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Abstract

Weproposeanew classificationfor multi-agentlearningalgorithms,with
eachleagueof playerscharacterizedby boththeirpossiblestrategiesand
possiblebeliefs.Usingthisclassification,wereview theoptimalityof ex-
isting algorithms,includingthecaseof interleagueplay. We proposean
incrementalimprovementto theexistingalgorithmsthatseemsto achieve
averagepayoffs thatareat leasttheNashequilibriumpayoffs in thelong-
runagainstfair opponents.

1 Intr oduction

Thetopicof learningin multi-agentenvironmentshasreceivedincreasingattentionoverthe
pastseveralyears.Gametheoristshavebegunto examinelearningmodelsin theirstudyof
repeatedgames,andreinforcementlearningresearchershavebegunto extendtheir single-
agentlearningmodelsto themultiple-agentcase.As traditionalmodelsandmethodsfrom
thesetwo fieldsareadaptedto tackletheproblemof multi-agentlearning,thecentralissue
of optimality is worth revisiting. Whatdo we expecta successfullearnerto do?

Matrix gamesand Nashequilibrium. Fromthegametheoryperspective, the repeated
gameis a generalizationof the traditionalone-shotgame,or matrix game. The gameis
definedas a reward matrix

���
for eachplayer,

���������
	�������
, where

���
is the

setof actionsavailableto player � . Purelycompetitive gamesarecalledzero-sumgames
and must satisfy

� ����� � �
. Eachplayer simultaneouslychoosesto play a particular

action � ��� � � , or a mixedpolicy � ������� � � �"! , which is a probabilitydistribution over
the possibleactions,andreceivesrewardbasedon the joint actiontaken. Somecommon
examplesof single-shotmatrixgamesareshown in Figure1. Thetraditionalassumptionis
thateachplayerhasno prior knowledgeabouttheotherplayer. As is standardin thegame
theory literature, it is thus reasonableto assumethat the opponentis fully rational and
choosesactionsthatarein its bestinterest.In return,we mustplay a bestresponseto the
opponent’s choiceof action. A bestresponsefunction for player � , # �$� � ��% � ! , is defined
to bethesetof all optimalpoliciesfor player� , giventhattheotherplayersareplayingthe
joint policy ��% � : # ��� � ��% � !&��' ��(� �*) �,+-�$� � ��(�/. ��% � !10 �$� � � � . ��% � !32 � � �4) �,5 .
If all playersareplayingbestresponsesto the otherplayers’strategies, � � � # �$� � ��% � ! ,
thenthegameis in Nashequilibrium. Onceall playersareplayingby a Nashequilibrium,
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Figure1: Somecommonexamplesof single-shotmatrixgames.

no singleplayerhasan incentive to unilaterallydeviate from his equilibriumpolicy. Any
gamecanbesolvedfor its Nashequilibriausingquadraticprogramming,anda playercan
choosean optimal strategy in this fashion,given prior knowledgeof the gamestructure.
The only problemariseswhen therearemultiple Nashequilibria. If the playersdo not
manageto coordinateon oneequilibriumjoint policy, thenthey mayall endup worseoff.
TheHawk-Dove gameshown in Figure1(c) is a goodexampleof this problem. Thetwo
Nashequilibriaoccurat (1,2)and(2,1),but if theplayersdo not coordinate,they mayend
up playinga joint action(1,1)andreceive0 reward.

Stochasticgamesand reinforcementlearning. Despitetheseproblems,thereis general
agreementthatNashequilibriumis anappropriatesolutionconceptfor one-shotgames.In
contrast,for repeatedgamestherearea rangeof differentperspectives. Repeatedgames
generalizeone-shotgamesby assumingthattheplayersrepeatthematrix gameovermany
timeperiods.Researchersin reinforcementlearningview repeatedgamesasaspecialcase
of stochastic,or Markov, games. Researchersin gametheory, on the other hand,view
repeatedgamesasan extensionof their theoryof one-shotmatrix games.The resulting
frameworksaresimilar, but with a key differencein their treatmentof gamehistory. Rein-
forcementlearningresearchersfocustheir attentionon choosinga singlestationary� that
will maximizethelearner’sexpectedrewardsin all futuretimeperiodsgiventhatwearein

