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Abstract

We consider different types of loss functions for
discrete ordinal regression, i.e. fitting labels that
may take one of several discrete, but ordered, val-
ues. These types of labels arise when preferences
are specified by selecting, for each item, one of sev-
eral rating “levels”, e.g. one through five stars. We
present two general threshold-based constructions
which can be used to generalize loss functions for
binary labels, such as the logistic and hinge loss,
and another generalization of the logistic loss based
on a probabilistic model for discrete ordered labels.
Experiments on the 1 Million MovieLens data set
indicate that one of our construction is a signifi-
cant improvement over previous classification- and
regression-based approaches.
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ization of binary regression (as in, e.g., logistic regimss
which can be seen as a degenerate case in which only two
levels, “positive” and “negative”, are available. As with b
nary regression, we learn a real-valysddicror z(x) (e.g.

in linear binary regression, we would learn a linear funttio
of the features), minimizing somess losgz(z);y) on the
target labels. Common choices for the loss function are the
logistic loss (as in logistic regression), and the hings (0i$s-
tance from the classification margin) used in Support Vector
Machines. Here, we consider various generalizations tethe
loss functions suitable for multiple-level discrete owlifa-
bels.

Threshold-based approaches

Crammer and Singd2004 suggest a generalization of the
Perceptron algorithm for discrete ordinal labels: instead
the single threshold of the perceptron, they i5e 1 thresh-

olds to separate the real line to regions corresponding to
1 Introduction possible rating levels. Shashua and Lej2003 suggest a
_ _ similar generalization to Support Vector Machine (SVME th
In many systems, users specify preferences by selecting, f@jngle margin constraints (for each observation) of stesda
each item, one of several rating “levels”, e.g. one though fiv sy\s are replaced with a pair of margin constraints on the
“stars”. When learning to predict further preferencesséhe tnresholds bounding the “correct” region (the region corre
rating levels serve as target labels (responses). Thisdpe sponding to the target label).
discrete ordered labels differs from more standard types of \when slack is allowed, Shashua and Levin's approach can
target labels encountered in other machine learning pnoile e seen as regularized regression with a specific generaliza
binary labels (as in classification tasks), discrete, ue@d {jon to the hinge loss, which we describe in Section 3.1 as
labels (as in multi-class classification tasks) and oS  the jyymediate-threshold generalization of the hinge loss. In
real-valued labels (as in typical regression tasks). Bdém-  gection 3.2 we discuss a different generalization, dHe
els are discrete with a finite number of possibilities, likess  7,,,51014 generalization, where constraints (and slack) are
labels in multiclass classification. However, unlike ag@m  -ynsidered for allk — 1 thresholds and not only those im-
multiclass classification setting, the labels are orderadat mediately bounding the correct region. We argue that such a
ing of “three stars” is between a rating of “two stars” and ageneralization better penalizes predictions which veotatil-
rating of “four stars”. o _ tiple thresholds and present experimental evidence stigges
Two obvious approaches for handling discrete ordinal laj; might be more appropriate. We also discuss how other loss

bels are (1) treating the different rating levels as uneelat t,nctions, such as the logistic loss or smooth variants ef th
classes and learning to predict them as in a multiclassifttass pinge loss, can also be generalized in the same way.

cation setting, and (2) treating them as a real-valued resgso
and using a standard regression setting with a loss functioRrobabilistic approaches
such as sum-squared error. However, neither of these efledDther than these threshold-based generalizations, we also
the specific structure of discrete ordinal labels. suggest a different generalization to logistic regressidrich
. . we term “ordistic regression” (Section 4), that, like Idgis
1.1 Ordinal regression regression, can be viewed as fitting a conditional probabil-
In this paper we view fitting rating levels as a regressiompro ity model P(y|z). We note that Chu and Ghahram2004
lem with discrete ordered labels. We view this as a generalrecently suggested a different generalization to the timgis



conditional model for discrete ordinal labels. In this paper, we focus oh,-regularized linear prediction,
Probabilistic models for discrete ordinal response has@ al wherez(z) = w’z+wy is a linear (or more accurately, affine)

been studied in the statistics literatufdcCullagh, 1980; function ofz € R9, parametrized by a weight vectarc R?

