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Abstract

We consider different types of loss functions for
discrete ordinal regression, i.e. fitting labels that
may take one of several discrete, but ordered, val-
ues. These types of labels arise when preferences
are specified by selecting, for each item, one of sev-
eral rating “levels”, e.g. one through five stars. We
present two general threshold-based constructions
which can be used to generalize loss functions for
binary labels, such as the logistic and hinge loss,
and another generalization of the logistic loss based
on a probabilistic model for discrete ordered labels.
Experiments on the 1 Million MovieLens data set
indicate that one of our construction is a signifi-
cant improvement over previous classification- and
regression-based approaches.

1 Introduction

In many systems, users specify preferences by selecting, for
each item, one of several rating “levels”, e.g. one though five
“stars”. When learning to predict further preferences, these
rating levels serve as target labels (responses). This typeof
discrete ordered labels differs from more standard types of
target labels encountered in other machine learning problems:
binary labels (as in classification tasks), discrete, unordered
labels (as in multi-class classification tasks) and continuous
real-valued labels (as in typical regression tasks). Rating lev-
els are discrete with a finite number of possibilities, like class
labels in multiclass classification. However, unlike a standard
multiclass classification setting, the labels are ordered—a rat-
ing of “three stars” is between a rating of “two stars” and a
rating of “four stars”.

Two obvious approaches for handling discrete ordinal la-
bels are (1) treating the different rating levels as unrelated
classes and learning to predict them as in a multiclass classifi-
cation setting, and (2) treating them as a real-valued responses
and using a standard regression setting with a loss function
such as sum-squared error. However, neither of these reflects
the specific structure of discrete ordinal labels.

1.1 Ordinal regression

In this paper we view fitting rating levels as a regression prob-
lem with discrete ordered labels. We view this as a general-

ization of binary regression (as in, e.g., logistic regression),
which can be seen as a degenerate case in which only two
levels, “positive” and “negative”, are available. As with bi-
nary regression, we learn a real-valuedpredictor z(x) (e.g.
in linear binary regression, we would learn a linear function
of the features), minimizing someloss loss(z(x); y) on the
target labels. Common choices for the loss function are the
logistic loss (as in logistic regression), and the hinge loss (dis-
tance from the classification margin) used in Support Vector
Machines. Here, we consider various generalizations to these
loss functions suitable for multiple-level discrete ordinal la-
bels.

Threshold-based approaches

Crammer and Singer[2002] suggest a generalization of the
Perceptron algorithm for discrete ordinal labels: insteadof
the single threshold of the perceptron, they useK − 1 thresh-
olds to separate the real line to regions corresponding toK
possible rating levels. Shashua and Levin[2003] suggest a
similar generalization to Support Vector Machine (SVM): the
single margin constraints (for each observation) of standard
SVMs are replaced with a pair of margin constraints on the
thresholds bounding the “correct” region (the region corre-
sponding to the target label).

When slack is allowed, Shashua and Levin’s approach can
be seen as regularized regression with a specific generaliza-
tion to the hinge loss, which we describe in Section 3.1 as
the immediate-threshold generalization of the hinge loss. In
Section 3.2 we discuss a different generalization, theall-
threshold generalization, where constraints (and slack) are
considered for allK − 1 thresholds and not only those im-
mediately bounding the correct region. We argue that such a
generalization better penalizes predictions which violate mul-
tiple thresholds and present experimental evidence suggesting
it might be more appropriate. We also discuss how other loss
functions, such as the logistic loss or smooth variants of the
hinge loss, can also be generalized in the same way.

Probabilistic approaches

Other than these threshold-based generalizations, we also
suggest a different generalization to logistic regression, which
we term “ordistic regression” (Section 4), that, like logistic
regression, can be viewed as fitting a conditional probabil-
ity modelP (y|x). We note that Chu and Ghahramani[2004]
recently suggested a different generalization to the logistic



conditional model for discrete ordinal labels.
Probabilistic models for discrete ordinal response have also

been studied in the statistics literature[McCullagh, 1980;
Fu and Simpson, 2002]. However, the models suggested are
much more complex, and even just evaluating the likelihood
of a predictor is not straight-forward. On the other hand, in
the ordistic model both the log-likelihood and its derivatives
can be easily computed, using calculations similar to those
used in standard (binary) logistic regression.

