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ABSTRACT

Make a note of similarity between SLAM and localization,
tracking.

We demonstrate that it is possible to achieve accurate lo-
calization while target tracking in a randomly placed wire-

less sensor network composed of inexpensive componenta;Zatlon and Tr

of limited accuracy. We present an algorithm for creating

such a coordinate system without the use of global con-
trol, globally accessible beacon signals, or accurate esti-

mates of inter-sensor distances. The coordinate system i
robust and automatically adapts to the failure or addition
of sensors. The algorithm learns from observations of lo-
cal events, events that can be sensed in a particular ne
borhood. Tracking improves over time providing a

o
_ mea DA ®
able error that can also be used to guide further expléﬁn

The algorithm is based upon a general parameter, (@ ati
framework that easily incorporates a priori know@ge pro-
vides error estimates on all measuremenQé(h llows for,
well founded outlier rejection. Furtherma s approach
can be generalized to also simultaneo alibrate sensor
and perform time synchronization anécoordinate system
can optionally be aligned to surv positions.
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ave made it possible to build ad

or, a modest amount of memory, a wire-
rable in size to 2 AA batteries [1]. Many

eporting failures, target tracking, etc. In these ap-
ons it is necessary to accurately orient the nodes with

sing inexpensive nodes consisting ofion estimates are mutually comparable.
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The application context and ma:@&scale make it unreal-
istic to rely on careful pIacem? r uniform arrangement
of sensors. Rather than use{globally accessible beacons or
expensive GPS to Iocah@ch sensor, we would like the
sensors to be able to organize a coordinate system.
In this paper, Qsent SLAT (Simultaneous Local-
ivg an algorithm that incrementally lo-

calizes the in a sensor network as it tracks moving
targets in r e. Our method is based on the observa-
tion tha 6?9: range measurement between a sensor and a
?arget tains information about both the target’s location
an e sensor’s position and that given a sufficient quan-

range data, we can simultaneously track a target and
alize our sensors.
Using target ranges to perform localization provides sev-
‘eral important advantages. The redundance inherent in the

rackmg measurement data provides resistance to individual

measurement errors. Also, tracking accuracy improves in
h|gh -traffic areas, since these areas witness the most data.
SLAT also allows networks to be localized without use of
Thter-node ranging, which allows sensors to be deployed
without line of sight to each other (which is often desir-
able for ultrasound ranging systems [2]). SLAT provides all
of these benefits in a highly extensible probabilistic frame-
work.

SLAT localizes sensors into a coordinate system that
spans the entire network. That means all sensors’ posi-
If anchor nodes
are present, SLAT can localize into an absolute coordinate

'sceiver and one or more sensors; a typicabystem. In their absence, SLAT places sensors in a relative

coordinate system that is correct up to a translation, rota-

lications are emerging: habitat monitoring, smart tion, and possible reflection. Though this paper focuses on

localization when sensors and targets are located in a single
plane, SLAT extends intuitively to three dimensional prob-

respect to the global coordinate system. Ad hoc sensor netlems.

works present novel tradeoffs in system design. On the one

SLAT arises from a very extensible probabilistic frame-

hand, the low cost of the nodes facilitates massive scale andvork. In the future, we will likely be able to cope with mov-
highly parallel computation. On the other hand, each nodeing sensors. We also believe we can eventually calibrate the

is likely to have limited power, limited reliability, and only

sensors’ ranging hardware and perform time synchroniza-

local communication with a modest number of neighbors. tion at the same time as we track and localize. Though will



not demonstrate these capabilities in this paper, we think our

system is in a good position to include them in the future. —

The next section introduces our approach from a high Ranges | % Positions
level. Section 3 explores our design in detail. Section 4 N (s
discusses our initial results. Sections 6 and 7 propose future Localization
work and describe related algorithms in the literature. We and Event
present our conclusions in section 8 Tracking [—* Locations
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In SLAT, sensors perceive a moving target as a sequence of K
discrete events. An event occurs when the target emits a Q)
tagged radio message followed by an acoustic pulse. Sen¥ig. 1. The SLAT architecture. Gi@Gaussian prior dis-
sors can estimate distance by comparing the arrival timestribution and a collection of ral to some events, SLAT
of the radio and acoustic signals using time difference of produces an estimate of the %ors’ positions, an estimate
arrival (TDoA). An event occurs at the location of the tar- of the events’ locations, @ more informative Gaussian
get, and is detected nearly simultaneously by most sensorgprior for use with future;io putations.
within range. These sensors are each able to compute an
estimate of the distance between themselves and the event. Q