Fu and Simpson, 2002However, the models suggested areand a bias termvy, € R. We seek a linear predictor that

much more complex, and even just evaluating the likelihoodninimizes a trade-off between the overall training loss and

of a predictor is not straight-forward. On the other hand, inthe (Euclidean) norm of the weights:

the ordistic model both the log-likelihood and its derives B\

can be easily computed, using calculations similar to those J(w) = Z losgw'z" + wo; y") + =|wl|? 1)

used in standard (binary) logistic regression. t 2

1.2 Other approaches where) is a trade-off parameter set using cross-validation.

We briefly mention another approach suggested for handlind.1 Binary Regression

discrete ordinal ratings. Herbriah al. [2000 suggest ex- e first review common loss functions used with binary la-
tracting from the rating levels binary comparison relation pels (i.e. in a binary classification setting), wherec +1.
ships on the rated items and thus mapping the problem to @ihese serve as a basis for our more general loss functions
partial ordering problem. Herbricér al. then study a gen- for discrete ordinal labels. We go into some detail regaydin
eralized SVM for learning from binary comparison relation- aspects of these loss functions which will be relevant in our
ships. A drawback of this approach is the number of ordegonstructions in the following sections.

constraints orf” items with observed labels can be of order

T2, even though the original input to the problem (the ob-Zero-one error

served labels) is only linear if. Our objective in binary regression is to be able to correctly
predict a binary label. The obvious way of predicting a bi-
1.3 Specific contribution nary label from a real-valued predictofz) = w'a + wyg is

thresholding the predictor, and predicting digfx)). The
‘simplest conceivable loss function is a loss function cimgnt
ethe number of prediction errors:

The main contribution of this paper is studying, in a system
atic way, different loss functions for discrete ordinal nesy
sion. Since our main interest is in how to handle discret
ordinal labels, we focus on regularized linear prediction i 0 ifyz>0
a simple learning setting, which we clarify in Section 2. In loss(; ) = {1 if yz <0 @)

. . . 2 ) Yz =
Section 2.1 we review various loss functions for binary la-
bels and discuss their properties. In Section 3 we preserffowever, this simple loss function is problematic for sever
the immediate-threshold and all-threshold constructines- ~ réasons:
tioned above, using the loss functions from the previous sec e It is not convex, and minimizing it is a difficult (in fact,
tions as building blocks. In Section 4 we present the omisti NP-hard) optimization problem.
model which generalizes the logistic. In Section 5 we com-
pare the various methods through experiments using the dif-
ferent loss functions, and compare them also to standard mul

e |t is not continuous, let alone differentiable, and so even
local optimization is difficult.

ticlass and sum-squared-error regression approaches. e Itis insensitive to the magnitude of and so also to the

We have already used the immediate-threshold and all- ~ Magnitude ofw. Regularizingw is therefore meaning-
threshold generalizations of the hinge-loss in our work on  1€ss, as shrinkings andw, towards zero would yield
collaborative prediction using Maximum Margin Matrix Fac- the same error, but with a regularization term approach-
torizations[Srebroer al., 2004. Here, we present these con- Ing zero.

structions in detail and more generally, as well as the dodis ppargin

model. The third problem can be addressed by requiring not only that
z predicty correctly, but that it does so with a margin:

. . . . . . 0 ifyz>1
Since our main object of interest is how to handle discrete or losg(z;y) = ;

