Statistical Phrase-Based Translation

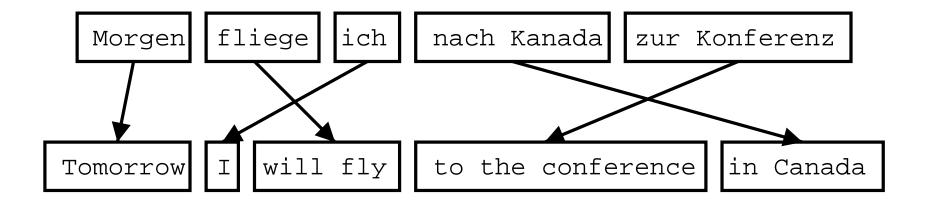
Philipp Koehn, Franz Och, Daniel Marcu

koehn@isi.edu, och@isi.edu, marcu@isi.edu

Information Sciences Institute
University of Southern California

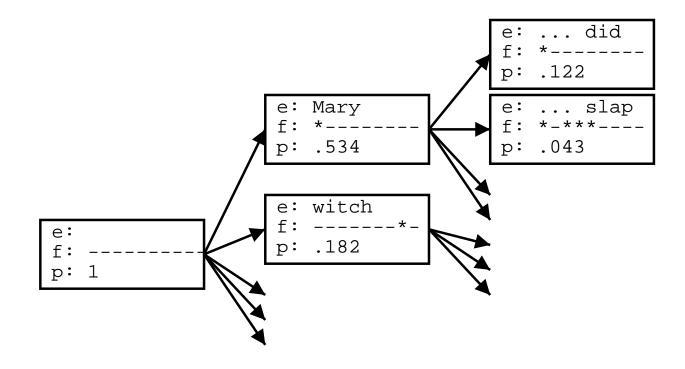
Motivation

- Phrase-based translation is the **best way** to do statistical machine translation
 - best performance in recent DARPA evaluations
 - also fairly simple
 - tools are freely available
- How do I construct a phrase translation table?


Goals

- Compare different approaches to learn phrases
- Examine properties of phrase-based translation
- Syntax and phrases

Overview


- Evaluation framework
 - unified model
 - decoder
 - corpus
- Three methods for learning phrases
 - word-alignment induced phrases
 - syntactic phrases
 - phrase-alignment
- Experiments

Model

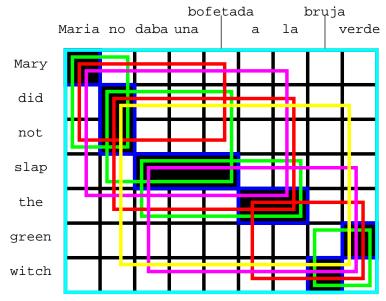
- Bayes rule: $\operatorname{argmax}_{\mathbf{e}} p(\mathbf{e}|\mathbf{f}) = \operatorname{argmax}_{\mathbf{e}} p(\mathbf{f}|\mathbf{e}) p(\mathbf{e})$
- ullet Foreign sentence ${f f}$ is segmented into I phrases $ar f_1^I$
- Each phrase is translated with $\phi(\bar{f}_i|\bar{e}_i)$
- ullet Phrases are reordered with $d(\cdot)$
- ullet Use of language model $p_{\mathsf{LM}}(\mathbf{e})$ and word penalty $\omega^{|\mathbf{e}|}$

Decoder: Beam Search

- Build English by hypothesis expansion
 - from left to right
 - search space exponential with sentence length
 - ⇒ reduction by pruning weak hypothesis aided by future cost estimate

Evaluation on Europarl Corpus

- Collected from the European Parliament Proceedings
 - Available at http://www.isi.edu/~koehn/
 - 11 languages, 20 million words each
- Test set
 - German-English
 - 1755 sentence of length 5-15


Three Methods for Learning Phrases

- Word-alignment induced phrases
 - similar to alignment templates [Och et al., 1999]
- Syntactic phrases
 - only syntactic phrases are learned
 - same restriction as in recently proposed syntactic transfer models
- Phrase-alignment
 - joint model [Marcu and Wong, 2002]

Word Alignment Induced Phrases

- Word alignment is generated using IBM Model 4
 - bidirectional alignments $e \rightarrow f$, $f \rightarrow e$
 - intersect alignments
 - grow additional alignment points with heuristics
- Collect phrase pairs consistent with word alignment
- This is alignment templates without word classes
 [Och et al., 1999]