SLAT attempts to determine the most probable positions
of the sensors and events given a collection of computed
ranges by finding the posterior distribution over the sensors
and events. To compute this distribution, SLAT begins by N
finding two other distributions: a prior distribution over the \f\
sensors and events, and a sensor model. \(b.

The prior distribution can be used to incorporate a va\? o
riety of initial knowledge about the layout of the netwgrke 1. Definitions
More importantly, it can retain knowledge about the

SLAT choos nitial prior distribution that helps the op-
timizer avoi se problems.
TODQAli needs to talk about EKF.

3. SLAT DETAILS

N S O For simplicity, we confine ourselves to two dimensions, though
positions between groups of events. The prior in d&ense igye can trivially extend our method to three. Lsetbe a two
responsible for SLAT's learning behavior. \ dimensional vector representing the position of ithesen-

The sensor model is the probability dis\gxt nofrange sor, where = 1...n, and defines = {s;}iz1..n to be the
measurements given a particular placera of sensors andet of all sensor positions.
events. Q To name the events, we first split time irifodiscrete

SLAT is an iterative algorithm, in€eit processes events intervals. At the end of each interval, SLAT estimates po-
in small batches shortly after th cur. Each iteration be- sitions of the events that occurred within the interval. Each
gins with a simple Gaussian. istribution over the sen- interval contains several events. This is especially important
sors. When SLAT witness ents, it computes the postewhen the prior distribution is based on few measurements.
rior over the positions of ensors and events. Itthen gen-As more measurements are gathered, the interval size de-
erates a position esti for the sensors and events basegteases to improve tracking speed. ket= {ei}i=1..m,
on the mode of th rior. Finally, it reduces the posterior e the set of events that occur during intemval=1...7.
to a “prediction” tfigt it approximates using a Gaussian dis- ¢! is the position of theith event to occur irith time inter-
tribution anqQGS es as the prior for the next group of events.ya|.

This p(g s repeats continually. At each step, the sen-  Finally, lety* = {y;;} be the set of sensor measure-
sor:%’@a s become more accurate. Once these positioments taken during interval /; is the measurement taken

esti converge to the sensors’ real positions, the SLATby sensos; during the even&§.
al m becomes simple tracking. Figure 1 summarizes
our architecture in diagram form.

Most of the work in each SLAT iteration goes into find-
ing the mode of the posterior distribution. We perform this SLAT’s design is focused on identifying and working with
optimization using the Newton-Raphson method. However, the posterior distribution, specifically:
like most optimization techniques, Newton-Raphson can con-
verge to local optimums unless they are applied carefully. p(s,etlyt 2, . yh) Q)

3.2. The posterior distribution



That is, SLAT wants the distribution over the positions of 3.3. The sensor model

the sensors and most recent events, given all measuremenE_ ¢ ider th tet). As defined i
observed up until time interval At the end of each interval Irst consider the sensor mogg‘|a"). As defined in sec-

. iy

t, SLAT finds the distribution (1). It then produces a most t'?nd&l’y dls aslet of rr;]easuremen,lt(g_. Eahch measurement

probable estimate forande! by finding the mode: ¥;; depends only on the sensor taking the measureragnt,
and the event generating the measurerm%nt,

s* et = argmaxp(s, et |yt v, ..., y") p(y'|z") Hp yz]|sl7 ) 6@
s,et
As we noted in section 2, we assume that %rget pro-
. . . duces a tagged radio pulse followed by a pulse. This
t
We will spit the measurements . .. * into two groups. allows the sensors to easily differentiaﬁb tween events,

ti and = {v:}:
y'1s the most recent measurements, o= {yz}’.zl':'t*1 . _and allows the sensors to use time diff e of arrival (TDoA)
is the set of measurements incorporated by earlier |tera'[|ons.to obtain fairly accurate range m rements. We model