time D , E
FHGJI�KLI MNPORQTS N % Q � N � � ! , whereU maybefinite or infinite, and� �V���W� � ! .
In theinfinite time-horizoncase,we oftenincludethediscountfactorXZY[S\Y^] .
Littman[1] analyzesthis framework for zero-sumgames,proving convergenceto theNash
equilibriumfor hisminimax-Qalgorithmplayingagainstanotherminimax-Qagent.Claus
andBoutilier [2] examinecooperative gameswhere

��� � �L�
, andHu andWellman[3]

focus on general-sumgames. Thesealgorithmssharethe commongoal of finding and
playing a Nashequilibrium. Littman [4] andHall andGreenwald [5] further extendthis
approachto considervariantsof Nashequilibrium for which convergencecanbeguaran-
teed.Bowling andVeloso[6] andNagayukietal_ [7] proposeto relaxthemutualoptimality
requirementof Nashequilibriaby consideringrational agents,which alwayslearnto play
a stationarybest-responseto their opponent’s strategy, evenif theopponentis not playing
an equilibrium strategy. The motivation is that it allows our agentsto act rationally even
if the opponentis not actingrationally becauseof physicalor computationallimitations.
Fictitiousplay [8] is a similaralgorithmfrom gametheory.

Gametheoretic perspective of repeatedgames. As alludedto in theprevioussection,
gametheoristsoften take a moregeneralview of optimality in repeatedgames.The key
differenceis the treatmentof the history of actionstaken in the game. Recall that in the
stochasticgamemodel,we took � � �`��� � �$� ! . Herewe redefine� �a�cbd� ��� � �$� !

,
where

b � Q b Q and
b Q

is the setof all possiblehistoriesof length D . Historiesare



Table1: Summaryof multi-agentlearningalgorithmsunderour new classification.ecf e � e Q ecg
h f

minimax-Q,
Nash-Q

Bully

h �
Godfatherh g i

-learning (
i�f

),
(WoLF-)PHC,
fictitiousplay

i �
PHC-
Exploiter

multiplicative-
weight*

* assumespublicknowledgeof theopponent’spolicy at eachperiod

observationsof joint actions, j Q �k� � � . �l% � . j Q %
� !

. Player � ’s strategy at time D is then
expressedas � � � j Q %

� !
. In essence,we areendowing our agentwith memory. Moreover,

theagentoughtto beableto form beliefsabouttheopponent’s strategy, andthesebeliefs
ought to converge to the opponent’s actualstrategy given sufficient learningtime. Letm �8�1bn� ��� � � % � ! be player � ’s belief aboutthe opponent’s strategy. Thena learning
pathis definedto bea sequenceof histories,beliefs,andpersonalstrategies. Now we can
definethe Nashequilibriumof a repeatedgamein termsof our personalstrategy andour
beliefs aboutthe opponent. If our predictionaboutour opponent’s strategy is accurate,
thenwe canchoosean appropriatebest-responsestrategy, and this will guaranteeNash
equilibrium.

Proposition 1.1. A learningpath
'/� j Q . � � � j Q %

� ! . m � � j Q %
� !o! + D � ] .qpr. _s_t_ 5 convergesto a

Nashequilibriumiff thefollowing two conditionshold: (1) Optimization:
2 D . � � � j Q %

� !$�
# � �"� m �"� j Q %

� !q!
, and(2) Prediction:u-vwE Qwx g + m �o� j Q %

� !y� � % �o� j Q %
� ! + � X .