1.2 Other approaches

We briefly mention another approach suggested for handling
discrete ordinal ratings. Herbrichet al. [2000] suggest ex-
tracting from the rating levels binary comparison relation-
ships on the rated items and thus mapping the problem to a
partial ordering problem. Herbrichet al. then study a gen-
eralized SVM for learning from binary comparison relation-
ships. A drawback of this approach is the number of order
constraints onT items with observed labels can be of order
T 2, even though the original input to the problem (the ob-
served labels) is only linear inT .

1.3 Specific contribution

The main contribution of this paper is studying, in a system-
atic way, different loss functions for discrete ordinal regres-
sion. Since our main interest is in how to handle discrete
ordinal labels, we focus on regularized linear prediction in
a simple learning setting, which we clarify in Section 2. In
Section 2.1 we review various loss functions for binary la-
bels and discuss their properties. In Section 3 we present
the immediate-threshold and all-threshold constructionsmen-
tioned above, using the loss functions from the previous sec-
tions as building blocks. In Section 4 we present the ordistic
model which generalizes the logistic. In Section 5 we com-
pare the various methods through experiments using the dif-
ferent loss functions, and compare them also to standard mul-
ticlass and sum-squared-error regression approaches.

We have already used the immediate-threshold and all-
threshold generalizations of the hinge-loss in our work on
collaborative prediction using Maximum Margin Matrix Fac-
torizations[Srebroet al., 2005]. Here, we present these con-
structions in detail and more generally, as well as the ordistic
model.

2 Preliminaries

Since our main object of interest is how to handle discrete or-
dinal labels, we focus on a simple learning setting in which
we can demonstrate and experiment with various loss func-
tions. We are given a training set(xt, yt)t=1...T of T rated
items, where for each item,xt ∈ R

d is a feature vector de-
scribing the item andyt is the rating level for the item. We
want to predict preferences of future items. We do so by
learning aprediction mapping z(x) : R

d → R such that
for an item with feature vectorx, z(x) corresponds as well
as possible to the appeal of the item (i.e. is high if the item
is highly rated and low otherwise). We investigate different
loss functions loss(z; y) for measuring the goodness of the
correspondence betweenz(xt) and the target rating levelyt.

In this paper, we focus onL2-regularized linear prediction,
wherez(x) = w′x+w0 is a linear (or more accurately, affine)
function ofx ∈ R

d, parametrized by a weight vectorw ∈ R
d

and a bias termw0 ∈ R. We seek a linear predictor that
minimizes a trade-off between the overall training loss and
the (Euclidean) norm of the weights:

J(w) =
∑

t

loss(w′xt + w0; y
t) +

λ

2
|w|2 (1)

whereλ is a trade-off parameter set using cross-validation.

2.1 Binary Regression

We first review common loss functions used with binary la-
bels (i.e. in a binary classification setting), wherey ∈ ±1.
These serve as a basis for our more general loss functions
for discrete ordinal labels. We go into some detail regarding
aspects of these loss functions which will be relevant in our
constructions in the following sections.

Zero-one error

Our objective in binary regression is to be able to correctly
predict a binary label. The obvious way of predicting a bi-
nary label from a real-valued predictorz(x) = w′x + w0 is
thresholding the predictor, and predicting sign(z(x)). The
simplest conceivable loss function is a loss function counting
the number of prediction errors:

loss(z; y) =

{

0 if yz > 0

1 if yz ≤ 0
(2)

However, this simple loss function is problematic for several
reasons:

• It is not convex, and minimizing it is a difficult (in fact,
NP-hard) optimization problem.

• It is not continuous, let alone differentiable, and so even
local optimization is difficult.

• It is insensitive to the magnitude ofz, and so also to the
magnitude ofw. Regularizingw is therefore meaning-
less, as shrinkingw andw0 towards zero would yield
the same error, but with a regularization term approach-
ing zero.

Margin

The third problem can be addressed by requiring not only that
z predicty correctly, but that it does so with a margin:

loss(z; y) =

{

0 if yz ≥ 1

1 if yz < 1
(3)

This modified loss function is sensitive to the magnitude ofz,
and therefore also to the magnitude ofw. Summing this loss
function corresponds to counting the number of violations of
the constraintsy(w′x+w0) ≥ 1. Rewriting these constraints
asy( w′

|w|x+ w0

|w|) ≥
1
|w| , we can interpret1|w| as a geometrical

margin around the separating hyperplane, specified by its nor-
mal w′

|w| . Minimizing the loss (3) as well as theL2 regularizer
|w| can therefore be interpreted as maximizing the separation
marginM = 1

|w| while minimizing the number of training
points not classified correctly with a margin of at leastM .
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Figure 1: Different margin penalty functionsf(yz) (left to right): (1) sign agreement, (2) margin agreement, (3) hinge, (4)
smooth hinge, (5) modified least squares, (6) logistic.

