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Abstract

Dividing an image into its constituent objects can be a
useful first step in many visual processing tasks, such
as object classification or determining the arrangement
of obstacles in an environment. Motion segmentation
is a rich source of training data for learning to seg-
ment objects by their static image properties. Back-
ground subtraction can distinguish between moving ob-
jects and their surroundings, and the techniques of sta-
tistical machine learning can capture information about
objects’ shape, size, color, brightness, and texture prop-
erties. Presented with a new, static image, the trained
model can infer the proper segmentation of the objects
present in a scene. The algorithm presented in this work
uses the techniques of Markov random field modeling
and belief propagation inference, outperforms a stan-
dard segmentation algorithm on an object segmentation
task, and outperforms a learned boundary detector at de-
termining object boundaries on the test data.

Introduction
Image segmentation is the discovery of salient regions in
static images and has a history reaching back to the Gestalt
psychologists (Palmer 1999). There are many computer vi-
sion approaches to this problem, but they are difficult to
compare because there is no readily accessible ground truth.
In recent years, this situation has improved as researchers
such as Martin et al. (2004) and Konishi et al. (2003) have
used human-segmented data to train and test boundary de-
tection algorithms.

This paper further grounds the image segmentation prob-
lem by replacing it with the better-defined goal of ob-
ject segmentation and by using an automatically segmented
database as the training and testing set. Object segmenta-
tion is the task of grouping pixels in a static image into re-
gions that correspond to the objects in the underlying scene
(similar to figure-ground segmentation). In this formula-
tion, objects are sets of elements that move coherently in
the world. If objects can be distinguished by their motion, a
motion segmentation algorithm, which divides moving ob-
jects from their static surroundings, can provide a partially
labeled database of object segmentations. Such a database
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can be automatically gathered by a robot or other vision-
processing agent by simply observing object motion in a
domain. The static image and shape properties associated
with the boundaries and interiors of moving objects can be
used to train an object segmentation model. Then the model
can determine the segmentation of individual static images
without using motion information. Its performance can be
measured by comparing the segmentation it produces on in-
dividual video frames to the motion segmentation.

This paper describes the Segmentation According to
Natural Examples (SANE) object segmentation algorithm,
which is trained and tested in this framework. Videos of
moving objects are motion-segmented using background
subtraction. This automatically labeled data provides a
large, cheap training set that is used to learn the shape and
image statistics of object segmentation. Then, presented
with a new, static image, the learned model constructs a
Markov random field (MRF) model which can infer the
underlying object segmentation using the belief propaga-
tion algorithm (Pearl 1988). This algorithm outperforms a
standard implementation of the general-purpose normalized
cuts segmentation algorithm (Shi & Malik 1997) on the ob-
ject segmentation task and outperforms the trained Martin
boundary detectors (Martin, Fowlkes, & Malik 2004) on de-
tecting the object boundaries.

Related work
Recent work in learning edge detection include Konishi
et al. (2003) and Martin et al. (2004) who improved on
standard edge detectors by learning detectors from human-
labeled databases. These methods rely on manually seg-
mented training data, which requires a time-consuming pro-
cess that produces results dependent on the subjective judg-
ment of the human labelers. Borenstein and Ullman have
developed a model of class-specific segmentation that learns
to perform figure-ground segmentations for a particular class
of objects by building a database of fragments that can be as-
sembled like puzzle pieces (2002).

The models employed in SANE are similar to, and were
initially inspired by, the work by Freeman et al. on super-
resolution and other problems (2000). The first use of
MRFs in image segmentation was Geman and Geman’s im-
age restoration algorithm (1984).

Spelke et al. have discovered that human infants lack the



ability to segment objects according to their static monoc-
ular image properties and instead rely on motion and depth
information (1994). This suggests that these built-in seg-
mentation abilities may form the basis for learning static,
single-image segmentation.

Model and algorithm
The SANE object segmentation model divides an image
into a lattice of 5 pixel by 5 pixel, non-overlapping patches
and assigns a variable to represent the segmentation at each
patch. For each image patchi there is a hidden segmentation
variableSi = (Ei, Pi) and visible image featuresIi. Ii con-
sists of real-valued image features (e.g., brightness, color,
gradient) from the underlying patch.Ei specifies the shape
of the object boundary present at locationi andPi specifies
the boundary’s parity. In our representation, each edge patch
is parameterized by three variables: the locations of its en-
try and exit from the patch, and a possible inflection point
inside the patch. On a 5 by 5 patch this produces approx-
imately 3000 possible edge values. The no-boundary case,
the “empty edge,” is added as a special case. Assuming that
the objects in a scene do not overlap in the image, dividing
objects from their surroundings only requires two segments,
so the parity of an edge is a binary value that determines
which segment is on which side of the boundary (see Figure
1). A horizontal edge, for example, can have region 0 above
it and region 1 below it, or vice versa.

