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1 Introduction

In many sensor network applications, the network is deployed
to approximate a physical space. The network itself is not of
interest: rather, we are interested in measuring the proper-
ties of the space it fills, and of establishing control over the
behavior of that space.

Consider, for example, deploying a network of devices
to manage a large farm. The tasks to be carried out by the
devices—irrigation, pest management, and fertilization, for
example—are naturally specified in terms of regions of the
farm (e.g. “a potato field is watered every so-many hours
during hot weather”). An applications programmer for farms
should be able to write code at this level, rather than having
to specify in depth how the sensor network will be deployed
in the fields or how the devices will coordinate to carry out
the programs.

The spatial nature of sensor network applications means
that many can be expressed naturally and succinctly in terms
of the global behavior of an amorphous medium—a continu-
ous computational material filling the space of interest. Al-
though we cannot construct such a material, we can approxi-
mate it using a sensor network.

Using this amorphous medium abstraction separates sen-
sor network problems into two largely independent domains.
Above the abstraction barrier we are concerned with long-
range coordination and concise description of applications,
while below the barrier we are concerned with fast, efficient,
and robust communication between neighboring devices.

We apply the amorphous medium abstraction with Proto,
a high-level language for programming sensor/actuator net-
works. Existing applications, such as target tracking and
threat avoidance, can be expressed in only a few lines of Proto
code. The applications are then compiled for execution on a
kernel that approximates an amorphous medium. Programs
written using our Proto implementation have been verified in
simulation on over ten thousand nodes, as well as on a net-
work of Berkeley Motes.

2 Sensor Network Model

As our goals include robustness and scalability, we use a chal-
lenging model for the underlying sensor network. The num-

ber of devices may range from dozens to billions. Devices are
distributed arbitrarily through space and collaborate via unre-
liable broadcast to neighbors no more than r distance away.
Devices move much more slowly than communication, if at
all. Memory and processing are not limiting resources,! and
execution is partially synchronous—each device has a clock
which ticks regularly, but frequency may vary within some
small € and clocks have an arbitrary initial time and phase.
Naming, routing, and coordinate services are not provided.’
Finally, arbitrary point and region stopping failures and joins
may occur, possibly changing network connectedness.

Energy management has long been a key concern of
sensor-networks. Thus, although the amorphous medium ab-
straction does not address energy, we must consider its impact
on energy management.

In fact, many energy management techniques for sen-
sor networks can be expressed without violating the amor-
phous medium abstraction barrier. Space-centric techniques
can be expressed simply in Proto: for example, Directed
Diffusion[14] restricts operation to paths connecting regions
of interest to a sink region, and Energy Aware Routing[21]
descends along a potential field generated by its cost metric.
Essentially local techniques, such as the S-MAC energy effi-
cient wireless protocol[24] can be confined below the barrier.

While there will be some techniques which cannot be
cleanly factored using the amorphous medium abstraction,
our expectation is that there will be related techniques which
can be cleanly factored and are only marginally less efficient.
Our current implementation is relatively inefficient, but there
is no bar to any number of techniques.

3 Related Work

In sensor networks research, a number of other high-level
programming abstractions have been proposed to enable pro-
gramming of large networks. For example, GHT[20] pro-
vides a hash table abstraction for storing data in the network,
and TinyDB[16] focuses on gathering information via query

IProfligate expenditure of either is still bad, and memory is an important
constraint for the Mote implementation.

2They may be made available as sensor values, with appropriate charac-
terization of reliability and error.



processing. Both of these approaches, however, are data-
centric rather than computation-centric, and do not provide
guidance on how to do distributed manipulation of data, once
gathered. TinyOS[11] and the Hood abstraction[23] provide
useful general programming tools—indeed, our implementa-
tion of Proto on Motes uses TinyOS—but the abstractions are
less powerful and lead to bulkier and less reusable code.

More similar is the Regiment[18] language, which uses
a stream-processing abstraction to distribute computation
across the network. Regiment, however, is only distributed
when the compiler finds optimization opportunities, and there
are significant challenges remaining in adapting its program-
ming model to sensor-networks. Kairos[12] also allows pro-
gramming of a sensor network as a whole, but is addressed at
its graph structure, rather than the space it inhabits.

Previous work on amorphous medium languages proposes
the amorphous medium abstraction[3], general strategies for
control[6], and an ancestor language of Proto[4]. Recently,
we described [5] how the abstraction simplifies engineering
of emergent behavior.