However, NachbarandZame[9] shows that this requirementof simultaneousprediction
andoptimizationis impossibleto achieve, given certainassumptionsaboutour possible
strategiesandpossiblebeliefs.We canneverdesignanagentthatwill learnto bothpredict
theopponent’sfuturestrategy andoptimizeoverthosebeliefsatthesametime. Despitethis
fact,if we assumesomeextra knowledgeabouttheopponent,we candesignanalgorithm
thatapproximatesthe best-responsestationarypolicy over time againstanyopponent.In
the gametheoryliterature,this conceptis often calleduniversal consistency. Fudenburg
andLevine [8] andFreundandSchapire[10] independentlyshow that a multiplicative-
weightalgorithmexhibitsuniversalconsistency fromthegametheoryandmachinelearning
perspectives.This giveusa strongresult,but requiresthestrongassumptionthatwe know
theopponent’spolicy at eachtimeperiod.This is typically not thecase.

2 A new classificationand a new algorithm

We proposea generalclassificationthat categorizesalgorithmsby the cross-productof
theirpossiblestrategiesandtheirpossiblebeliefsabouttheopponent’sstrategy,

hz	 e
. An

agent’spossiblestrategiescanbeclassifiedbasedupontheamountof historyit hasin mem-
ory, from

h f
to
h g

. Givenmorememory, theagentcanformulatemorecomplex policies,
sincepoliciesaremapsfrom historiesto actiondistributions.

h f
agentsarememoryless

andcanonly play stationarypolicies.Agentsthatcanrecall theactionsfrom theprevious
time periodareclassifiedas

h �
andcanexecutereactive policies. At the otherextreme,h g

agentshave unboundedmemoryandcanformulateever morecomplex strategiesas
thegameis playedover time. An agent’s belief classificationmirrorsthestrategy classifi-
cationin theobviousway. Agentsthatbelieve their opponentis memorylessareclassified
as
e f

players,
e Q playersbelieve that the opponentbasesits strategy on the previous D -

periodsof play, andsoforth. Althoughnotexplicitly stated,mostexistingalgorithmsmake
assumptionsandthusholdbeliefsaboutthetypesof possibleopponentsin theworld.



We canthink of each
h {�	 e Q asa differentleagueof players,with playersin eachleague

roughly equalto oneanotherin termsof their capabilities.Clearly someleaguescontain
lesscapableplayersthanothers.Wecanthusdefinea fair opponentasanopponentfrom an
equalor lesserleague.Theideais thatnew learningalgorithmsshouldideally bedesigned
to beatany fair opponent.

The key role of beliefs. Within eachleague,we assumethat playersarefully rational
in thesensethat they canfully usetheir availablehistoriesto constructtheir futurepolicy.
However, animportantobservationis thatthedefinitionof full rationalitydependson their
beliefsaboutthe opponent.If we believe thatour opponentis a memorylessplayer, then
evenif we arean

h g
player, our fully rationalstrategy is to simply modeltheopponent’s

stationarystrategy andplay ourstationarybestresponse.Thus,ourbelief capacityandour
historycapacityareinter-related.Withoutarich setof possiblebeliefsaboutouropponent,
we cannotmakegooduseof our availablehistory. Similarly, andperhapsmoreobviously,
withouta rich setof historicalobservations,wecannothopeto modelcomplex opponents.

Discussionof curr ent algorithms. Many of theexistingalgorithmsfall within the
h g 	ecf

league.As discussedin theprevioussection,theproblemwith theseplayersis thateven
thoughthey have full accessto thehistory, their fully rationalstrategy is stationarydueto
their limited belief set.A generalexampleof a

h g 	 e f
playeris thepolicy hill climber

(PHC). It maintainsa policy andupdatesthe policy baseduponits history in an attempt
to maximizeits rewards.Originally PHCwascreatedfor stochasticgames,andthuseach
policy alsodependson thecurrentstate| . In our repeatedgames,thereis only onestate.