. . P )
of the algorlthm. The pos_tenqr(s, e |3{ ,yold)_ car! be ex " these measurements as follows:
pressed in terms of two important distributions: the prior

distributionp(s, ef|yoa), and the sensor mode{yt|s, et).
For notational convenience, defimé = {s, '}, which i = | GSH i ()
makes the posterigr(z*|y’, yoia). By Bayes’ Rule: | - || indicates the&tor 2-norm, which is the same as
o . the Euclidian dist etween ande}. wf; represents
P&yt Yora) = Py [2", Yora)p( [yota) 2) some amount %m -mean Gaussian noise with variance
P! [Yola) o%. We chos odel because it is similar to noise mod-
Knowledge of measurements to earlier events does notels used in terature [3, 4], and because it is mathemati-
provide any basis for predicting future measurements, so thecally tr . We could also have used more sophisticated

new measurements in interva{y®) are independent of the mode techniques —in particular, we could use a particle
measurement history prior to intervia{y,;s). Equation (2)  re entation. TODO: Ali, talk about particle representa-
becomes:
\ From (5), we can directly staﬁr{ym s, e J) itis a uni-
variate Gaussian with medfs; — ¢!|| and some variance
Pl 1) gota) DI

(@' |y, Yora) = o2

p(y") )
Pyt )p (2 |Yora) O\

(y]si,eh) = ex s = el = vy (6)
So as a function of the variables tog}imate, the pos- PRYij186:€5) = V2ro P 202
terior distribution is proportional tot uct of a “prior

diStfibUtiO“”P($t|yozd) p(s,e Iyozu(.S a“sensor model” Inthe absence of an informative prior distributjef:*|y,.q),
p(y'lz*) = p(y'|s,e'). The next We'Sections will discuss  equations (3), (4), and (6) reduce to the simple squared mea-
these two distributions in dep@ surement error metric often used in the literature, for in-
To summarize, here a teps of the SLAT algorithm: stance in “spring model” approaches such as [4]. However,
. the use of an informative prior makes our algorithm sub-
Step 1 Start with the @lstnbutm{x [Yola)- stantially more capable. TODO: fix this
Step 2 Observe né%\ easuremayits

3.4. The prior distribution

1 and a sensor modtéyt|x ). The prior distributionp(«*|y.14) encodes an a priori belief

about the relative likelihood of different sensor and event lo-

Step A&npute the mode of the posterior, and report it as aryations, |t encapsulates two different distributiop|y.a)
%o )% timate of the sensor positionand event positions 54 ,,(¢t). The product of these distributions is the prior

Step 3 C?-:é%‘ he posteripfzt|yt, yoq) USing the prior

e p(ztyora), Sincee! is independent of both,;; ands.
Step 5 Compute the predictioniz’™|y*, yoiq) using an ap- We require that the prior distributiop(z*|y..4) be a
proximation to the posterior. multivariate Gaussian so that the product of the prior and the

sensor model defined in the last section is manageable. This
Step 6 Return to step 1, using the prediction as the prior forin turn suggests that(s|y.;4) andp(e') also be Gaussian.
intervalt + 1. p(8|yo1a) has two forms, which we will summarize here:



e System startupln this case, there are no measure-
ments iny,;q. We create a Gaussian pripfs) en-

codes any information we have about the sensor loca- o’ = argrtnaXp(zﬂyt, Yold)
tions. This information might come from specialized .
iZati i = argmin — log p(z'|y", Yota)
hardware (e.g. GPS) or other localization techniques. o 170
In particular, we use the results of a lower precision . . .
localization algorithm based on radio signal strength = argmin [(m — )" [AL] M (2! — ap)
or radio hop count as a weak prior to help SLAT avoid 1
false optima. We discuss specific algorithms and the + P Z(Hsi e; el|| — y” (0
local minimum problem in section 3.7. i