Other work on languages in amorphous computing [1] has
shared the same general goals, but has been directed more to-
wards problems of morphogenesis and pattern formation than
general computation. A notable exception is Butera’s work
on paintable computing[7], which allows general computa-
tion, but lacks an abstraction barrier separating an applica-
tions programmer from low-level network details.

Finally, the structure of Proto as a dynamic network
of streams is strongly influenced by Bachrach’s previous
work on Gooze[2], as are many of the compilation strate-
gies used to compact Proto code for execution on Motes.
There is a long tradition of stream processing in program-
ming languages. The closest and most recent work is Func-
tional Reactive Programming (FRP) [10] that is based on
Haskell [15], which is a statically typed programming lan-
guage with lazy evaluation semantics. FRP has been demon-
strated on robotics [19] and graphics [10]. In these systems,
less attention is spent on runtime space and time efficiency,
and the type system is firmly wedded to Haskell, with all of
its strengths and weaknesses.

4 Programming Amorphous Media

An amorphous medium is a theoretical continuous computa-
tional material which fills space. Every point in the medium
is a computational device which independently executes the
same code as every other device in the medium.? Nearby de-
vices share state—each device has a neighborhood of devices
nearby whose state it can access (Figure 1).

Programs written in Proto compute on an amorphous

3Executions diverge due to differences in sensor values, randomness, and
interaction with their neighborhoods.
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Figure 1: Every point in an amorphous medium is an inde-
pendent device running the same program and exposing its
internal state to its neighborhood.

medium by manipulating fields (a field is a map assigning
a value to each point in the space). A program describes the
manipulation of streams of fields: when executed, the pro-
gram is evaluated against the space at regular intervals to pro-
duce a stream of output fields.*

Primitives in Proto are either terminals which produce
fields, or operators which calculate an output field from input
fields. For example, the expression 2 is a terminal which eval-
uates to a stream of fields with the value two everywhere, and
+ is an operator which adds its input fields pointwise (Fig-
ure 2). Other notable primitives are mux, which uses a field
of booleans to select pointwise between two other inputs and
sense and act which read from sensors and write to actuators,
respectively, allowing the program to interact with its external
environment.

Primitives are composed to form complex expressions by
connecting outputs to inputs to form a directed graph of prim-
itives connected by streams. Proto expresses this syntacti-
cally as LISP-like function application. For example, the ex-
pression (+ 2 5) evaluates to a graph of three nodes which
produces a stream of fields valued seven everywhere (Fig-

ure 2(d)).

Abstraction is done with lambda expressions, boxing up
a graph fragment to form a new primitive. For example,
(lambda (x) (* x x)) squares the value of every point in a
field. Given lambda, it is straightforward to implement re-
lated primitives like def, which produces a named lambda
(Figure 2(e) and 2(f)), and let, which syntactically allows an
output stream to be connected to several inputs. Using def,
we can define a square function sq as follows:

(def sq (a) (* a a))

In addition to these basic operations, Proto provides a set
of operations that allow the programmer to specify behaviors
that depend on the space and time relationships of fields.

Unlike discrete networks, each point in an amorphous
medium has an infinite number of neighbors. As such, inter-

4Our actual implementation does not attempt to synchronize evaluation,
but merely depends on limited variation in the rate of evaluation (See Sec-
tion 6)
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Figure 2: Proto primitives produce streams of fields. For example, 2 produces a constant stream of fields valued two every-
where (a), + produces a pointwise sum of its inputs (b), and mux uses a field of booleans to select pointwise between two
other inputs (c). Primitives are composed into a directed graph of streams by connecting outputs to inputs (d). Abstractions
are created by “boxing” a subgraph in a lambda expression (e), which can then be used as a new primitive (f).

action by message passing is impractical. Proto instead pro-
vides implicit communication through the reduce-nbrs oper-
ator, which summarizes the values in the neighborhood using
a quantifier that is applicable to uncountable sets.

Proto currently implements five such quantifiers: inte-
gral,5 forall and exists (AND and OR equivalents for un-
countable sets), and limsup and liminf (min and max equiv-
alents for uncountable sets).

Thus, for example, we can calculate local averages with

(def local-average (v)

(/ (reduce-nbrs v integral) (reduce-nbrs 1 integral)))

which normalizes an integral of the value over the neighbor-
hood against the area of the neighborhood.

In general, we do not want to tie the behavior of programs
to neighborhood sizes, so Proto also provides operators for
measuring distance in space and time—nbr-range and nbr-
lag, respectively.®

Persistent state is established using delay loops, specify-
ing an initial value and an expression for calculating the next
value from current values. For example, we can define a
discrete-time integrator

(def integrate (x) (letfed ((v 0 (+ x v))) Vv))

that creates one state variable, v, which starts at zero and adds
the value of the input x at each evaluation.

