Genetic Encoding Strategies for Neural Networks

Philipp Kéhn
University of Tennessee — Universitat Erlangen-Nurnberg
Dreibergstr. 5, 91056 Erlangen, Germany
kohn@cs.utk.edu

Abstract

The application of genetic algorithms to neu-
ral network optimization (GANN) has pro-
duced an active field of research. This pa-
per proposes a classification of the encoding
strategies and it also gives a critical analysis
of the current state of development.

The idea of evolving artificial neural networks (NN)
by genetic algorithms (GA) is based on a powerful
metaphor: the evolution of the human brain. This
mechanism has developed the highest form of intelli-
gence known from scratch. The metaphor has inspired
a great deal of research activities that can be traced
to the late 1980s (for instance [15]). An increasing
amount of research reports, journal papers and theses
have been published on the topic, generating a conti-
nously growing field.

Researchers have devoloped a variety of different tech-
niques to encode neural networks for the GA, with in-
creasing complexity. This young field is driven mostly
by small, independet research groups that scarcely co-
operate with each other. This paper will attempt to
analyse and to structure the already performed work,
and to point out the shortcomings of the approaches.

1 The Problem of GANN

Neural networks proved to be a powerful problem solv-
ing mechanism with the ability to learn. The success
and speed of training, however, is based on the ini-
tial parameter settings, such as architecture, initial
weights, learning rates, and others. In GANN sys-
tems, the genetic algorithm is used to find the optimal
parameter settings for a given task.

We can distinguish two seperate issues for the genetic
algorithm: on the one hand architecture optimization,
and on the other hand weight training. A few GANN

systems focus solely on weight training [27], wheras
others focus on architecture [23]. There are also many
ways to combine the two issues: The GA may set ini-
tial weight information while weight training is left
to established learning rules for NN, such as back—
propagation [26]. Or, the evolution of the NN can
take place in two stages: One that finds the optimal
architecture, the other that finds a weight setting for
each architecture [10].

2 Weight encoding

A few different complexities of weight encoding have
been investigated in this field. The simplest case is
one-bit connectivity information [27]. Or, two bits
are used for encoding if a connection is disconnected,
inhibitory or excitatory [19]. Weights have been en-
coded as real numbers [21, 22], bit strings [20, 27], or
bit strings using grey coding [13]. Maniezzo proposes
that the number of encoding bits should increase dur-
ing the evolution [17], allowing fine tuning at a later
stage.

A study suggests that a high number of encoding bits
per weight improves GA weight training, whereas grey
coding has no impact [13].

3 Architecture encoding

The task to encode the architecture of a network is
far more complex than weight encoding. The classical
view that the genome is a bit string of fixed length does
not easily fit to the complex interconnected structure
of a NN. Thus, most recent researchers are using more
complex data types.

The different encoding strategies can be classified by
their smallest defining unit, or the “allele” [26]: con-
nections, nodes, layers or pathways, or they can be
indirectly encoded which i1s a a completely different
approach. The classes are roughly ordered to the com-
plexity of the strategies.

Connection—based encoding — The vast majority
of early approaches is connection—based [13, 17,
19, 21, 27]. Here, the genome is a string of weight
values or pure connectivity information. This re-
quires a fixed maximal architecture, which 1is typ-
ically either fully—connected or layered.

Node—based encoding — An advantage
connection—based encoding is that more flexibil-
ity can be obtained by using nodes as basic units.
In this approach, the genome is a string or tree
[14] of node information. The code for each node
may include relative position, backward connec-
tivity [24], weight values, threshold function [26]
and more. Crossover and mutation is mostly re-
stricted to cuts between node information.

over

Layer—based encoding — With layer—based encod-
ing one can obtain larger networks [8, 9, 16]. The
encoding scheme is a very complicated system of
descriptions of connectivity between a list of lay-
ers. Therefore, special GA operators are required.

Pathway—based encoding — Pathway—-based en-
coding is proposed in [10] for recurrent NN. In
this instance, the network is viewed as a set of
paths from an input to an output node. Again,
special GA operators are used.

Indirect encoding — This com-
pletely seperate strategy can be traced back to
1990 [12], with more recent approaches [1, 4] re-
ceiving great acclaim in the community. The basic
idea is to encode a grammar—based construction
program in the genome, instead of directly encod-
ing properties of the NN. Boers and Kuiper used a
grammar based on Lindenmayer systems, Gruau

applied cellular encoding.

Basically all encoding techniques developed so far, can
be classified into one of these classes.

If the genomes are too large, the efficiency of the GA
decreases [26], and this problem has to be addressed
when larger networks are involved. More complex en-
coding strategies are motivated by this lack of scala-
bility, because not every connection or node has to be
individually represented in the genome.

With increasing complexity and inhomogenity of the
genoms, the classical GA operators mutation and
crossover are replaced by parameter—oriented opera-
tors such as “randomly add neuron” [23], or “drop

path” [10].