! . ; C 2 : 1 ifyz<1
dinal labels, we focus on a simple learning setting in which
we can demonstrate and experiment with various loss funcFhis modified loss function is sensitive to the magnitude,of
tions. We are given a training sét?, 4*);—; .7 of T rated  and therefore also to the magnitudeuaf Summing this loss
items, where for each item;’ € R? is a feature vector de- function corresponds to counting the number of violatiohs o
scribing the item and? is the rating level for the item. We the constraintg(w’z +wg) > 1. Rewriting these constraints
want to predict preferences of future items. We do so bYaSy(i:H- Wy > |1_| we can interpref1—| as a geometrical

c = |w|? w

i ol : . Tod [w] [w]
learning aprediction mapping z(z) : R” — R such that margin around the separating hyperplane, specified by iits no
for an item with feature vectar, z(x) corresponds as well

as possible to the appeal of the item (i.e. is high if the itemmal % Minimizing the loss (3) as well as th, regularizer

is highly rated and low otherwise). We investigate diffdren |w| can therefore be interpreted as maximizing the separation
loss functions 10sgz;y) for measuring the goodness of the margin M = = while minimizing the number of training
correspondence betweefi:!) and the target rating levef. points not classified correctly with a margin of at le&st

2 Preliminaries
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Figure 1: Different margin penalty function¥yz) (left to right): (1) sign agreement, (2) margin agreemeasi,hinge, (4)
smooth hinge, (5) modified least squares, (6) logistic.

Hinge loss but such a linear (at least) dependence is unavoidable in a
Minimizing the margin loss (3) might be a good ideal, but convex loss function. The modified least squares goes be-
this loss function is still non-convex and non-continudlise ~ yond this necessary dependence on the magnitude of the er-
common approach to large-margin classification is theeeforror, and introduces an unnecessary (from the point of view of

to minimize thehinge loss: convexity) quadratic dependence, further deviating frbm t
zero/one margin error.
loss, (2;y) = h(yz) 4 o )
. ) ) Logistic regression
whereh(z) is thehinge function: Another common loss function, which can also be written as
0 it 2> 1 a function of the classification margir, is the logistic loss:
h(z) = max(0,1 —z) = L= (5)

’ 1—z ifz<1 loss; (z;:y) = 9(y=2) 8
This is the loss function typically minimized in soft-mangi 9(z) =log(1+e7%) )
Support Vector Machine (SVM) classification. In the context  The logistic loss can be viewed as a negative conditional
of SVMs, the hinge loss is usually written as a sum over marfog-likelinood loss (z; y) = — log P(z|y) for a logistic con-
gin violations¢® included in the constraint®(w’= +wo) > ditional modelP(y|z) x e¥* (i.e. Y is a Bernoulli random
1-¢. variable, with natural paramete). The predictorz(z) =

Animportant property of the hinge-lossis thatitis an uppery/sz + w, minimizing the summed logistic loss is thus the
bound on the zero-one misclassification error (2), and thugaximum conditional likelihood estimator among the para-
large-margin generalization error bounds bounding its&al etric class of conditional modeR(y|z) x e¥(w'z+wo) |n-
on examples not in the training set also bounds the value Gfoqucing anL, regularizer as in (1) corresponds to maxi-
the zero-one misclassification error, which is perhapsitie t - yym a-posteriori (MAP) estimation with a Gaussian prior on
object of interest. the weight vecto.

Smoothed hinge loss As discusse@ abo.ve,.logistic regrgssion corre;sponds to
Other loss functions share properties of the hinge, butase e maximumconditional likelihood estimation for aonditional

ier to minimize since they have a smooth derivative. We in-Parametric modeP(y|z). It is worth noting that this para-
troduce “smooth” hinge loss as an approximation to the hingénetric family of conditional models>(y|z) oc ev(w = +wo)

that is easier to minimize: is exactly the family of conditional distribution8(y|x) for
) joint distributionsP(y, «) whereX|Y follows a multivariate
0 if z>1 spherical Gaussian distribution with variance which dogs n
h(z)=q(1—-2)%/2 ifo<z<1 (6)  depend ort’, and a mean which does dependiéni.e.:
05—=2 if 2<0 2
P(aly) o ezoz 71| (10)
Modified least squares

wherep_1, 11 € R4 ando € R, as well as the prior proba-

Zhang and Olef200] suggest a different loss function with ility P(Y = 1) are the parameters of the joint distribution

a smooth derivative, in which the hinge function is replace

- .. odel.
with a truncated quadratic: For our purposes below, it would also be useful to view the
0 if 2>1 conditional modelP(y|z) « e¥* similarly, as the conditional
h(z) = {(1 CaP ifa<i (7)  distribution arising from a joint distributio®(y, z) in which

P(y=1)=1andZ|Y ~ N(1,Y),ie.
The modified least squares loss based on (7) is much more 1syl?
sensitive to outliers and large errors then the hinge loisgjus P(zly) oc ez #7¥0. (11)
(5) or smoothed hinge loss using (6).