For agent� , Policy Hill Climbing (PHC)proceedsasfollows:

1. Let } and ~ bethelearningrates.Initialize

i � | . � !1� X . � �q� | . � !&� ]+-���o+ 2 | �*� . � � � � _

2. Repeat,

a. Fromstate| , selectaction � accordingto themixedpolicy � � � | ! with someexploration.

b. Observingreward � andnext state|�� , updatei � | . � !1��� ] � } ! i � | . � !�� } � � � S�E
FHG�s� i � | � . � � !o! _

c. Update� � | . � ! andconstrainit to a legalprobabilitydistribution:

� �"� | . � !1� � �o� | . � !y� ~ if � � FH�"�HE
F/G � � i � | . � � !%��� �:��� % � otherwise _

The basicideaof PHC is that the
i

-valueshelp us to definea gradientuponwhich we
executehill-climbing. Bowling andVeloso’sWoLF-PHC[6] modifiesPHCby adjusting~
dependingonwhethertheagentis “winning” or “losing.” Trueto their league,PHCplayers
play well againststationaryopponents.

At theoppositeendof thespectrum,LittmanandStone[11] proposealgorithmsin
h f 	 e g

and
h\��	 ecg

thatare leaderstrategiesin thesensethat they choosea fixedstrategy and
hopethat their opponentwill “follo w” by choosinga bestresponseto that fixed strategy.
Their “Bully” algorithmchoosesa fixedmemorylessstationarypolicy, while “Godfather”
hasmemoryof thelasttimeperiod.Opponentsincludednormal

i
-learningand

i �
players,

whicharesimilarto
i

-learnersexceptthatthey explicitly learnusingoneperiodof memory
becausethey believe that their opponentis alsousingmemoryto learn. The interesting



result is that “Godfather” is able to achieve non-stationaryequilibria against
i �

in the
repeatedprisoner’s dilemnagame,with rewardsfor both playersthat arehigherthanthe
stationaryNashequilibriumrewards.Thisdemonstratesthepowerof having beliefmodels.
However, becausethesealgorithmsdo not have accessto morethanoneperiodof history,
they cannotbegin to attemptto constructstatisticalmodelsthe opponent. “Godfather”
workswell becauseit hasa built-in bestresponseto

i �
learnersratherthanattemptingto

learnabestresponsefrom experience.

Finally, Hu andWellman’s Nash-QandLittman’s minimax-Qareclassifiedas
h f 	 e f

players,becauseeven thoughthey attemptto learnthe Nashequilibrium throughexperi-
ence,their play is fixedoncethis equilibriumhasbeenlearned.Furthermore,they assume
that the opponentalsoplaysa fixed stationaryNashequilibrium, which they hopeis the
otherhalf of their own equilibriumstrategy. Thesealgorithmsaresummarizedin Table1.

A newclassof players. As discussedabove,mostexistingalgorithmsdonotform beliefs
abouttheopponentbeyond

ecf
. Noneof theseapproachesis ableto capturetheessenceof

game-playing,which is aworld of threats,deceits,andgenerallyout-witting theopponent.
We wish to openthe door to suchpossibilitiesby designinglearnersthat canmodel the
opponentand usethat information to achieve betterrewards. Ideally we would like to
designanalgorithmin

h g 	 ecg
thatis ableto win or cometo anequilibriumagainstany

fair opponent.Sincethis is impossible[9], westartby proposinganalgorithmin theleagueh g 	 ecg
thatplayswell againstarestrictedclassof opponents.Sincemany of thecurrent

algorithmsarebest-responseplayers,we chooseanopponentclasssuchasPHC.We will
demonstratethatthis algorithmdoeswell againstmostof theexisting fair opponents.

A new algorithm: PHC-Exploiter. Our algorithmis differentfrom mostpreviouswork
in that we areexplicitly modelingthe opponent’s learningalgorithmandnot simply his
currentpolicy. In particular, we would like to modelplayersfrom

h g 	 ecf
, sincemany

of theexisting algorithmsarein this league.Sincewe arein
h g 	 ecg

, it is rationalfor
usto constructsuchmodelsbecausewe believe thattheopponentis learningandadapting
to usover timeusingits history. Theideais thatwe will “fool” ouropponentinto thinking
thatwe arestupidby playinga decoy policy for a numberof time periodsandthenswitch
to adifferentpolicy thattakesadvantageof theirbestresponseto ourdecoy policy. Froma
learningperspective,theideais thatweadaptmuchfasterthantheopponent;in fact,when
we switchaway from our decoy policy, our adjustmentto thenew policy is immediate.In
contrast,the

h g 	 ecf
opponentadjustsits policy by small incrementsandis furthermore

unableto model our changingbehavior. We can repeatthis “bluf f and bash” cycle ad
infinitum, therebyachieving infinite total rewardsasD �n�

. Theopponentnever catches
on to usbecauseit believesthatweonly play stationarypolicies.