The variables are linked into an MRF, an undirected
graphical probabilistic model. Each nodeNi,j =
(Si,j , Ii,j) is connected to its first-order lattice neigh-
bors: Ni+1,j , Ni−1,j , Ni,j+1, and Ni,j−1 (see Fig-
ure 1). If N is the set of all nodes in the model,
the Markov property ensures thatP (Ni,j |N \ Ni,j) =
P (Ni,j |Ni+1,j , Ni−1,j , Ni,j+1, Ni,j−1). Traditional MRF
models keep hidden and visible variables as separate graph
nodes. In this model, they are combined because in the seg-
mentation problem the image properties at each node can
exercise a strong influence on the joint probability of neigh-
boring edge variables. Consider the situation in Figure 2.
Each patch has local evidence indicating a horizontal edge,
and a reasonable boundary model might assign high proba-
bility to two neighboring horizontal edges. But the assign-
ment’s probability might be negatively influenced by the fact
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Figure 1: Left: An example edge assignment and the two
possible segmentation assignments it can create depending
on its parity. Right: A section of a Markov random field.
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Figure 2: Left: A traditional MRF might give a high value
to this pairing of horizontal edges, since each image patch
gives strong local evidence and the edges continue each
other. Right: An MRF that combines the edge and image
variables into the same nodes can give a low value to this
combination because it is creating a segment with differently
colored neighboring pixels.

that the horizontal edge assignments would put green and
red pixels in the same segment. The presence of the image
information in each node allows the model to make precisely
this type of decision.

In order to specify a segmentation MRF on a particular
image, each node needs a positiveΦi(Ni) function that pro-
vides local evidence for its hidden valueSi and every neigh-
boring pair of nodes needs a positiveΨi,j(Ni, Nj) function
to represent the relationship between neighboring values
(see Figure 1) (Besag 1974). In this context, all theΦi func-
tions are identical due to translational invariance and there
are only two types ofΨ functions, one for vertical neighbors
and the other for horizontal neighbors (these functions are
related by a90◦ rotation of their arguments). The relation-
ship between neighborsi andj will be denotedr(i, j).

These functions are learned from the training data. Unfor-
tunately, computing the marginal distribution on any node or
pair of nodes requires normalizing the graph by its partition
function, a computationally intractable operation on non-
trivial models. However, there are useful approximations.
Wainwright et al. (2003) note that settingΦ(Ni) = P (Ni)
and Ψr(i,j)(Ni, Nj) = Pr(i,j)(Ni, Nj)/(P (Ni)P (Nj)) is
an approximate maximum-likelihood estimate for the com-
patibility functions. This formulation corresponds to the es-
timates utilized in some of Freeman et al.’s work (2000).

In order to improve the segmentation results, the SANE
MRFs modify the Wainwright neighborhood compatibili-
ties to enforce boundary continuity and segmentation con-
sistency. Boundary continuity requires that an edge assign-
ment whose endpoint is adjacent to a neighboring patch be
continued by the edge selected for the neighboring patch.
Segmentation compatibility requires that segmentation as-
signments implied by neighboring edge parities are consis-
tent, except where the pixels are separated by an edge. The
function cont(Si, Sj) equals 0 ifSi andSj violate either of
these properties, and 1 otherwise.

Therefore, the compatibilities are

Φ(Ni) = P (Ei, Ii)



and

Ψr(i,j)(Ni, Nj) = cont(Si, Sj)
Pr(i,j)(Ei, Ii, Ej , Ij)
P (Ei, Ii)P (Ej , Ij)

+(1− cont(Si, Sj))ε.

The relationships between pixels and boundaries are
learned from the data. The parity information is only needed
to keep outputs in the space of valid segmentations that obey
the boundaries inferred in the image. In addition to enforc-
ing continuity and spreading boundary information, the par-
ity bits also allow any assignment to be interpreted as a valid
segmentation—the parity of a patch specifies which of its
pixels are in region 0 and which are in region 1. Theε com-
patibility is used because zero compatibility values are dis-
allowed by the Hammersley-Clifford theorem (Besag 1974).