We can now optimize (8) using the N'e\!ton Raphson
e Online updatesin the update case, SLAT has a non- method. The Newton-Raphson methoghls an iterative tech-
trivial measurement history,;4. This implies that  nique for solving minimization probl 7 Starting at some
SLAT has already computed the distributio@'~*[y*~" . . pgint=!, Newton-Raphson fits th or surface (8) with a
p(s, € yo1a). We simply marginalize out the events  quadratic whose value, gradie@wd Hessian match those
=1 to getp(s|yora). We then approximate(s|youa) of the error surface at’. | places:!, ; at the bottom
with a multivariate Gaussiay(s|y..a) using Laplace’'s  of the quadratic. The &@s continues until it converges
method. ¢(s|y..a) becomes the basis for a “predic- at the minimum of the\&cror surface. In principle, Newton-
tion” for interval t: p(2*|yoiq). We show how to de-  Raphson is simila@adlent descent, but boasts a faster
rive this prediction from the posterior in section 3.6.  rate of converggnce
We show &tion 9 that the update equation for Newton-

SLAT also uses a prior on the eventge!), which we Raphson o(\ problem is:

show how to compute in section 3.7. Likés), p(e?) pri- .
marily helps SLAT avoid trouble with local optimums. \‘f\'& = (ATA+ [AL~)) (AT + [Atm]qxé) 9)
The SLAT prior consists of two multivariate Gaussians.
o) o desctibedby s mea and s conrane. \CN v dened inscion s s ard v
Likewise,p(e') is defined by its mea#f, and its covarian
At. As aresult, the algebraic form fzt|y,4) is as fé,% equation gives us a complete method for finding the mode

Iows whereZ is a normalization constant: . @ of the posteriop(2'|y", Yoia-

1. Set the starting point}, to be the mean of the prior

. q distributionp(x! |ye1a)-
p(a'lyoia) = 7 P [ Tl & 2. Repeat until thet’s converge:
ot = { Zé ] 2a. Computetthf1 rr;atriZT: [AL]~1+ AT A and the vec-
0 . tory = [AL] " 'af + AT,
AL = { /BZ /82 JSX\Q 2b. Solve the linear systediz} | = y.

(7) 3. The finalz! is 2**, the mode op(z |y, Yora).

ot th“ dict ‘ This is the most important part of the SLAT algorithm.
[Yota) iS rior or prediction we require to com- Given a multivariate Gaussian pripfz?|y.;4) and a quan-

i
{JUte thefp dlsftrlGl:)uthv(x 19", Yota)- We V;'" reluM ity of range datay’, SLAT produces the most probable sen-
0 Spect ces of Gaussians fafis|yoa) andp(e’) in sor topology and event locations.

sections,3.8 and 3.7. In the next two sections, we turn to the question of how

< to create the priop(x!|y.1a) = p(s|lyoia)p(e’) in order to
% maximize SLAT’s effectiveness.
3.5. Finding the mode of the posterior

. . - 3.6. Computing a prediction from the posterior
In this section, we show how SLAT computes a specific set puting a p P
of sensor and event positions from the posterior distribution. The most important use of the prigfzt|y.4) is encap-
As we mentioned in section 2, SLAT computes this estimate sulating knowledge of the sensor positianbased on old

zt* by finding the mode of the posterior: measurements. To do this, we first fip|yo14)-



p(s‘yold) = /p(sv et71|yt71a v 7y27 yl)detil (10)

Unfortunately, (10) is hardly a simple integral. It also
seems unlikely thai(s|y.iq) Is Gaussian. We needs|y,iq)
to be Gaussian, since Gaussians are compact (since they are
represented by a single vector of means and a single matrix
of covariance) and easy to work with.

We resolve both problems by simply approximating the

posterior with a Gaussian using Laplace’s method. We will F'g: 2. An example of topology folding. I@E that range
call this Gaussian distributiof(s, ¢~ [y..q). Since we are estimates (shown as edges in the graph) cannot differen-

using Laplace’s method, the meat is the mode of the tia‘Ee b/etw/een the placeme(m,B,(;)N@ he pla_ce_me_nt
posteriorz(*~1* which we computed in section 3.5. The (A, B', C"). As aresult, the error ce for optimization

inverse covariancd ! is the Hessian of the negative log '° bi-modal. IfD, E, and F haﬁnown positions, then