4 Tasks for GANN systems

Thanks to mutation operators, every optimal NN will
be ultimately found by any GANN system. The qual-
ity of an encoding strategy, however, has to be mea-
sured by the speed of convergence to sufficiently good
solutions.

Most papers report good results on small-scale toy
problems such as xor, sine, parity, or low—bit adding.
The convergence time competes well with back—
propagation [28, 13].

The largest problems that have been tackled success-
fully range from high—bit parity [4], pole-balancing
[28, 10], and simplified pattern recognition [1] to high—
order classification tasks [26]. Tf convergence times are
reported at all, they are usually quite high: 3 days
on 11 workstations [1] or one week [26, in conversa-
tion], [10, in conversation] for the mentioned tasks.
These are tasks that can be solved faster by simple
back—propagation on arbitrary NN chosen by rules of
thumb. So, some doubts have to be raised regarding
the efficiency of recent GANN systems.

5 Fundamental Problems

In order to improve the performance of GANN sys-
tems, some of the fundamental problems of the ap-
proach must be resolved.

Lack of theoretical insight — In general, the field
lacks theoretical insight. It is rare that general
criteria for encoding strategies are proposed, such
as by Gruau [4]: completeness (every NN can be
encoded) and closure (only meaningful NN are en-
coded) among others. These are fulfilled by al-
most all strategies.

Also, there have been only a few properties of
GANN systems to be identified and discussed.
The argument over the Baldwin effect [5] or the
permutation problem (see below) has just started.

Permutation problem — Almost always, the same
(or similar) networks may be encoded in quite dif-
ferent ways. The crossover of two different encod-
ings of similar networks can result in a completely
divergent NN. This broadly acknowledged prob-
lem is also known as structural-functional map-
ping problem [27] or competing conventions prob-
lem [6]. There have been a few proposals to solve
it [25, 11, 6]. However, these studies also indicate
that the problem has less impact than expected.

GA parameters — There are numerous parameters
for the genetic algorithms, the neural networks

and the GANN systems that have to be set: pop-
ulation size, mutation and crossover rates, the
use of distributed GA,| fitness evaluation, learning
rate, momentum term, number of epochs, activa-
tion functions, encoding details, et cetera.

Although many researchers describe the benefit of
the application of GA to NN as the avoidance of
rules of thumb in NN design, rules of thumbs and
time—intensive experimental optimizations have
to be used for these parameters [13]. Still, it is
not at all clear, if these parameters are robust or if
they depend on the specific problems. In a few of
the GANN systems, some of these parameters are
encoded in the genome, for instance: the learning
rate in [16] or number of encoding bits per weight
in [18]. This encoding solves part of the problem
at the cost of an increase of the search space and
thus the convergence time.

Comparison of encoding techniques — The inex-
istence of a theoretical account makes the com-
parison of different GANN systems difficult. The
empirical results, however, do not clearly indicate
that more complex systems show a better perfor-
mance.

The fundamental problem of the poor performance of
GANN systems on real-world scale tasks has been rec-
ognized [28]. One magic word for the solution is mod-
ularity [7], but unfortunately encoding strategies with
high modularity like indirect encoding, have not been
a breakthrough.

Another idea is to partially develop NNs for subtasks
and compose them to a more complex structure. This
was investigated for different parts of the nervous sys-
tem of an artificial being [2, 3].

At this stage, however, the efficient application of
GANN systems seems to be restricted to (a) weight
training problems where no error information is avail-
able, such as for the pole-balancing problem, or the
recurrent networks, and (b) architecture optimization
for classes of problems that can use equal NN archi-
tectures.

Acknowledgements
This paper is based on parts of my Masters thesis at

the University of Tennessee, Knoxville. T thank my
advisor Bruce MacLennan for his support. P

References

[1] Egber Boers and Herman Kuiper. Biological
metaphors and the design of modular artificial

[12]

neural networks. Master’s thesis, Leiden Univer-
sity, the Netherlands, 1992.

Hugo de Garis. Genetic programming. In In-
ternational Joint Conference on Neural Networks,

pages IIT 511-516. IEEE, 1990.

Hugo de Garis. Circuits of production rule: Gen-
nets — the genetic programming of artificial ner-
vous systems. In International Joint Confer-
ence on Neural Networks and Genetic Algorithms,

pages 699-705, Innsbruck, 1993.

Frederic Gruau. Neural Network Synthesis
using Cellular Encoding and the Genetic Al-
gorithm. PhD thesis, Ecole Normale Su-
perieure de Lyon, 1994. ftp://lip.ens-lyon.fr
/pub/Rapports/PhD/PhD94-01-E.ps.Z.

Frederic Gruau and Darell Whitley. Adding learn-
ing to the celular development of neural networks:
evolution and the Baldwin effect. FEvolutionary

Computation, 3(1):213-233, 1993.