Because the parities do not have semantic meaning apart
from the requirements of continuity, they can produce local
assignment ties. Without some knowledge of the parity at
neighboring nodes, there is no information to favor choosing
one parity over another. Belief propagation cannot break ties
without assistance, so the situation is avoided by fixing the
upper-left node to only have parity 0. The need to match
parities with that assignment allows belief propagation to set
the parities across the entire image correctly.

Inference on a new image is performed by constructing an
MRF, as described above, using the density functions esti-
mated from the training data, and applying the belief propa-
gation algorithm. Belief propagation only provides exact in-
ference on loopless graphical models, but it produces useful
approximate inference on loopy models such as ours (Weiss
1997).

Belief propagation can fail to converge on a loopy graph
and can give neighboring nodes incompatible assignments.
For these reasons, the belief propagation estimate is post-
processed with the iterative conditional modes (ICM) algo-
rithm (Besag 1986). A restricted form of ICM is allowed to
flip the parities of the marginal MAP estimate of the nodes,
but not change the edge assignments. The parity-flips can
repair mismatches between neighboring segmentation labels
caused by non-convergence of belief propagation.

To make inference more tractable, the algorithm initial-
izes the set of possible assignments at each node to the 20
edge assignments that are most likely given the local image
data. Then, edges are added (in order of decreasing local
probability) as is necessary to continue the possible assign-
ments of neighboring patches. This ensures that complete,
closed contours are always possible. Finally, the number
of possible assignments at each patch (except the upper-left
patch, as discussed above) is doubled by pairing each pos-
sible edge with both potential parities to create the set of
possibleSi values at each patch.

In some cases, better results can be achieved with a mul-
tiresolution model. Two MRFs are constructed, one on a
full-size image and one on that image at half-resolution.
Note that this requires training on half-scale training data
in order to construct the half-scale model. Then the models
are linked such that each node in the half-scale model is the
neighbor of four full-scale nodes. The interlevel node com-
patibilities are set so they are1 if the segment labels of the

full-scale node matches those of the relevant quadrant of its
half-scale parent andε otherwise. This encourages the full-
scale model to find an assignment that is compatible with
larger-scale shape and image information.

Training

Motion segmentation, provided by background subtrac-
tion, gives a partially and imperfectly labeled segmentation
database. Background subtraction can only label moving
objects, so, in training, only the moving objects and their
immediate surroundings are used to learn all the necessary
probability distributions. If multiple moving objects are
present, the image is not subdivided into subimages, but a
region that contains all the objects is used.

Background subtraction and cropping provides a set of
images paired with binary masks indicating which pixels be-
long to the foreground and which belong to the background.
Scanning the rows and columns of the binary image and
marking the transitions between foreground and background
produces an edge image. Every image and edge image is
divided into 5 pixel x 5 pixel tiles (in order to maximize
training data, all valid offsets of the tiling are also used,
as are local rotations and reflections of the training data).
Each edge patch is matched to the most similar parame-
terized edge. FactoringP (Ei, Ii) into P (Ii|Ei)P (Ei) and
P (Ei, Ii, Ej , Ij) into P (Ii, Ij |Ei, Ej)P (Ei, Ej) produces
both continuous and discrete probability distributions. The
discrete distributions are estimated by counting and the con-
tinuous distributions are estimated by Gaussian kernel den-
sity estimates.

The value ofIi could be a full color image of the relevant
patch, but estimating distributions of such high dimension-
ality would require an unreasonable amount of training data
and using them would be too computationally expensive. In-
stead, the patches are represented by relatively few features:
the average brightness of the pixels in in the top, left, right,
and bottom patch areas and, when color is used, the average
red, green, and blue values of all the patch pixels.

The required features of the associated patches are ex-
tracted and used to fit kernel density estimates for the
P (Ii, Ij |Ei, Ej) distributions. The features are prepro-
cessed to have zero mean and unit variance. The training
points available for each distribution are split into kernel
points and test points. The kernel variances are fit by search-
ing for a maximum of the likelihood of the test points.

The single nodeP (Ii|Ei) distributions are not estimated
independently since they are equal to

∑
Ej

∫
Ij

P (Ii, Ij |Ei, Ej)P (Ej |Ei).

Independent estimates would provide substantial computa-
tional savings in inference, but in our experience the Wain-
wright compatibility formulas are very sensitive to any
mismatch betweenP (Ii|Ei) and the exact marginalization
given above, so the explicit marginalization is necessary.
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Figure 3: The images from the car sequence illustrate that SANE can find a reasonable object segmentation in these examples,
but there is no number of regions that allows normalized cuts to correctly segment the objects in all three images.