L without additional information tovdifferentiate the between
posterior: . .
two modes, the optlmlze%é\an unacceptably high chance
of choosing the wron €. The wrong mode results in
At = =210 p(a' ™ Yord) a1 ot 1- 1; ]? a_de suffering lous error relative tb, F, an_d
. s . Typically, one o@o such folding errors leads to wildly
= ATA+ AT (11) inaccurate to y estimates.
The derivation of this formula is presented in appendix Q
9. Next, we integrate(s, e ~!|y.4) with respect toe! ! (%)
to get the multivariate Gaussian pri@fs|y,iq4). This inte- In’@T, we use an initial priop(s) to avoid the vast

columns ofA, and the elements of the meahthat corre- ithms in the literature that are (1) simple, (2) distrib-
spond to the eventg—!, to produce the required covarianc ed, and (3) hop-count based. These algorithms are typi-
AL and mears,. cally somewhat inaccurate, since their only source of data
q(s|yo1q) is exactly the Gaussian prior we want. &gan is the radio connectivity of the network. However, several
now form p(zt|y.14), and use it to compute a po y r for of these, such as the unfolding phase of [4] and the gradient
intervalt. Note that as we incorporate new &ementsmultilateration approach of [5] and [6] completely avoid the
after each time interval, the storage used aintain SLAT issue of local minima, since they are not based on an opti-
state remains constant — jugtandA’. Thisallows SLAT ~ mization.
to handle large amounts of data overﬁ& of the network. SLAT can use any of these algorithms to generate a fold-
The ability to save state using aprtef also means that thefree topology of the sensor network, as in [4]. This topol-
localization of the network can rge over time. Even- 0gy’s accuracy may be bad, but it does provide a total order
tually, the priorp(z!|y.q4) do W@tes the term(y?|zt) in over the sensors — that is, each sensor in roughly the right
the optimizer. This leads tg E%change in the position esti- part of the plane relative to the rest of the sensors. By en-

gration can be performed simply by dropping the rows andé\%dty of these problems. There are several localization

mates*. It also leads to convergence in the optimizer, coding this total order as a very weak prior, SLAT biases the
since the optimizati gins very closeatb. We expect  optimizer in favor of the correct minimum. For instance,

SLAT's performal é@increase over time, both in accuracy the fold-free topology might placel in figure 2 nearF'.

and in speed. '\ imulation results (which we present in This allows the optimizer to correctly choose the position-
section 4) s@ this claim. ing (A, B, C) over the incorrect positioningd’, B’, C").

The mathematics of this weak prigis) are simple.
Suppose an algorithm such as the unfolding phase from [4]
generates positions,, roideq- Then, the meas, of p(s) is
Loé'glzation systems that attempt to localize using an opti- SIMply s, foideqd- The covariance matrid, is wi, where
mization over range measurements often encounter troublew is a large number we choose (typically~ 108), andI
with local minima. As shown by Priyantha et al. [4], most is the identity matrix.
of these problems stem from topological “folds.” Figure 2 It is also helpful to provide a prigs(e?) that gives the
illustrates the problem graphically. Essentially, the possibil- events a good starting point. This helps avoid local minima
ity of folds causes concavities in the error surface analyzedand speeds convergence. SLAT generates a good placement
by the optimizer. quickly using the sensor meang produced after the last

3.7. A@ﬂing local minima using a weak prior



time interval. For each event, it chooses the three sensors F‘ N

X
whose ranges to the event are smallest. It then simply aver- g&d"‘%'
TN

7))\

ages the position estimates of the sensors to get an estimate
of the event’s position. The covariancegk?!) is also set
towl, wherew is again a large constant.

This initial prior p(e!) can be combined with(s|yoq)
or p(s) to formp(z|y.4), the full prior.

4. RESULTS

4.1. Cricket

In our first experiment, a roomba is placed in a rectangu-
lar wooden enclosure. A cricket [CITE] is attached to the
roomba [CITE]. This cricket beacons periodically using its
radio and ultrasound transmitter. Six more crickets were
placed outside the enclosure facing the roomba and instructed
to listen for beacon pulses. The roomba was turned on and
allowed to move freely within the enclosure. The roomba’s
movements were tracked using a video camera.