Hinge loss

Minimizing the margin loss (3) might be a good ideal, but
this loss function is still non-convex and non-continuous.The
common approach to large-margin classification is therefore
to minimize thehinge loss:

lossh(z; y) = h(yz) (4)

whereh(z) is thehinge function:

h(z) = max(0, 1 − z) =

{

0 if z ≥ 1

1 − z if z < 1
(5)

This is the loss function typically minimized in soft-margin
Support Vector Machine (SVM) classification. In the context
of SVMs, the hinge loss is usually written as a sum over mar-
gin violationsξt included in the constraintsy(w′x + w0) ≥
1 − ξt.

An important property of the hinge-loss is that it is an upper
bound on the zero-one misclassification error (2), and thus
large-margin generalization error bounds bounding its value
on examples not in the training set also bounds the value of
the zero-one misclassification error, which is perhaps the true
object of interest.

Smoothed hinge loss

Other loss functions share properties of the hinge, but are eas-
ier to minimize since they have a smooth derivative. We in-
troduce “smooth” hinge loss as an approximation to the hinge
that is easier to minimize:

h(z) =







0 if z ≥ 1

(1 − z)2/2 if 0 < z < 1

0.5 − z if z ≤ 0

(6)

Modified least squares

Zhang and Oles[2001] suggest a different loss function with
a smooth derivative, in which the hinge function is replaced
with a truncated quadratic:

h(z) =

{

0 if z ≥ 1

(1 − z)2 if z < 1
(7)

The modified least squares loss based on (7) is much more
sensitive to outliers and large errors then the hinge loss using
(5) or smoothed hinge loss using (6).

The margin error (3), which we might want to view as a
non-convex “ideal”, does not pay any attention to the magni-
tude of the error, and penalizes all errors equally. This allows
for a few outliers fairly cheaply, but leads to a non-convex
objective. The hinge loss, as well as the smoothed hinge, in-
troduce a linear dependence on the magnitude of the error,

but such a linear (at least) dependence is unavoidable in a
convex loss function. The modified least squares goes be-
yond this necessary dependence on the magnitude of the er-
ror, and introduces an unnecessary (from the point of view of
convexity) quadratic dependence, further deviating from the
zero/one margin error.

Logistic regression

Another common loss function, which can also be written as
a function of the classification marginyz, is the logistic loss:

lossg(z; y) = g(yz) (8)

g(z) = log(1 + e−z) (9)

The logistic loss can be viewed as a negative conditional
log-likelihood lossg(z; y) = − log P (z|y) for a logistic con-
ditional modelP (y|z) ∝ eyz (i.e. Y is a Bernoulli random
variable, with natural parameterz). The predictorz(x) =
w′x + w0 minimizing the summed logistic loss is thus the
maximum conditional likelihood estimator among the para-
metric class of conditional modelsP (y|x) ∝ ey(w′x+w0). In-
troducing anL2 regularizer as in (1) corresponds to maxi-
mum a-posteriori (MAP) estimation with a Gaussian prior on
the weight vectorw.

As discussed above, logistic regression corresponds to
maximumconditional likelihood estimation for aconditional
parametric modelP (y|x). It is worth noting that this para-
metric family of conditional modelsP (y|x) ∝ ey(w′x+w0)

is exactly the family of conditional distributionsP (y|x) for
joint distributionsP (y, x) whereX |Y follows a multivariate
spherical Gaussian distribution with variance which does not
depend onY , and a mean which does depend onY , i.e.:

P (x|y) ∝ e
1

2σ2
|x−µy|

2

(10)

whereµ−1, µ1 ∈ R
d andσ ∈ R, as well as the prior proba-

bility P (Y = 1) are the parameters of the joint distribution
model.

For our purposes below, it would also be useful to view the
conditional modelP (y|z) ∝ eyz similarly, as the conditional
distribution arising from a joint distributionP (y, z) in which
P (y = 1) = 1

2 andZ|Y ∼ N(1, Y ), i.e.:

P (z|y) ∝ e
1

2
|z−y|2 . (11)

Loss as a function of classification penalties We note that
all loss functions discussed here can be viewed as penalties
loss(y; z) = f(yz) imposed on theclassification margins yz,
and differ only in themargin penalty function f(·) used. The
various margin penalty functions discussed are shown in Fig-
ure 1.
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Figure 2: Threshold-based loss constructions: (left)
immediate-threshold, and (right) all-threshold. Both plots
show a generalization of the hinge loss for an example with
labely = 4.