The margin error (3), which we might want to view as a Loss as a function of classification penalties \We note that
non-convex “ideal”, does not pay any attention to the magni-all loss functions discussed here can be viewed as penalties
tude of the error, and penalizes all errors equally. Thenal  los]y; z) = f(yz) imposed on thelassification margins yz,
for a few outliers fairly cheaply, but leads to a non-convexand differ only in thenargin penalty function f(-) used. The
objective. The hinge loss, as well as the smoothed hinge, invarious margin penalty functions discussed are shown in Fig
troduce a linear dependence on the magnitude of the erroure 1.



segment, namely < 0, corresponding to negative labels
y = —1, and a semi-infinite segment,> 0 corresponding to
positive labels. In fact, the bias term in the binary settiag
| be viewed as specifying a threshold. TRe— 1 thresholds
1 replace this single bias term / threshold.

| | / | | / We describe two different constructions for loss functions
Ve Ve based on such thresholds. The constructions differ in how
predictors outside the segment segment correspondingto th
Figure 2: Threshold-based loss constructions: (left)‘correct” label (or too close to its edges) are penalizedhBo
immediate-threshold, and (right) all-threshold. Bothtplo constructions are based on combining penalties for thtésho
show a generalization of the hinge loss for an example wittviolation, where each threshold violation is penalizedgsi
labely = 4. some margin penalty functiofy-).

3.1 Immediate-Threshold

. . ) For the immediate-threshold construction, we considar, fo
So far, we discussed loss functions for binary laels 1. gach Jabeled example, y), only the two thresholds defining

However, the main topic of this paper is loss functions foryhe «correct” segmentd,_+, 6,), and penalize violations of
discrete ordinal labels. In this scenario, the lahetan take  hese thresholds:

on K distinct values which we denotg, 2,..., K}.

In the next section, we present different constructions for losg(z;y) = f(z — 0,-1) + f(0, — 2), (12)
generalizing margin-based loss function for binary labels ) . ,
the form los$z;y) = f(yz), to discrete ordinal labels. We Wherez = z(x) is the predictor output for the example. Fig-

do so by introducings — 1 thresholds, instead of the single Ure 2 gives an example visualization fpr= 4. Note that if f
threshold (zero) in the binary case. is an upper bound on the binary classification zero-one error

We also introduce a generalization of the logistic loss inthen the immediate-threshold loss is an upper bound on the
which the joint probabilistic modeP(y, =) is generalized to  Ordinal regression zero-one error. The immediate-thieisho
a mixture of X" unit-variance Gaussians (instead of a mixture!0SS is ignorant of whether multiple thresholds are crossed
of two unit-variance Gaussians as in the binary case).

y case) 32  All-Threshold

2.3 Beyond Feature-Based Regression In a multi-class classification setting, all mistakes areatq

Although the main setting we focus on is a feature-based linthere is no reason to prefer one incorrect label over another
ear regression setting, the loss functions we describerare aThis is not true in ordinal regression where there is a distin
plicable in more general settings where a real-valued predi Ordering to the labels. Itis better to predict ‘4’ than "1tife

tor needs to be related to a discrete ordinal label. In fagt, o truelabelis ‘5. Thisis evidentin the evaluation criterioNe
study originated in matrix-completion approaches to ¢mita  Use mean absolute error for ordinal regression, which sount
rative prediction (completing unobserved entries in aipyt ~ the sum of distances between the true and predicted labels.
are entries in a proposed matf&rebroet al., 2009. sarily) mean absolute error.