The ranges computed by the six external crickets were Q
collected and processed in a Java-based simulator. This sim- Q
ulator simply applied the SLAT algorithm to the measure-
ment data. The resulting target path and sensor positions are
plotted in figure 3. Figure 3 also contains the target path ex-
trapolated from the video camera gootage for comparisonée . Ground truth and SLAT estimate for Roomba exper-
The SLAT algorithm produced a rather high fidelity reco nt. Note that the SLAT estimate is affected by a rigid
struction of the roomba’s path. It also correctly iden@@ transformation.
the placement of the six cricket sensors. Q

O\Q The average event estimate error declines somewhat in
\ the first few SLAT iterations, and soon stabilizes around

G.) (b) SLAT estimate
R

4.2. Decreasing error over time

h inder of it based \s lated the average measurement error. This is entirely reasonable,
€ remainder ot our results are base Imufated SenSoL;, e it indicates that the majority of the error in an event
network topologies. Sensor placeme made at rando

X ) . stimate is the noise in the measurements to that event.
with the constraint that sensors S ttered fairly evenly Ei 5 plot fimat inst th b
in a rectangular area. Events igure 5 plots sensor estimate error against the number

laced on random con—]c s taken by th Note that all th
tinuous paths through the W@r network’s area. Sensor?' Measurements taken by the sensor. Note that all three
event ranges are simulat ed on the characteristics

Oquantities (minimum, average, and maximum error) decline
Maroti et al's acoustic r system [CITE] for the Berke- 25 More measurements are taken. This indicates that as ex-
ley mica2 mote [CIT ese measurements have a stanlP€cted. SLAT's accuracy increases over time, and increases
dard deviation er ' bout 8 cm fastest in the areas with highest traffic.
Figure 4 shofv

representative plot of SLAT estimate _ Figure 6 shows the simulate_d sensor network u;ed in
error versu umber of events witnessed by the network19ures 4, 5, and 7 at several points in time. These pictures
In this n %§' 60 sensors were scattered over a 600 cmShow the SLAT process converging over time to a highly ac-
X 600 area. The average error in estimated sensor pogurate localization estimate while reliably tracking targets.
sitio Is off rapidly at the beginning, and then slowly Figure 7 shows the average variance of the estimated po-
deGEyes below the average measurement error. The ini-Sitions in the SLAT posterior after each time interval. The
tial falloff occurs since each measurement taken providesvariance of sensor position estimates starts very large, and
significant new information. This causes the estimate to rapidly drops as measurements are incorporated. This cor-
change quickly. Once enough measurements have been takégsponds to increased confidence in the SLAT estimates. As
further refinement only occurs due to additional measure- €xpected, the event variances are relatively constant.
ments cancelling out each others’ noise. This accounts for We claimed that the Newton-Raphson method of max-
the gradual improvement encountered after the initial drop. imizing the posterior distribution converges quickly. Em-
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In this simulation, 60 sensors are spread over a 600 cm x 600 Q
cm area. Simulated targets move along continuous paths  (c) after 38@% ts (d) after 589 events

through the network producing events as they move. Each
mark on the_ graph represents thE." status of the network af'Fig. 6. T four graphs show a simulated sensor network
ter an iteration of the SLAT algorithm. Error is measured at sev oints in time. The estimates are dark colored
relative to ground truth. As predicted, SLAT’s localization P ) !

estimate improves over time; this drives the improvement in Linidiridicate the correspondence between estimates and
event error P ' P d truth positions. Figures b-d show the event estimates

r the most recent time interval as 'x’ marks.

. @ pirically, each SLAT iteration typically requires on average
" .(\\ 3.25 Newton-Raphson iterations to converge.
—— M
- Mierﬁlhl /Maximum
sool q\ N | 4.3. Sensitivity to measurement error
N
O Figure 8 demonstrates the effect of increased measurement
a00f \’ 8 error on SLAT'’s accuracy. We ran simulated experiments
= .\Q with a measurement error standard deviations of 8 cm, 14
S ol X i cm, and 20 cm. Each increase in variance slightly increases
u% $ the number of events required before the initial decrease in

n
=3
S

each increase in measurement error slightly increases the

§ sensor position estimate error is complete. Furthermore,
\ asymptotic amount of measurement error.