SANE Normalized cuts
Image Motion bright color 2 3 4 5 6 7

Figure 4: SANE separates the person from the whiteboard, but normalized cuts, lacking an object shape model and the ability
to distinguish object boundaries from other differences, fails.

Results

SANE was tested on two data sets, a video of cars travel-
ing on a highway and a video of a person walking back and
forth in front of a whiteboard several times. In the traffic
data set, the original video contained images of two high-
ways: the left highway was used as the training data and
the right highway as the testing data. In the walking-person
data set, the first half of the frames formed the training set
and the second half the test set. For the traffic results, 286
frames, uniformly sampled from the set of frames that con-
tained moving cars, were used to train the model, and a
set of 100 frames uniformly selected from the test set were
used in testing. For the walking-person results, the first 200
frames that contained the moving person were used to train
the model, and 40 frames from the remainder were used in
testing. The car background subtractions were produced by
the Stauffer and Grimson algorithm (1999) and the walk-
ing person background subtractions were produced by the
Migdal and Grimson (2005) extension of that algorithm.

For each test image, each MRF node was given an initial
set of the 19 most locally likely edge values and the empty
edge. Belief propagation was run for 200 iterations—the
MAP assignments typically converge by that point. Conver-
gence is not guaranteed and waiting for full convergence is
impractical for models of this complexity. Theε value used
for incompatible neighboring assignments was10−10.

Four versions of the SANE algorithm were tested on the
traffic data set. There were two choices of image features:
the average brightness at the top, left, right and bottom patch
areas and these values added to the average red, green, and
blue values over the whole patch. We also used both sin-
gle and multiresolution models, making four possible com-

binations of features and model type. Only single resolution
brightness and color models were trained on the walking-
person data set. Motion is not used in segmentation.

The “ground-truth” segmentations that the outputs are
compared to are produced by the same background subtrac-
tion methods that are used to label the training data. Just as
in the training process, the test frames are cropped so they
only contain the moving objects and their immediate sur-
roundings because there is no knowledge about the correct
segmentation in static parts of the image.

SANE does not distinguish which of the two segment la-
bels belongs to the objects and which to the background.
When comparing the results to the motion segmentations,
the inferred segment that has the highest overlap with the
moving objects is considered the object segment label.

Table 1: SANE and normalized cuts on traffic data.
Algorithm F-measure Recall Precision

SANE (color, mres) 0.803 0.816 0.790

SANE (color) 0.767 0.802 0.735

SANE (bright) 0.717 0.805 0.647

Ncuts (5) 0.677 0.629 0.734

Ncuts (6) 0.676 0.591 0.789

Ncuts (4) 0.656 0.641 0.672

Ncuts (7) 0.651 0.561 0.775

SANE (bright, mres) 0.646 0.801 0.541

Ncuts (8) 0.633 0.534 0.779

Ncuts (3) 0.609 0.705 0.536

Ncuts (9) 0.600 0.496 0.760

Ncuts (2) 0.580 0.793 0.457

Ncuts (10) 0.578 0.469 0.754

We measured precision (p) and recall (r) on the segmen-
tation output, using the motion labels as ground truth. Preci-



sion is the percentage of inferred object pixels that were true
object pixels and recall is the percentage true object pixels
that were correctly labeled. Precision and recall are used to
calculate the F-measure (2pr/(p+r)), which can be used as
a measure of overall quality.

The motion data only labels moving objects in the frame,
so in some image sequences it may be impossible or unde-
sirable to achieve 100% precision and recall. If the traffic
images included cars parked alongside the road, a good ob-
ject segmentation algorithm might correctly discover their
boundaries, but there would be no corresponding motion la-
bel. The test data used here largely eliminates that concern
by only including image regions that contain moving ob-
jects, but there are some potential objects, such as the lane
lines on the highway, that are never labeled as moving. Fur-
thermore, the motion labels themselves have some noise.

The results of SANE using brightness and color features
on the traffic and walker data can be found in Tables 1 and
2, respectively. Multiresolution SANE with both bright-
ness and color image features were also tested on the traffic
data. For comparison, the tables also present results pro-
duced by the well-known normalized cuts segmentation al-
gorithm (Shi & Malik 1997) on the same data. The normal-
ized cut implementation (Cour, Yu, & Shi 2004) only used
brightness-based features, so it should not be directly com-
pared to the SANE output that utilized color.

