating a template should always be a
recognizable syntactic entity defeats that mechanism. Being
able to work easily with intermediate part-expressions that
have no corresponding full-AST class (e.g. a disembodied
pair of function arguments) is a win for the SST approach.

9 Summary

Most of the people involved in Dylan’s design were experi-
enced Lisp programmers. Anyone who has worked exten-
sively in Lisp is well aware of the potential of Lisp macros,
and despite the challenge presented by Dylan’s algebraic
syntax, we knew we still wanted full-power macros. As com-
piler writers, we also realised the value of source code tools
as a library. D-expressions are the result.

We have brought together the elements of a Lisp-inspired
SST capable of representing Dylan’s rich algebraic syntax,
best-of-breed source level code manipulation tools, and a
model of compile-time evaluation suitable for a language
with strong compiler/runtime separation like Dylan, to pro-
duce what we feel is the first macro system with Lisp’s power
and simplicity for a language with a conventional syntax.

Acknowledgements

Much of the initial design work on Dylan macros was done
at Apple. The syntax of macro definitions, patterns, con-

10

straints, and templates used in Dylan’s standard macro sys-
tem was developed by Mike Kahl. Dylan’s very first ”loose
grammar” was due to David Moon, who also designed a pat-
tern matching and constraint parsing model suitable for such
a grammar. Earlier, Moon had proposed a model of compile-
time evaluation for Dylan in the context of a prefix-syntax
macro system from which ours takes some terminology.

Generalizations of Dylan’s loose grammar enabling it to
describe all Dylan’s syntactic forms, along with the first im-
plementation of the macro system, were developed by the
authors while at Harlequin Ltd. The procedural macro sys-
tem was initially designed and implemented as a component
of Harlequin’s Dylan compiler, now owned by Functional
Objects, Inc.

Many other ”Dylan Partners” made contributions to the
design of Dylan macros, particularly the Gwydion team at
CMU.

Dave Moon provided feedback on various drafts of this
paper. This paper also benefitted from helpful discussions
with Alan Bawden and Tony Mann. Tony Mann gave many
insights into the limits of the rewrite-rule only macro system
by pushing the macro writing envelope.

References

[1] Barrett, R, Ramsay, A, and Sloman, A. POP-11: a
Practical Language for Artificial Intelligence. Ellis-
Horwood, Chicester, 1985.

[2] A. Bawden. Quasiquotation in lisp. Proceedings of the
ACM Conference on Lisp and Functional Programming,
?(?), 1999.

[3] Luca Cardelli, Florian Matthes, and Martin Abadi. Ex-
tensible syntax with lexical scoping. Technical Report
121, DEC SRC, February 1994.

[4] Kent R. Dybvig. The Scheme Programming Language.
Prentice-Hall, 1987.

[5] R.K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic
abstraction in scheme. Lisp and Symbolic Computation,
?(?), 1993.

[6] E.R. Engler, W.C. Hsieh, and M.F. Kaashoek. ‘c: A
language for fast, efficient, high-level dynamic code gen-
eration. In Proceedings of Symposium on Principles of
Programming Languages, January 1996.

[7] N. Feinberg, S. Keene, R. Mathews, and T. Withington.
Dylan Programming. Addison Wesley, 1997.

[8] P. Graham. On Lisp: Advanced Techniques for Com-
mon Lisp. Prentice-Hall, 1994.

[9] Guy Lewis Steele Jr. Common LISP: The Language,
Second Edition. Digital Press, Burlington, MA, 1990.

[10] R. Kelsey, W. Clinger, and J. Rees. Revised5 report
on the algorithmic language scheme. Higher-Order and
Symbolic Computation, 11(1):7–105, 1998.

[11] Brian W. Kernighan and Dennis M. Ritchie. The C pro-
gramming language. Prentice-Hall, Englewood Cliffs,
NJ 07632, USA, second edition, 1988.

[12] E. Kohlbecker, D. P. Friedman, M. Felleisen, and
B. Duba. Hygenic macro expansion. In Proceedings of
the 1986 ACM Conference on Lisp and Functional Pro-
gramming, pages 151–161. ACM, ACM, August 1986.