We focus on linear regression using explicit features, but \We introduce a construction that bounds mean absolute er-
we note that all methods discussed here can also be "kerndr- The all-threshold loss is a sum of all threshold viaiati
ized”, as in Support Vector Machines. Both the immediate-P€nalties. If the binary loss function bounds zero-onergrro
threshold and all-threshold constructions with a hinges los then the all-threshold loss bounds mean absolute error. De-
can also be seen as generalizations of SVMs and can be statgh (7; /) = {—1 !f I<y Then the all-threshold loss is
as quadratic programs to which optimization techniquess typ +1 ifl>y
cally employed in learning SVMs apply (in fact, Shashua and

2.2 Discrete Ordinal Regression

Levin [2003 introduce the immediate-threshold construction =1

in the context of SVMs). losg(z;y) = ) f(S(l; y)(6 — Z))- (13)
=1

3 Threshold-Based Constructions where f(-) is some margin penalty function. Figure 2 gives

To extend binary loss to the case of discrete ordinal regreﬁa—n example visualization fgr= 4. Note that the slope of the
sion, we introduces — 1 thresholdg); < 0y < --- < Ox_4 0ss increases each time a threshold is crossed. Thus, solu-

partitioning the real line td segments. The exterior seg- tions are encouraged that minimize the number of thresholds

ments are semi-infinite, and for convenience we defipte  thatare crossed.
—o0 andfx = 4+oo. Each of theK segment corresponds to .
one of theK labels and a predictor value 6f_; < z < 6, 3.3 Learning Thresholds

(i.e. in theyth segment) corresponds to a ratingyof This  Fitting an ordinal regression models involves fitting the pa
generalizes the binary case, where we used a single threstameters of the predictor, e.g:(z) = w'x, as well as the
old, namely zero, separating the real line into a semi-it#ini threshold9,...,0x_;. Learning the thresholds, rather than



fixing them to be equally spaced, allows us to capture the diff’(y|z) o z, () = wyz + wye. This conditional model cor-
ferent ways in which users use the available ratings, aed all responds to a joint distributiof(y, ) where X |Y follows
viates the need for per-user rating normalization. In @ggtt a unit-variance spherical Gaussian distribution with mean
in which multiple users are considered concurrently, eng. i ;9 € R?. This model differs from the ordistic model in that
collaborative prediction, a different set of thresholds b8  the means of thé& Gaussians are allowed to fall in arbitrary

learned for each user. positions inR?. On the other hand, in the ordistic model, we
modelZ, rather thenX, as a Gaussian mixture. An alternate
4 A Probabilistic Generalization view of the ordistic model would be to vieW as a Gaussian

o i ) mixture, but in this case, all means would be constrained to
Recall that the; logistic .I(.)ss for blngry .Iabels can be viewed,e co-linear, since the same weight veciors used for all
as the negative conditional log-likelihood 1988z) =  |apels. This constraint captures the core difference bervee
—log P(y|z) for a conditional modelP(y[z) o e’*  gtandard softmax model and the ordistic model: the ordistic
corresponding to a mixture-of-Gaussians joint distriti - mqdel constrains the different labels to correspond teediff
P(y, z), as described in Section 2.1. Here, we generalize thgnt extents along the same direction (hence collinear mieans

logistic by generalizing this probabilistic model to a misé  yather then arbitrary variations in different directions.
of K Gaussians, resulting in a similar simple form for the

conditional modelP(y|z). We refer to this model, and the 4.2 Derivatives

result[ng loss, as the “ordistic” model. . . As with the logistic model, the derivatives of the ordistic$
Unlike . the threshold-based construcuqns_, which ar ave a simple form. In order to simplify the derivatives, il w
parametrized by — 1 thresholds, the ordistic model is o \;sefyl to refer to expectation and probabilities withpees
parametrized by thé meansuy < piz < -+ < JK: g the joint probabilistic (Gaussian mixture) model féf, V)
and possibly also thé prior probabilitiesp;, ..., px > 0. giscussed above. The gradient with respect, ivom which

> p; = 1. Considering a joint probability model in which : : : ;
Bly) = py andZ|Y ~ N(jiy, 1), the conditional distribu- the gradient with respect to the weights can be calculased, i

tion P(y|z) is: Oloss (z1y) >t exp (piz + (w5 — p2 /2))
Pye*(zfuy)zﬂ 0z Y > exp (piz + (m; — 113 /2))
Plylz) = S pie— G- m)?/2 =iy + > wiPr(Y =ilZ = zp,7)

b (ty? + (7 — 13/7) (14) =~y + Epur [0y Z = 2] (15)

>oexp (piz + (m — p2/2)) o S ,
o - Similarly, the derivative with respect to the log-priars
pi = % these terms drop from the conditional distribution.