Peter J.B. Hancock. Genetic algorithms and per-
mutation problem: a comparison of recombina-
tion operators for neural net structure specifica-
tion. In International Workshop on Combina-
tions of Genetic Algorithms and Neural Networks,
pages 108-122, Baltimore, 1992. IEEE.

Bart .M. Happel and Jacob M.J. Murre. Design
and evolution of modular neural network architec-

tures. Neural Networks, 7(6/7):985-1004, 1994.

Steven Alex Harp and Tariq Smad. Towards the
genetic synthesis of neural networks. In Third
International Conference on Genetic Algorithms,
pages 360-369. Morgan Kaufmann, 1989.

Steven Alex Harp and Tariq Smad. Genetic syn-
thesis of neural network architecture. In Handbook
of Genetic Algorithms, pages 202-221, 1991.

Christian Jacob and Jan Rehder.
neural network architectures by a hierarchical
grammar—based genetic system. In International
Joint Conference on Neural Networks and Ge-
netic Algorithms, pages 72-79, Innsbruck, 1993.

Evolution of

Nachimuthu Karunanithi, Rajarshi Das, and
Darell Whitley. Genetic cascade learning for neu-
ral networks. In International Workshop on Com-
binations of Genetic Algorithms and Neural Net-
works, pages 134-145, Baltimore, 1992. IEEE.

Hiroaki Kitano. Designing neural networks us-
ing genetic algorithms with graph generation sys-
tems. Complex Systems, 4:461-476, 1990.

[13]

[14]

[16]

[19]

Philipp Koehn. Combining genetic algorithms
and neural networks: The encoding prob-
lem. Master’s thesis, University of Tennessee,
Knoxville, 1994. ftp://archive.cis.ohio-state.edu
/pub/neuroprose/koehn.encoding.ps.Z.

John R. Koza and James P. Rice. Genetic genera-
tion of both the weight and architecture for a neu-
ral network. In International Joint Conference on
Neural Networks, pages 11 397-404. IEEE, 1991.

Steve Lehar and John Weaver. A developmental
approach to neural network design. In Interna-
tional Conference on Neural Networks, pages 11

97-104. IEEE, 1994.

Martin Mandischer. Representation and evolu-
tion of neural networks. In International Joint
Conference on Neural Networks and Genetic Al-
gorithms, pages 643-649. Innsbruck, 1993.

Vittorio Maniezzo. Searching among search
spaces: hastening the genetic evolution of feed-
forward neural networks. In International Joint
Conference on Neural Networks and Genetic Al-
gorithms, pages 635-642; 1993.

Vittorio Maniezzo. Genetic evolution of the topol-
ogy and weight distribution of neural networks.
IEEE Transactions of Neural Networks, 5(1):39-
53, 1994.

Leonardo Marti. Genetically generated neural
networks II: searching for the optimal represen-
tation. In TEEFE Joint Conference on Neural Net-

works, pages 11 221-226, 1992.

Geoffrey F. Miller, Peter M. Todd,
Shailesh U. Hedge. Designing neural networks
using genetic algorithms. In Therd International
Conference on Genetic Algorithms, pages 379-
384. Morgan Kaufmann, 1989.

and

D. Montana and L. Davis. Training feedforward
neural networks using genetic algorithms. In 17th
International Joint Conference on Artificial Intel-
ligence, pages 762-767. Morgan Kaufmann, 1989.

David J. Montana. Automated parameter tuning
for interpretation of synthetic images. In Hand-
book for Genetic Algorithms, pages 282-311,1991.

Wolfram Schiffmann, Merten Joost, and Ran-
dolf Werner. Synthesis and performance anal-
ysis of neural network architectures. Techni-
cal Report 16/1992, Universitat Koblenz, Ger-
many, 1992. ftp://archive.cis.ohio-state.edu
/pub/neuroprose/schiff.nnga.ps.Z.

[24]

[27]

Wolfram Schiffmann, Merten Joost, and Randolf
Werner. Application of genetic algorithms to the
construction of topologies for multilayer percep-
trons. In International Joint Conference on Neu-
ral Networks and Genetic Algorithms, pages 675—
682, Innsbruck, 1993.

M. Srinivas and L.M. Patnaik. Learning neural
network weights using genetic algorithms — im-
proving performance by search space reduction.
In International Joint Conference on Neural Net-

works, pages 2331-2336. IEEE, 1991.

David W. White. GANNet: A Genetic Algorithm
for Searching Toplogy and Weight Spaces in Neu-
ral Network Design. PhD thesis, University of
Maryland, 1993.

D. Whitley, T. Starkweather, and C. Bogart. Ge-
netic algorithms and neural networks: optimizing
connections and connectivity. Parallel Comput-

ing, 14:347-361, 1990.

Darell Whitley, Stephen Dominic, Rajarshi Das,
and Charles W. Anderson. Genetic reinforce-
ment learning for neurocontrol problems. Ma-

chine Learning, 13:259-284, 1993.