2.2 Discrete Ordinal Regression

So far, we discussed loss functions for binary labelsy = ±1.
However, the main topic of this paper is loss functions for
discrete ordinal labels. In this scenario, the labelsy can take
onK distinct values which we denote{1, 2, . . . , K}.

In the next section, we present different constructions for
generalizing margin-based loss function for binary labels, of
the form loss(z; y) = f(yz), to discrete ordinal labels. We
do so by introducingK − 1 thresholds, instead of the single
threshold (zero) in the binary case.

We also introduce a generalization of the logistic loss in
which the joint probabilistic modelP (y, z) is generalized to
a mixture ofK unit-variance Gaussians (instead of a mixture
of two unit-variance Gaussians as in the binary case).

2.3 Beyond Feature-Based Regression

Although the main setting we focus on is a feature-based lin-
ear regression setting, the loss functions we describe are ap-
plicable in more general settings where a real-valued predic-
tor needs to be related to a discrete ordinal label. In fact, our
study originated in matrix-completion approaches to collabo-
rative prediction (completing unobserved entries in a partially
observed matrix of user preferences), where the “predictors”
are entries in a proposed matrix[Srebroet al., 2005].

We focus on linear regression using explicit features, but
we note that all methods discussed here can also be ”kernel-
ized”, as in Support Vector Machines. Both the immediate-
threshold and all-threshold constructions with a hinge loss
can also be seen as generalizations of SVMs and can be stated
as quadratic programs to which optimization techniques typi-
cally employed in learning SVMs apply (in fact, Shashua and
Levin [2003] introduce the immediate-threshold construction
in the context of SVMs).

3 Threshold-Based Constructions

To extend binary loss to the case of discrete ordinal regres-
sion, we introduceK − 1 thresholdsθ1 < θ2 < · · · < θK−1

partitioning the real line toK segments. The exterior seg-
ments are semi-infinite, and for convenience we denoteθ0 =
−∞ andθK = +∞. Each of theK segment corresponds to
one of theK labels and a predictor value ofθy−1 < z < θy

(i.e. in theyth segment) corresponds to a rating ofy. This
generalizes the binary case, where we used a single thresh-
old, namely zero, separating the real line into a semi-infinite

segment, namelyz < 0, corresponding to negative labels
y = −1, and a semi-infinite segment,z > 0 corresponding to
positive labels. In fact, the bias term in the binary settingcan
be viewed as specifying a threshold. TheK − 1 thresholds
replace this single bias term / threshold.

We describe two different constructions for loss functions
based on such thresholds. The constructions differ in how
predictors outside the segment segment corresponding to the
“correct” label (or too close to its edges) are penalized. Both
constructions are based on combining penalties for threshold
violation, where each threshold violation is penalized using
some margin penalty functionf(·).

3.1 Immediate-Threshold

For the immediate-threshold construction, we consider, for
each labeled example(x, y), only the two thresholds defining
the “correct” segment(θy−1, θy), and penalize violations of
these thresholds:

loss(z; y) = f(z − θy−1) + f(θy − z), (12)

wherez = z(x) is the predictor output for the example. Fig-
ure 2 gives an example visualization fory = 4. Note that iff
is an upper bound on the binary classification zero-one error,
then the immediate-threshold loss is an upper bound on the
ordinal regression zero-one error. The immediate-threshold
loss is ignorant of whether multiple thresholds are crossed.

3.2 All-Threshold

In a multi-class classification setting, all mistakes are equal;
there is no reason to prefer one incorrect label over another.
This is not true in ordinal regression where there is a distinct
ordering to the labels. It is better to predict ‘4’ than ‘1’ ifthe
true label is ‘5’. This is evident in the evaluation criterion. We
use mean absolute error for ordinal regression, which counts
the sum of distances between the true and predicted labels.
Immediate-threshold bounds zero-one error, but not (neces-
sarily) mean absolute error.

We introduce a construction that bounds mean absolute er-
ror. The all-threshold loss is a sum of all threshold violation
penalties. If the binary loss function bounds zero-one error,
then the all-threshold loss bounds mean absolute error. De-

fines(l; y) =

{

−1 if l < y

+1 if l ≥ y
. Then the all-threshold loss is

loss(z; y) =

T−1
∑

l=1

f
(

s(l; y)(θl − z)
)

. (13)

wheref(·) is some margin penalty function. Figure 2 gives
an example visualization fory = 4. Note that the slope of the
loss increases each time a threshold is crossed. Thus, solu-
tions are encouraged that minimize the number of thresholds
that are crossed.