The ordistic loss, with paramete(sg;, ;) is obtained by con-  9dloss,(z;y) o o
sidering the negative log-likelihood: on; =Pr(Y =ilZ =z p,m) = 0y, (16)
ol ;
e(pyzt(my—n3/2)) M =Pr (Y =i|Z =z p,7) —dyi) (2 — )
loss,(y; z) = —log P(y|z) = —log P—y Opti
2ie ' whered, ; is one ify = ¢ and zero otherwise.
If all meansy, ..., ux are allowed to vary freely, regular-

izing the weight vectow is meaningless, since rescaling it § Experiments

gaf?xgg (;(égzdivdebﬁlxr?ﬁgag;t?;gi nljnee?nss' In o_rdfrltgljlrgpos?O determine the appropriateness of the different construc
~ 1 Unlike threshold-based models ﬂ;pb;;\s tapmis tions discussed earlier, we conducted experiments on a well
PE = ’ i GJgAr;own collaborative filtering data set. We implemented the

?ﬁ:‘g'\iﬁ;’l: f]ISr(;\%;?eo:oc;rg(r):e(t)értg?o?)g;eé?gigg?gézlfxﬁh o threshold-based constructions discussed in Sectide3.
! 1 P also implemented multi-class classification and sum-sagliar
fixedp; = 4 is therefore the same as the number of parame

. ; error regression constructions to compare against.
ters in the threshold constructlorﬁ(— 1 parameters for the We used the “1 Million” MovieLens data set for evaluation.
K — 2 means and the bias term, &r — 1 parameters for the

thresholds, in addition to the weight vector). Allowingqms The data set contains 1,000,209 rating entries, made by 6040
introducesi( _ 1 additional parameters : users on 3952 movies. Similar to the work of Crammer and
The ordistic degenerates to the Iogis.tic whén= 2 _Slnger{2002] and Shashua and Le\i200d, we ysed the rat-
: ings of the top 200 users as “features” to predict the ratirigs
. . the remaining users. To deal with “missing” ratings, we sub-
4.1 lefe.r ence from soft-max multi-class tracted the user’s mean rating and filled-in empty valuek wit
classification zero. We used the remaining 5840 users’ ratings as labels
A common generalization of logistic regression to mulisd  for ordinal regression. For each user, we used one randomly
classification is to learn a predictey(xz) = wjz + w;o for selected rating for testing, another for validation andrie
each class and fit a soft-max conditional model in whichmaining ratings for training. We limited our experiments to



Multi-class | Imm-Thresh| All-Thresh

Test MAE | Test MAE | Test MAE
Mod. Least Squares 0.7486 0.7491 0.6700 (1.74e-18)
Smooth Hinge 0.7433 0.7628 0.6702 (6.63e-17)
Logistic 0.7490 0.7248 0.6623 (7.29e-22)

Multi-class | Imm-Thresh| All-Thresh

Test ZOE Test ZOE | Test ZOE
Mod. Least Squares 0.5606 0.5807 0.5509 (7.68e-02)
Smooth Hinge 0.5594 0.5839 0.5512 (1.37e-01)
Logistic 0.5592 0.5699 0.5466 (2.97e-02)

Table 1: Mean absolute error (MAE) and zero-one error (Z@Eilts on MovieLens. For each construction/loss and eyper; t
we selected the regularization parameter with lowest atitich error. Numbers in parentheses arealues for all-threshold
versus the next best construction. As a baseline compassople sum-squared-error (L2) regression achieved teédE o
1.3368 and test ZOE of 0.7635.
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