[13] A. Shalit. The Dylan Reference Manual. Addison Wes-
ley, 1996.

[14] Daniel Weise and Roger Crew. Programmable syntax
macros. In Proceedings of the SIGPLAN ’93 Conference
on Programming Language Design and Implementation,
pages 156–165, June 1993.

A Auxiliary Macros

A number of limitations of local rewrite rules require resort-
ing to top-level auxiliary macros. The first problem is that
local rewrite rules do not have access to pattern variables
defined in main rule sets. The usual solution is to employ
an auxiliary macro which takes those needed variables as
extra macro arguments. For example, suppose we want to
add a prefix option to allow the creation of properties with
a common prefix. We need to introduce an auxiliary macro
so that the prefix variable can be in scope when iterating
over the properties. For example, consider the following:

define macro properties-definer
{ define properties ?kind:name

prefixed-by ?prefix:name ?properties:* end }
=> { define variable ?kind

= concatenate
(prefixed-props (?"prefix") ?properties end) }

{ define properties ?kind:name ?properties:* end }
=> { define variable ?kind

= concatenate
(prefixed-props ("") ?properties end) }

end macro;

define macro prefixed-props
{ prefixed-props (?prefix:name) end }

=> { #() }
{ prefixed-props (?prefix:name) ?prop:name; ?more:* end }

=> { list(?prefix ## ?prop),
prefixed-props (?prefix) ?more end) }

end macro;

Auxiliary macros are also needed when pattern variables
must be walked in two different ways. Consider a macro,
called iterate, for creating internally recursive procedures
that are as convenient as loops. It has the following basic
form:

iterate name (variable = init, ...)
body

end iterate

and has the semantics of evaluating the body with the vari-
ables initially bound to the inits and such that any call to
name inside the body recursively calls the procedure with
the variables bound to the arguments of the call. In writ-
ing a macro for iterate, the parenthesized fragments must
be walked once to extract variables and another time to ex-
tract initial values. Unfortunately, with the current macro
system, there is no way to walk the same pattern variable
with more than one set of local rewrite rules. Instead, an
extra copy of the pattern variable must be made and passed
on to an auxiliary macro:

11

define macro iterate
{ iterate ?loop:name (?args:*) ?:body end }

=> { iterate-aux ?loop (?args) (?args)
?body

end }
end macro iterate;

define macro iterate-aux
{ iterate-aux ?loop:name (?args) (?inits) ?:body end }

=> { local method ?loop (?args) ?body end;
?loop(?inits) }

args:
{ }

=> { }
{ ?:variable = ?:expression, ... }

=> { ?variable, ... }
inits:
{ }

=> { }
{ ?:variable = ?:expression, ... }

=> { ?expression, ... }
end macro repeatable-aux;

B Dylan Rewrite-Rule Only Macro Extensions

B.1 Template Calls

Both of these reasons for needing auxiliary macros are some-
what artificial because in fact local rewrite rules are really
like local functions and should allow extra arguments and
should be directly callable on any pattern variable. The
problem lies in the fact that the local rewrite rule is artifi-
cially tied to one pattern variable by virtue of its name.

In order to overcome this problem, we introduce a di-
rect template call, obviating the need for auxiliary macros
is many cases. This leads to a much more elegant solution to
these more complicated macros. A template auxiliary rule
set call has the following form:

?@rule-name{ <arbitrary-template-stuff> }

where a new macro punctuation ?@ marks a template call.
For example, in the prefixed properties-definer macro, we
can now directly invoke a local rewrite rule set with extra
arguments:

define macro properties-definer
{ define properties ?kind:name

prefixed-by ?prefix:name ?properties:* end }
=> { define variable ?kind

= concatenate
(?@prefixed-properties{ ?"prefix"; ?properties }) }

{ define properties ?kind:name ?properties:* end }
=> { define variable ?kind

= concatenate(?@prefixed-properties{ ""; ?properties } }
prefixed-properties:
{ ?prefix:name }

=> { #() }
{ ?prefix:name; ?property:name; ?more:* }

=> { list(?prefix ## ?property),
?@prefixed-properties{ ?prefix; ?more } }

end macro;