3.3 Learning Thresholds

Fitting an ordinal regression models involves fitting the pa-
rameters of the predictor, e.g.z(x) = w′x, as well as the
thresholdsθ1, . . . , θK−1. Learning the thresholds, rather than



fixing them to be equally spaced, allows us to capture the dif-
ferent ways in which users use the available ratings, and alle-
viates the need for per-user rating normalization. In a setting
in which multiple users are considered concurrently, e.g. in
collaborative prediction, a different set of thresholds can be
learned for each user.

4 A Probabilistic Generalization

Recall that the logistic loss for binary labels can be viewed
as the negative conditional log-likelihood lossl(y; z) =
− logP (y|z) for a conditional modelP (y|z) ∝ eyz

corresponding to a mixture-of-Gaussians joint distribution
P (y, z), as described in Section 2.1. Here, we generalize the
logistic by generalizing this probabilistic model to a mixture
of K Gaussians, resulting in a similar simple form for the
conditional modelP (y|z). We refer to this model, and the
resulting loss, as the “ordistic” model.

Unlike the threshold-based constructions which are
parametrized byK − 1 thresholds, the ordistic model is
parametrized by theK meansµ1 < µ2 < · · · < µK ,
and possibly also theK prior probabilitiesp1, . . . , pK > 0,
∑

pi = 1. Considering a joint probability model in which
P (y) = py andZ|Y ∼ N(µY , 1), the conditional distribu-
tion P (y|z) is:

P (y|z) =
pye−(z−µy)2/2

∑

i pie−(z−µi)2/2

=
exp

(

µyz + (πy − µ2
y/2)

)

∑

i exp (µiz + (πi − µ2
i /2))

(14)

where πi = log pi. If we simplify the model by fixing
pi = 1

K , these terms drop from the conditional distribution.
The ordistic loss, with parameters(µi, πi) is obtained by con-
sidering the negative log-likelihood:

losso(y; z) = − log P (y|z) = − log
e(µyz+(πy−µ2

y/2))

∑

i e(µiz+(πi−µ2

i
/2))

If all meansµ1, . . . , µK are allowed to vary freely, regular-
izing the weight vectorw is meaningless, since rescaling it
can be corrected by rescaling the means. In order to impose
a fixed scale, we fix the extreme means toµ1 = −1 and
µK = 1. Unlike threshold-based models, a bias termw0 is
meaningful since the location of the extreme means is fixed.
The overall number of parameters for an ordistic model with
fixedpi = 1

K is therefore the same as the number of parame-
ters in the threshold constructions (K − 1 parameters for the
K − 2 means and the bias term, orK − 1 parameters for the
thresholds, in addition to the weight vector). Allowing priors
introducesK − 1 additional parameters.

The ordistic degenerates to the logistic whenK = 2.

4.1 Difference from soft-max multi-class
classification

A common generalization of logistic regression to multi-class
classification is to learn a predictorzi(x) = w′

ix + wi0 for
each class and fit a soft-max conditional model in which

P (y|x) ∝ zy(x) = w′
yx + wy0. This conditional model cor-

responds to a joint distributionP (y, x) whereX |Y follows
a unit-variance spherical Gaussian distribution with mean
µo

Y ∈ R
d. This model differs from the ordistic model in that

the means of theK Gaussians are allowed to fall in arbitrary
positions inR

d. On the other hand, in the ordistic model, we
modelZ, rather thenX , as a Gaussian mixture. An alternate
view of the ordistic model would be to viewX as a Gaussian
mixture, but in this case, all means would be constrained to
be co-linear, since the same weight vectorw is used for all
labels. This constraint captures the core difference between a
standard softmax model and the ordistic model: the ordistic
model constrains the different labels to correspond to differ-
ent extents along the same direction (hence collinear means),
rather then arbitrary variations in different directions.