100

4.4. Sensitivity to density

00 @é’: - .10‘ '1‘57 20 25. : -30 : ‘35 40 . .
@ # of measurements Figure 9 shows the effect of sensor density on SLAT effec-
tiveness. Each decrease in density means that fewer sensors
Fig. 5. SLAT sensor estimate error vs. number of observed witness any particular event. Intuitively, this suggests that
measurements per sensor for the simulation in figure 4. Theless dense networks will improve less quickly. Furthermore,
three plotted lines indicate the maximum, average, and min-we know there is some threshold of density beyond which
imum error in the SLAT estimate. SLAT will not converge at all, since at least three measure-
ments are required simply to track a target. Both of these
intuitions are supported by simulation.
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e on larger networks

4.5. Perfor

Figure cd%monstrates the SLAT algorithm on a larger net-
work. ,\NRis larger network maintains a constant density,
ntains four times as many sensors. The decrease in
ergence speed is easily explained. As we showed in
gure 5, sensor estimate accuracy is primarily dictated by
the number of measurements observed. This suggests that
a larger network with identical density will require more
events in order to provide the requisite number of measure-
ments for each sensor. This turns out to be the case.

Some of the effect is also caused by our simulator’s al-
gorithm for generating target paths. These paths tend to
avoid the corners of the network, which results in some
sensors improving more slowly than others. As we noted
earlier, this behavior is expected and acceptable, since the
slowly improving sensors are always in low traffic areas.

5. DISTRIBUTED SLAT

In this paper, we have primarily presented SLAT as a cen-
tralized algorithm. However, we have every reason to be-
lieve our technigues can be implemented to run in distribut-
edly inside the network using only local communication be-
tween nodes. In fact, we expect the space and time require-
ments of distributed SLAT to b& (noca1), Wheren;ocq; is
the number of nodes within two times the sensing range of
a node. This is possible because the important matrices in
SLAT, AT A andA; !, contain internal structure which we
can exploit for efficient storage in the network.

Furthermore, the heavy lifting computation in SLAT, the
solving of a large system of linear equation in (9), can be
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‘ ‘ : ‘ ‘ from sensors to targets. We think it may be possible to lo-
) —e— 60 sensors on 600 x 600 area X R
—+— 240 sensors on 1200 x 1200 area calize sensors based solely on common observations of en-
vironmental noise. We would estimate relative distance to
the target by comparing the arrival times of a single sound
at different sensors. The goal would then be to locate the
source of the sound while localizing the sensors. It may
even be possible to leverage the information from the ﬁund

n
=3
=]

@
=)

arrival times to perform time synchronization betw en-

sors. A\
Finally, we hope to complete a true distr@&% imple-

mentation of the SLAT algorithm on real& or network

hardware.
2
7. RELATED WQ(@

I think 1 will need Ali’s hel ing about SLAM research.
Fig. 10. Effect of network size on SLAT localization accu- \We should talk about S?\ n Thrun's work, and Phil McLauch-

racy. lan’s work on VSDF.
In the sensor n rk space, there are no papers to our

knowledge thal@d« s simultaneous localization and target
distributed using a type of Richardson Iterations [7] known tracking. The@ est algorithms to SLAT are those that per-

as the Gauss-Siedel method. Distributed least squares solvedf ™ somg@e of optimization, such as multidimensional

Sensor position error (cm)
2
8

50 -

have been used in sensor networks in the past. Jacobi iteragca"nc shang etal. and Jietal. [8’ 9], linear/semidefinite
tions in particular are quite common [4]. These techniques pro ing by [10], and the algorithms that apply squared

never require the entire linear system to be assembled o ; |n|m|z|::1t|0|j tecbhnlqugs” 4, 3]. SLAT'Sf pIrODSb'“Str':?
a single processor; in fact, their computation patterns inte€h90€!iNg makes it substantially more powerful and sophis-
ated than these algorithms.

grate nicely with the storage scheme dictated by the X " . _ .
ture of A” A andA; . The task of applying Laplace’s a Our technique for local minimum avoidance in section
to the posterior and marginalizing events (section as a>-/ 18 inspired primarily by the work of [4], which explores

closed form that is amenable to distributed co tion. the importance of fold freedom when localizing a network

We are optimistic that we can implemerQ Tinadis- Using squared error metrics. In fact, as we stated in section