A goodexampleof a
h g 	 ecf

playeris PHC.Bowling andVelososhowed that in self-
play, a restrictedversionof WoLF-PHCalwaysreachesa stationaryNashequilibrium in
two-playertwo-actiongames,and that the generalWoLF-PHCseemsto do the samein
experimentaltrials. Thus,in thelong run,aWoLF-PHCplayerachievesonly its stationary
Nashequilibrium payoff againstany other PHC player. We wish to do betterthan that
by exploiting our knowledgeof the PHC opponent’s learningstrategy. We canconstruct
a PHC-Exploiteralgorithm for agent � that proceedslike PHC in steps1-2b, and then
continuesasfollows:

c. Observingaction � Q % � at time D , updateour history j andcalculatean estimateof the
opponent’spolicy:

�� Q % � � | . � !&�
QNPO:Q %���� � j�� ��� � � !� 2 � .

where� is thewindow of estimationand� � j�� ��� � � !� ] if theopponent’sactionat time
� is equalto � , and0 otherwise.We estimate

�� Q %��% � � | ! similarly.



d. Update~ by estimatingthelearningrateof thePHCopponent:

~ �
�� Q % � � | !y� �� Q %��% � � | !� _

e. Update� �o� | . � ! . If we arewinning, i.e. � � � �o� | . �T� ! i � | . �T� !�� � �"� �� (� � | ! . �� % �o� | !q! ,
thenupdate

� � � | . � !1� ] if � � FH�"�HE
FHG � � i � | . �T� !X otherwise
.

otherwisewearelosing,thenupdate

� � � | . � !1� � � � | . � !y� ~ if � � FH�"�HE
F/G � � i � | . �T� !%��� � � � % � otherwise _

Note thatwe derive both theopponent’s learningrate ~ andtheopponent’s policy
���% � � | !

from estimatesusingthe observablehistory of actions. If we assumethe gamematrix is
public information,thenwecansolve for theequilibriumstrategy

�� (� � | ! , otherwisewecan
run WoLF-PHC for somefinite numberof time periodsto obtainan estimatethis equi-
librium strategy. Themainideaof this algorithmis thatwe take full advantageof all time
periodsin whichwearewinning,thatis,when � �P� � � | . �T� ! i � | . �T� !1� ��� � �� (� � | ! . ���% � � | !q! .
Analysis. ThePHC-Exploiteralgorithmis baseduponPHC andthusexhibits the same
behavior asPHC in gameswith a singlepure Nashequilibrium. Both agentsgenerally
converge to the singlepureequilibrium point. The interestingcasearisesin competitive
gameswheretheonly equilibriarequiremixedstrategies,asdiscussedby Singhet al [12]
andBowling andVeloso[6]. Matchingpennies,shown in Figure1(a), is onesuchgame.
PHC-Exploiteris ableto useits modelof theopponent’slearningalgorithmto choosebetter
actions.

In thefull knowledgecasewhereweknow ouropponent’spolicy � � andlearningrate ~ � at
every timeperiod,wecanprovethataPHC-Exploiterlearningalgorithmwill guaranteeus
unboundedrewardin thelong runplayinggamessuchasmatchingpennies.

Proposition 2.1. In the zero-sumgameof matchingpennies,wherethe only Nashequi-
librium requirestheuseof mixedstrategies,PHC-Exploiteris ableto achieve unbounded
rewardsas D ���

againstany PHCopponentgiventhatplay follows thecycle � defined
by thearrowedsegmentsshown in Figure2.