A common pattern in Proto is long-range communication
by using a letfed state variable to chain reduce-nbrs interac-
tions. For example, we can create a gradient operator

(def gradient
(letfed

(src)
((n infinity
(+ 1 (mux src 0 (reduce-nbrs
(+ n nbr-range) liminf)))))

(= n1)))

5a Lebesgue integral, to be precise

5These may be implemented coarsely or finely, depending on the hard-
ware available: for example, our Mote implementation estimates the distance
to all neighbors as its radio range, and the time lag as one round.

which measures the distance from every point to the near-
est source. The addition of one drives the distance upward
when it is not connected to the source, allowing the gradient
to adapt to changing sources in the same way as Clement and
Nagpal’s active gradients[8].

Although the entire amorphous medium shares a program,
we do not generally want the whole program running every-
where. The if operator restricts the space against which an
expression is evaluated. For example, we can define a dila-
tion operator that selects everything within r units of a source
(def dilate (r source) (<=

(gradient source) r))

then clip it against an arbitrary boundary,

(def bound (source max boundary)
(if (not boundary) (dilate max source)))

so that the dilation runs only within the boundaries containing
the source.

S Example Sensor-Network Apps

Many sensor network tools and applications can be imple-

mented simply and efficiently using Proto.

A useful example is the coordinate system mechanism
from Butera’s paintable computing[7], which derives coor-
dinates from a provided source and destination. We will need
to measure the distance between these places, which we can
do with a distance operator and a value-carrying version of
gradient

(def grad-value (src v)
(let ((d (gradient src)))
(letfed ((x 0 (mux src v
(2nd (reduce-nbrs (tup d x) liminf)))))
x)))
(def distance (pl p2)

(grad-value pl (gradient p2)))
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Figure 3: Proto provides operations that allow the programmer to specify communication (e.g. (reduce-nbrs (+ f 3) limsup)
in (a)), state (via feedback loops like (letfed ((v 0 (+ f v))) v) in (b)) and restriction of space (e.g. (if f (sqrt 4) 7) in (c)).

The paintable computing channel mechanism, which
finds a wide path connecting two points, uses a trail-following
operator to trace a gradient back up to the source. This is
fairly fragile, so we instead find the trail geometrically by tri-
angulation against distance, then widen it using dilate.

(def channel (src dst width)
(let* ((d (distance src dst))
(trail (<= (+ (gradient src)
(dilate width trail)))

(gradient dst)) d)))

Implementing the coordinates mechanism requires one
more operator, choose-leader, which is used to break sym-
metry by selecting a single location in the channel

(def choose-leader (selector)
(letfed ((v (if selector (random 1.0) infinity))
(minv v (reduce-nbrs minv liminf)))
(and (< v infinity) (= v minv) v)))

Butera’s coordinates mechanism (Figure 4) can then be
defined as an operator that is relatively straightforward for
a programmer to create and understand.

(def coordinates (src dst width)

(let* ((field (channel src dst width))
(axis (channel src dst 1))
(dl (gradient src))
(d2 (gradient dst))
(dp (distance src dst))
(buoy (choose-leader
(and field (< d1 dp) (< d2 dp))))
(y (/ (+ (¥ d2 d2) (- (* dl dl)) (* dp dp))
(* 2 dp)))
(x (sgrt (- (* d2 d2) (* y y))))
(neg (bound buoy (+ width dp)
(or (< y 0) (> y dp) axis))))
(tup (if neg (- x) x) y)))

Butera’s channel operator can also be used to restrict com-
munication. For example, in this tracking code

width*.
field ™

Figure 4: Calculating coordinates with a mechanism adapted
from paintable computing[7]: the two anchor points of the
coordinate system send out gradients, producing d1, d2 and
dp which determine the location of p except for the sign of its
vertical coordinate. The sign is found by using leader election
to break symmetry.

(def track (target dst coord)
(let ((point
(if (channel target dst 10)
(grad-value target
(mux target
(local-average-tup coord)
(tup 0 0)))
(tup 0 0))))

(mux dst (vsub point coord) (tup 0 0))))

a clique of nodes detecting a target estimate its location by
averaging their coordinates. The location flows back to a base
station (dst) along the channel, so that the information is not
transmitted to uninvolved portions of the network. Figure 5
shows the target tracking program verified in simulation.
Another useful application is threat avoidance. Given co-
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Figure 5: Snapshots of the target tracking program (a) and threat avoidance program (b) being verified on 100 and 1000

simulated devices, respectively.

ordinates, a threat sensor and a model of exponentially de-
caying threat, we can calculate the expected safest path to a
destination after the fashion of the threat avoidance program
described by Eames[9]. The equivalent modules in Eames’
implementation contain more than 2000 lines of nesC, while

this Proto implementation is a mere 22 lines long.