=

3.7, we use the unfolding technique presented in their paper

tributed fashion. e _ .
g as SLAT's initial prior. We also suspect that the gradient
\ multilateration approach presented by Nagpal et al. [5] pro-
6. FUTURE WORK} duces a good SLAT prior, though we have not performed
i . ) . any experimental validation.
As we saw in section 4, sen ibration can make a sub- “y1q5re et al. [3] have also done interesting work in lo-

stantial difference to both ization and tracking accu- .o minimum avoidance, specifically on the topic of detect-
racy. We believe that an detect the mean measureyq fiin_nrone topologies. This enables their algorithm to
ment error within th T param(_ater gst|mat|on frame- avoid making poor choices when facing multi-modal error
work. This woul sensor calibration to occur €on- g rfaces. We are considering adapting this technique to help

currently with localization and tracking. detect the occasional mistakes SLAT makes at the edges of
Events rely randomly located. Targets follow a gongor topologies.
somewh dictable path based on the physics of their

moven@t. We think that by applying a special dynamics

prior@ e events in our estimation framework, we can fur- 8. CONCLUSION

th@nprove our target tracking accuracy. It is also likely

that target dynamics will assist us in avoiding local minima Hit the high points one more time. Yell with triumph about

for event estimates. our results. Emphasize that our approach is deeply unique:
Our framework may also be capable of accomodating none of the related work we know does this stuff. It is awe-

mobile sensors. By applying dynamics to the pritt]yoiq), some. | am punting on this until later. ————— In this

we may be able to detect changes in sensor location. paper, we presented an algorithm for simultaneously con-

SLAT currently depends on TDoA range measurements structing a coordinate system and tracking targets from only



observation of common events. Our algorithm relies on sim-
ple distributed computation and local communication only,

features that an ad hoc sensor network can provide in abun- S (VFi@hle — [ fij (@) + V fij (@h)zl])?
dance. At the same time it is able to achieve very reasonable 0]
accuracy. The algorithm gracefully adapts to take advantage =|| Az’ — b||? (15)
of any improved sensor capabilities or availability of addi- © Y foo(s)
tional seeds. 00
A= R OQ
[ —foo(zi) + V foo(wi)ws @K
9. APPENDIX: NEWTON-RAPHSON b= : A
L _fnm(xz) + vfnm(zz)xz é

In this appendix, we show how to fit the negative log pos- i i _
terior (equation (8)) with a quadratic function. We then Thus, the quadratic that f'ts@ IS
show that the minimum of this quadratic yields the Newton- \

Raphson update formula (9). Finally, we compute the Hessian . Tt . . 9
of the negative log posterior for use in Laplace’s method, in = (¢" —xp)" [AL] ;\&\Q zg) + [|[Az" — b7 (16)
section 3.6 (equation (11)).

To complete -Raphson we set,; to be the
(8) has two parts: a quadratic due to the multivariate minimum of (1%,
Gaussian prior, and a sum of squared non-linear functions Q
from the sensor model. We fit the latter term with a quadratic,
from which we can trivially construct a quadratic that fits =, min(z — 20)" Ay (z — z0) + || Az — b|?
(8). ,\ e
It turns out that when the error surface can be expresse can do this in closed form by setting the gradient of

as a sum of squares, it is possible to determine the fitti quadratic to zero and solving, since the gradient is zero
guadratic without explicitly calculating the second deri%& nly at the extremum of a quadratic.
tive. In mathematical terms, suppose the error surfacée

KO\Q 0=V [(a" — o) AL a* )+ dat — o]

(12) =2[AL) et — 2[AL] T af) + 24T A — 2470 (17)

> (fisla))? @ o
0.

&) (ML) + AT At = AN+ AT (18)
Equation (18) is the update formula we require.
We conclude the appendix by computing the Hessian of

fits (12) is- (8), which we used in section 3.6. This is simple, since (17)
its (12) is: $ ¢ contains the gradient: we simply apply another gradient:

We can find a fitting quadrati éplacigfg»(zt) with
its first-order Taylor series a . So the quadratic that

—V210g p(z' [y, Yora) lot—at = [AL] T+ ATA  (19)

D
> (L "& + Vfij(z}) (2" — x}))?
Q
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