Playproceedsalong � � , �c� , thenjumpsfrom (0.5,0) to (1,0),followstheline segmentsto
(0.5,1), thenjumpsbackto (0, 1). Givenapoint

� � .,¡ !��� � �¢� b ! . � �£� b !o! on thegraphin
Figure2, weknow thatour rewardis��� � � .,¡ !�V� ] 	 � � �&!q� ¡ !¤�¥� ] ���&!q� ] � ¡ ! � � ] 	 � � ] ���&!o� ¡ !¤�¦�w�c!q� ] � ¡ ! �§_
We wish to show that

¨ � �s�w� .©¡ !©ª D � p 	 ¨�« � �s�w� .©¡ !©ª D � ¨�¬ � �¢�w� .©¡ !©ª D � X_
We considereachpart separately. In the losing section,we let ® � D !>�^�¯� ]±° p � D andj � D !&� ¡ � D , whereX
²³D�²´]±° p . Then

¨ ¬ ��� � � .©¡ !,ª D �
�§µo�
f ��� � ® � D ! . j � D !q!,ª D ���z]] p _

Similarly, wecanshow thatwereceive1/4rewardover �c� . Thus, ¨ ��� � � .©¡ !,ª D � ]±°s¶ �X , andwehaveshown thatwereceiveapayoff greaterthantheNashequilibriumpayoff of
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Figure2: Theoretical(left), Empirical (right). Thecyclic play is evident in our empirical
results,whereweplay a PHC-Exploiterplayer1 againstaPHCplayer2.
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Figure3: Total rewardsfor agent1 increaseaswegainrewardthrougheachcycle.

zeroover every cycle. It is easyto seethatplay will indeedfollow thecycle � to a good
approximation,dependingon the sizeof ~ � . In the next section,we demonstratethatwe
canestimate� � and ~ � sufficiently well from pastobservations,thuseliminatingthe full
knowledgerequirementsthatwereusedto ensurethecyclic natureof play above.

Experimental results. We usedthe PHC-Exploiteralgorithm describedabove to play
againstseveral PHC variantsin differentiteratedmatrix games,including matchingpen-
nies,prisoner’sdilemna,androck-paper-scissors.Herewegivetheresultsfor thematching
penniesgameanalyzedabove, playing againstWoLF-PHC.We useda window of 5000
time periodsto estimatetheopponent’scurrentpolicy � � , aswell asthechangein his pol-
icy, ~ � . As shown in Figure2, the play exhibits the cyclic naturethatwe predicted.The
solid linesindicateperiodsin which ourPHC-Exploiterlearneris winning,andthedashed
linesindicateperiodsin which it is losing.

In thesectionabove,wederivedanupperboundfor our total rewardsovertime,whichwas
1/6 for eachtime step.Sincewe have to estimatevariousparametersin our experimental
run,wedonotachievethislevelof reward.Wegainanaverageof 0.08totalrewardfor each
time period. Figure3 plots the total reward for our PHC-Exploiteragentover time. The
periodsof winning andlosing arevery clearfrom this graph. Furtherexperimentstested
theeffectivenessof PHC-Exploiteragainstotherfair opponents,including itself. Against
all theexisting fair opponentsshown in Table1, it achievedat leastits averageequilibrium
payoff in the long-run. Not surprisingly, it alsopostedthis scorewhenit playedagainsta
multiplicative-weightlearner.



Conclusionand futur e work. In this paper, we have presenteda new classificationfor
multi-agentlearningalgorithmsandsuggestedanalgorithmthatseemsto dominateexisting
algorithmsfrom thefair opponentleagues.Ideally, wewould like to createanalgorithmin
theleague

h g 	 e g
thatprovablydominateslargerclassesof fair opponentsin any game.

Moreover, all of thediscussioncontainedwithin this paperdealtwith the caseof iterated
matrix games.We would like to extendour framework to moregeneralstochasticgames
with multiple statesandmultiple players.Finally, it would be interestingto find practical
applicationsof thesemulti-agentlearningalgorithms.
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