4.2 Derivatives

As with the logistic model, the derivatives of the ordistic loss
have a simple form. In order to simplify the derivatives, it will
be useful to refer to expectation and probabilities with respect
to the joint probabilistic (Gaussian mixture) model for(Z, Y )
discussed above. The gradient with respect toz, from which
the gradient with respect to the weights can be calculated, is:

∂losso(z; y)

∂z
= −µy +

∑

i µi exp
(

µiz + (πi − µ2
i /2)

)

∑

i exp (µiz + (πi − µ2
i /2))

= −µy +
∑

i

µiPr (Y = i|Z = z; µ, π)

= −µy + Eµ,π [µY |Z = z] (15)

Similarly, the derivative with respect to the log-priorsπi

and the meansµi can be calculated as:

∂losso(z; y)

∂πi
= Pr (Y = i|Z = z; µ, π) − δy,i (16)

∂losso(z; y)

∂µi
= (Pr (Y = i|Z = z; µ, π) − δy,i)(z − µi)

whereδy,i is one ify = i and zero otherwise.

5 Experiments

To determine the appropriateness of the different construc-
tions discussed earlier, we conducted experiments on a well-
known collaborative filtering data set. We implemented the
two threshold-based constructions discussed in Section 3.We
also implemented multi-class classification and sum-squared
error regression constructions to compare against.

We used the “1 Million” MovieLens data set for evaluation.
The data set contains 1,000,209 rating entries, made by 6040
users on 3952 movies. Similar to the work of Crammer and
Singer[2002] and Shashua and Levin[2003], we used the rat-
ings of the top 200 users as “features” to predict the ratingsof
the remaining users. To deal with “missing” ratings, we sub-
tracted the user’s mean rating and filled-in empty values with
zero. We used the remaining 5840 users’ ratings as labels
for ordinal regression. For each user, we used one randomly
selected rating for testing, another for validation and there-
maining ratings for training. We limited our experiments to



Multi-class Imm-Thresh All-Thresh
Test MAE Test MAE Test MAE

Mod. Least Squares 0.7486 0.7491 0.6700 (1.74e-18)
Smooth Hinge 0.7433 0.7628 0.6702 (6.63e-17)

Logistic 0.7490 0.7248 0.6623 (7.29e-22)
Multi-class Imm-Thresh All-Thresh
Test ZOE Test ZOE Test ZOE

Mod. Least Squares 0.5606 0.5807 0.5509 (7.68e-02)
Smooth Hinge 0.5594 0.5839 0.5512 (1.37e-01)

Logistic 0.5592 0.5699 0.5466 (2.97e-02)

Table 1: Mean absolute error (MAE) and zero-one error (ZOE) results on MovieLens. For each construction/loss and error type,
we selected the regularization parameter with lowest validation error. Numbers in parentheses arep-values for all-threshold
versus the next best construction. As a baseline comparison, simple sum-squared-error (L2) regression achieved test MAE of
1.3368 and test ZOE of 0.7635.

the top 2000 movies to ensure a minimum of 10 ratings per
movie. This gave us test and validation sets of size 5,840 and
a training set of 769,659 ratings.

For each method (combination of construction method and
margin penalty), and range of values of the regularization pa-
rameterλ, we fit weight and threshold vectors for each user
by minimizing the convex objective (1) using conjugate gra-
dient descent. We calculated mean absolute error (MAE) and
zero-one error (ZOE) between predicted and actual ratings on
the validation set and used the regularization parameter with
the lowest validation set MAE/ZOE for test set evaluation.

Table 1 shows test MAE and ZOE for various construc-
tions and margin penalty functions. Across all penalty func-
tions, all-threshold yields the lowest MAE. The differences
are highly significant according to a nonparametric, two-
tailed binomial test—the largestp-value is 6.63e-17. Inter-
estingly, all-threshold also yields lower ZOE, although the
comparison with multi-class classification is not conclusive
(p-values around 0.03–0.1). The difference in ZOE compared
to immediate-threshold is highly significant, withp-values at
most 7.84e-06 (not shown).

Results indicate that the choice of construction is more im-
portant than penalty function—all-threshold with the worst-
performing penalty function yields lower MAE and ZOE than
the best non-all-threshold combination. However, it appears
that the logistic loss tends to work best; in particular, the
differences in MAE between logistic and other penalty func-
tions (for the all-threshold construction) are significantat the
p = 0.01 level (largestp-value is 9.52e-03) according to the
two-tailed binomial test.

6 Conclusion

We presented a study of discrete ordinal regression in a gen-
eral, loss function based framework. We began with bi-
nary classification and described two threshold-based con-
structions as generalizations of binary loss functions. We
also discussed an alternate generalization of logistic regres-
sion. We conducted experiments on MovieLens using the two
threshold-based constructions and found that the all-threshold
construction outperformed multi-class classification andsim-
ple regression methods, as well as the immediate-threshold
construction.
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