The exponentially decaying threat model is implemented
with an exponential decay gradient which takes its value from
the single most salient threat at any point.

(def exp-gradient
(letfed ((n src
n))

(src d)

(max (* d (reduce-nbrs n limsup)) src)))

Given a threat field, cumulative survival probabilities are
calculated by

(def dist (pl p2)

(sgrt (+ (sg (- (lst pl) (1lst p2)))
(sq (- (2nd pl) (2nd p2))))))
(def 1-int (pl vl p2 v2)
(pow (/ (= 2 (+ vl v2)) 2) (+ 1 (dist pl p2))))
(def max-survival (dst v p)
(letfed
((ps 0 (mux dst 1
(reduce-nbrs
(* (l-int p v (local p) (local v)) ps)
limsup))))
ps))

which relaxes out from the source to find the expected sur-
vival probability on the best path to the source (the local op-
erator in the reduce-nbrs expression accesses the local value
instead of the neighbor’s value). Finally, greedy-ascent se-
lects the best direction to move in at each point.

(def greedy-ascent (v coord)

(- (2nd (reduce-nbrs (tup v coord) limsup)) coord))

Combining these three yields a threat-avoidance program:

(def avoid-threats
(greedy—-ascent
(max—-survival
dst
(exp-gradient

(dst coords)

(sense :threat) 0.8) coords) coords))

Figure 5 shows the threat avoidance program verified in sim-
ulation.

6 Approximating Amorphous Media

In order to execute Proto programs on a sensor network, we
program the devices with a kernel that approximately simu-
lates an amorphous medium. The main challenges for the ker-
nel are approximating global evaluation with local code and
continuous space with discrete devices. Despite the apparent
complexity of Proto and the responsibilities of the kernel, our
implementation runs on Mica2 Motes.

Global evaluation against the whole space must be approx-
imated using code distributed through the network and exe-
cuted locally on each device.

Rather than attempt to synchronize, each device executes
independently once every ¢ seconds by its own clock. So long
as the program does not have any tight time dependencies,
and can execute in less than ¢ seconds per node, this provides
a good rough approximation of periodic global evaluation.

Our implementation supports over the air programming.
The entire amorphous medium runs a single program, so
when any device is programmed, the kernel distributes the
code virally, using a mechanism similar to those described in
[17], [13], and [22]. To prevent conflicts during an upgrade
process, each state broadcast also contains a version number,
allowing devices to ignore state from different versions.

The devices of the sensor network can be viewed as a finite
sample of the uncountably infinite devices in the amorphous
medium. Thus, the neighborhood values are approximated by
a node’s own state plus a table of neighbor values similar to
those used in [7] and [23].

Each operation that accesses neighbor state (e.g. reduce-
nbrs or nbr-range) corresponds to a field in a state broadcast.
Each device chooses a unique ID and broadcasts its state be-
tween evaluations. The broadcasts update table entries, and
neighbors that haven’t updated in several rounds are assumed



to have failed and are discarded.”

Finally, each quantifier for reduce-nbrs has a discrete im-
plementation that is applied to the neighborhood values. The
limsup and liminf summaries select the minimum and max-
imum neighborhood value, forall and exists take the AND
and OR of neighborhood values, and integral sums the val-
ues in the neighborhood, weighted by the estimated area each
represents.8

No formal guarantees of correctness are currently pro-
vided. It is up to the user to design programs that will tolerate
noise caused by imperfections in the abstraction.

7 Conclusion

The amorphous medium abstraction is a powerful and practi-
cal tool for implementing sensor-network applications. Many
sensor network problems become simpler when factored us-
ing this model, since the specified behavior of the space and
the network operations to implement it are largely separated.

It is important, however, to consider the current limita-
tions: there is much work remaining to be done, both in the
theory of the amorphous medium, and in making Proto a use-
ful platform for development.

It is an open question what types of abstractions are most
intuitive for feedback control of spaces. Candidates in the
form of distributed algorithms from amorphous computing
and elsewhere need to be imported to Proto and analyzed
within its context.

Finally, only a few applications have been ported to Proto
at present. Extending the range of applications implemented
will drive further Proto development and continue the process
of determining the strengths and weaknesses of the amor-
phous medium abstraction.
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