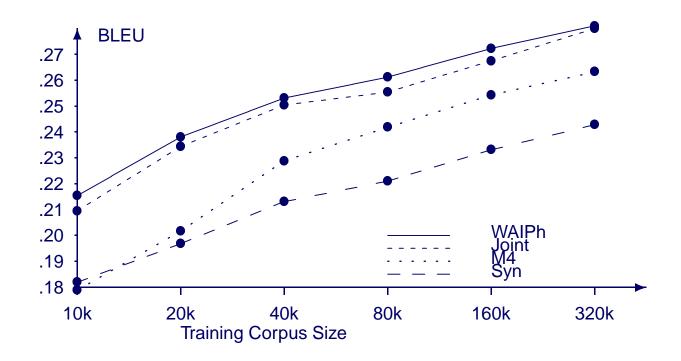
Word Alignment Induced Phrases (2)


```
(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch), (Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch), (no daba una bofetada a la bruja verde, did not slap the green witch), (Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)
```

Syntactic Phrases

- Syntactic phrases span whole constituents in parse tree
- Motivation
 - only these phrases used syntactic transfer models,
 e.g., [Yamada and Knight, 2002]
 - does syntax help or hurt?
- Extract syntactic phrase pairs
 - parse both sides (with statistical parsers)
 - use word alignment as before
 - limit to phrases to syntactic constituents in parse tree

Phrase Alignment


- Direct Phrase Alignment of Parallel Corpus [Marcu and Wong, 2002]
- Generative Story
 - a number of concepts are created
 - each concept generates a foreign and English phrase

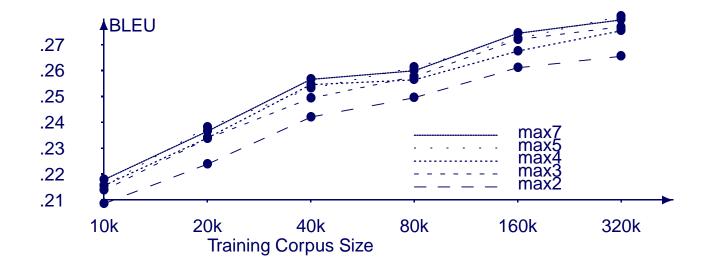
Experiments

- Comparison of core methods
- Maximum phrase length
- Lexical weighting
- Phrase extraction heuristics
- Simpler word alignment models
- Other language pairs

Comparison of Core Methods

- Same decoder, same training data, same language model
 - except for IBM Model 4: uses greedy decoder [Germann et al., 2001]
- WAIPh best, syntactic phrases very bad

All following experiments on WAIPh only


Maximum Phrase Length

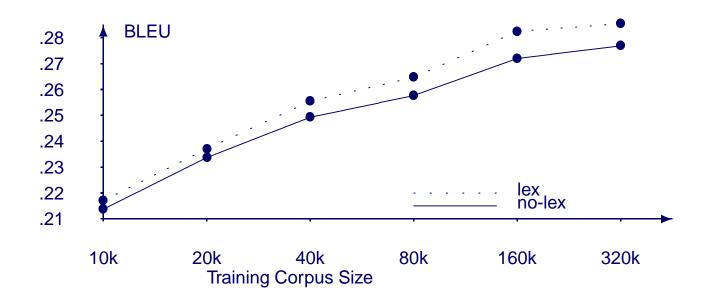
- Maximum limit on length of phrases
 - higher limit → larger phrase translation table
 - all tables still fit into memory of modern machines

Max.	Training corpus size						
Length	10k	20k	40k	80k	160k	320k	
2	37k	70k	135k	250k	474k	882k	
3	63k	128k	261k	509k	1028k	1996k	
4	84k	176k	370k	736k	1536k	3152k	
5	101k	215k	459k	925k	1968k	4119k	
7	130k	278k	605k	1217k	2657k	5663k	

Maximum Phrase Length (2)