Similarly, iterate can now be written without auxiliary
macros using two template calls:

define macro iterate2
{ iterate2 ?:name (?bindings:*) ?:body end }

=> { local method ?name (?@vars{ ?bindings }) ?body end;
?name(?@inits{ ?bindings }) }

vars:
{ }

=> { }
{ ?:variable = ?:expression, ... }

=> { ?variable, ... }
inits:
{ }

=> { }
{ ?:variable = ?:expression, ... }

=> { ?expression, ... }
end macro;

We can also introduce a template macro call

?@{ <arbitrary-template-stuff-that-forms-a-macro-call> }

which acts as a kind of shorthand for the :macro constraint
and permits the definition of macros for use as shared rewrit-
ing tools. For example:

define traced macro mcreverse
{ mcreverse(?list:*) } => { ?list }

list:
{ } => { }
{ ?:expression } => { ?expression }
{ ?:expression, ... } => { ..., ?expression }

end macro;

define traced macro user
{ user(?stuff:*) } => { list(?@{ mcreverse(?stuff) }) }

end macro;

where the traced modifier causes macro expansion to be
traced. For example, here’s the trace for user(1, 2, 3):

{ user } > user(1, 2, 3)
{ mcreverse } > mcreverse(1, 2, 3)
{ mcreverse } < 3 , 2 , 1
{ user } < list (3, 2, 1)

Like normal macro calls, a new hygiene context in cre-
ated for ?@\{ } calls, so you could define gensym thusly:

define macro gensym
{ gensym() } => { gensymed-name }

end macro;

C Limits of Rewrite-Rule Only Macro System

Dylan’s rewrite-rule only macros are more powerful than
they first appear. Unlike a grand tradition in Lisp, replace-
ment phrases are constructed purely by template substitu-
tion and not arbitrary computation. A number of inherent
properties increase the power of this base macro system.

First, there is a powerful set of built-in atomic features
such as hygiene, name concatenation, and pattern constraints
which often obviate the need for such procedural facilities.
Other macro systems (e.g., Scheme’s syntax-case) must
rely on function calls for these facilities and must resort to
the full power of procedural macros.

Second, the rewrite-rule only system allows for powerful
control structures, not unlike a mini programming language.
Macros can expand into other macro calls including into
recursive calls. Although not discussed in this paper, macros
can have keyword and optional arguments that can be used
to collect a series of properties which can be spliced into the
resulting output in bulk. For example, another formulation
of the iterate macro making use of this facility would be:

12

define traced macro iterate3
{ iterate3 ?:name (?bindings:*) ?:body end }

=> { ?@generate{ ?name (?@parse{ ?bindings }) ?body } }
parse:
{ }

=> { }
{ ?:variable = ?:expression, ... }

=> { var: ?variable, init: ?expression, ... }
generate:
{ ?:name (#key ??var:variable, ??init:expression) ?:body }

=> { local method ?name (??var, ...) ?body end;
?name(??init, ...) }

end macro;

where, for example, ??var:variable matches all keywords
arguments with keyword var: and binds the pattern variable
??var to the sequence of their values.

Finally, expanding into calls to runtime functions can of-
ten defer calculations that would have otherwise needed to
be computed during macro expansion. Furthermore, con-
stant folding and more generally partial evaluation can of-
ten be relied on to collapse these residual calls. For example,
concatenation can be deferred to runtime as follows:

define macro catsyms
{ } => { }
{ catsyms(?items) } => { concatenate(?items) }

items:
{ ?item:name, ... } => { list(?#"name"), ... }

end macro;

? catsyms(a, b, c);
> #(#"a", #"b", #"c")

Similarly, counting a sequence of items can be performed
as follows:

define macro count
{ count() } => { 0 }
{ count(?item:expression, ...) } => { 1 + ... }

end macro;

? count(a, b, c);
> 3

Unfortunately, Dylan’s rewrite-rule only macros can only
count a given input sequence, but can’t count from say 0
to some given limit. Thus, it is awkward to construct a
macro, for example, that expands into a specified numbers
of functions with increasing number of parameters.

13