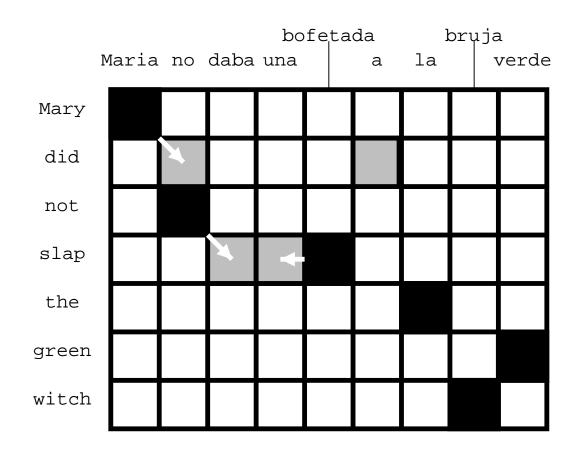
- Impact of limit on translation quality
 - not much improvement if maximum length is extended beyond 3
 - independent of training corpus size

Lexical Weighting


 \bullet Augment phrase translation probability $\phi(\bar{f}|\bar{e})$ with lexical translation probabilities w(f|e)

• Lexical weight:

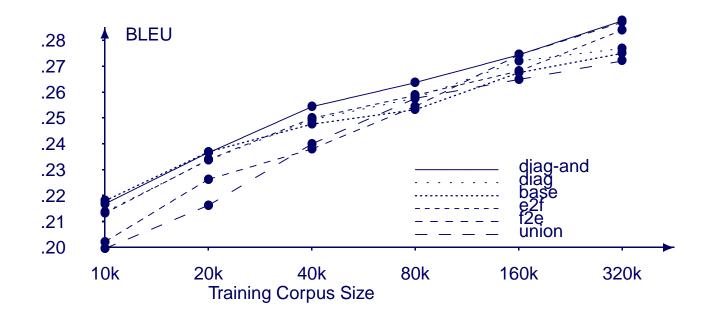
```
p_w = w(\text{la}|\text{the}) \times w(\text{bruja}|\text{witch}) \times w(\text{verde}|\text{green})
```


Lexical Weighting

Improves translation quality

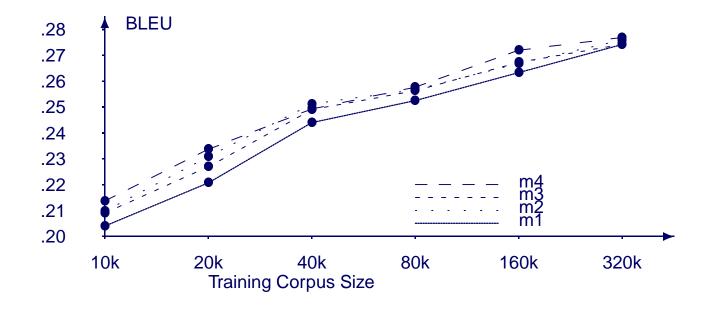
Phrase Extraction Heuristics

 Recall: word alignment based on intersection of bidirectional IBM Model 4 alignments + heuristics



Phrase Extraction Heuristics (2)

- Different phrases are learned, if heuristic to create word alignment is changed.
- Variations in heuristics:
 - only to directly neighboring
 - also to diagonally neighboring
 - also to non-neighboring
 - prefer English-foreign or foreign-to-English
 - use lexical probabilities or frequencies
 - extend only to unaligned words
 - ...


Phrase Extraction Heuristics (3)

- No clear advantage to any strategy
 - large differences, but ...
 - ... depending on corpus size
 - ... depending on language pair

Simpler Word Alignment Models

- Using simpler IBM Models for word alignment
 - not much impact, if simpler models used
 - simpler models computationally much cheaper

Other Language Pairs

- Finding hold for other language pairs, other corpora
 - Phrase translation better than IBM Model 4
 - Lexicalization helps (about +0.01 BLEU)

Language Pair	Model4	Phrase	Lex
English-German	0.2040	0.2361	0.2449
French-English	0.2787	0.3294	0.3389
English-French	0.2555	0.3145	0.3247
Finnish-English	0.2178	0.2742	0.2806
Swedish-English	0.3137	0.3459	0.3554
Chinese-English	0.1190	0.1395	0.1418

Conclusions

- Phrase-based translation better than word-based translation
- Limit to syntactic phrases hurts a lot
- Small phrases (up to 3 words) good enough
- Lexical weighting helpful
- Phrase extraction heuristics matter, but best heuristics vary on corpus size, language pair