Table 2: SANE and normalized cuts on walker data.
Algorithm F-measure Recall Precision

SANE (color) 0.742 0.811 0.683

SANE (bright) 0.613 0.709 0.540

Ncuts (2) 0.529 0.730 0.415

Ncuts (3) 0.516 0.627 0.438

Ncuts (4) 0.527 0.563 0.495

Ncuts (5) 0.512 0.539 0.487

Ncuts (6) 0.490 0.515 0.468

Ncuts (7) 0.480 0.501 0.462

Ncuts (8) 0.488 0.481 0.495

Ncuts (9) 0.466 0.456 0.477

Ncuts (10) 0.453 0.436 0.471

Normalized cuts is a general purpose segmentation algo-
rithm that finds groups of similar pixels, with a bias against
finding small regions. The implementation used here mea-
sures the similarity between two pixels by searching the
space between them for edges that might indicate region
boundaries. In the experiments, the non-touching normal-
ized cut regions that maximally overlapped the object pixels
in the motion segmentations were considered the object seg-
ments and all the others were considered the background.
Thus dividing a single object into multiple segments is pe-
nalized. The set of object segments can be no larger than 3,
since none of the test images contain more than 3 objects.
The total number of segments found by normalized cuts was
varied from 2 to 10 to discover if any setting was optimal for
finding object segments across the entire data set. The intent
is to demonstrate that object segmentation cannot be easily
solved with a generic image segmentation algorithm.

On both data sets, the F-measure of brightness-only, sin-
gle resolution SANE is higher than that for any setting of

normalized cuts.1 Because the object segmentation problem
requires that an algorithm distinguish between object and
non-object boundaries, normalized cuts labors under two
disadvantages. First, it only has generic knowledge of image
regions, while SANE is trained to recognize the region prop-
erties appropriate to particular objects and environments. In
Figure 3, there is no number of normalized cut segments
that works well across all three example images because it
does not have a model that favors car boundaries over other
types. Secondly, normalized cuts does not have a strong
model of object shape. The boundaries of the walking per-
son in Figure 4 are not very well defined due to saturation
caused by the extremely bright background. SANE bene-
fits enormously because it has learned a strong shape model
that allows it to do a better job of pulling out the human
boundary and ignoring other more visually striking regional
divisions. Normalized cuts, on the other hand, prefers divid-
ing the person and the background along the most striking
brightness boundaries, which often results in subdividing the
object of interest rather than separating it from the surround-
ings. The data and these examples speak to the advantages
of using machine learned algorithms with strong shape mod-
els to perform object segmentation.

It’s interesting to note the odd performance of the
brightness-only, multiresolution SANE algorithm on the
traffic data. It appears that on this data, multiresolution with-
out color information degrades performance. Adding color,
however, produces a multiresolution SANE that is superior
to all single resolution versions. This phenomenon bears
further investigation, but it may point to the utility of color
information in modeling low-resolution image structures.

Figures 3 and 4 have examples of the performance of
different SANE variants. In the traffic images, one of the
brightness, single resolution examples is particularly bad be-
cause the belief propagation algorithm failed to converge.
However, the addition of color and multiresolution structure
in the other SANE models overcomes that problem.

To further examine the benefits of the extra shape infor-
mation provided by the shape model and the closed bound-
ary requirement imposed by segmentation, we also com-
pared the output of SANE to the learned boundary detector
created by Martin et al. (2004). The Martin code (Martin &
Fowlkes 2004) was adapted to our data by using constant-
sized features, since the image sizes of our data don’t indi-
cate the object scales. We trained the detectors on our traffic
data using multiple feature scales and selected those with
maximal F-measures on the task of detecting the boundaries
in our test set. For comparison, we also measured how well
the color, multiresolution SANE detector performed on the
same data. A detected boundary pixel had to be within 3
pixels of a motion boundary to count as a correct detection.

As seen in Table 3, SANE outperformed all the differ-
ent Martin detectors (brightness gradient (BG), color gradi-
ent (CG), texture gradient (TG), and the BGTG and CGTG

1These statistics are computed across all the pixels in all the
test images. The best average per-image F-measures for SANE
and normalized cuts on the traffic data are more similar, probably
because smaller images are easier to segment correctly.



combinations). Since the Martin algorithm had access to the
same training data and used a much more sophisticated set of
local features, SANE’s advantages must be due to its shape
model and the sharing of information produced by the MRF.
The Martin detectors are calculated independently at each
location and do not allow for the pooling of information at
many locations to make optimal joint decisions. Addition-
ally, the SANE requirement that outputs must form valid
segmentations, that they have closed boundaries, helps the
model ignore boundaries that are internal to the object and
continue boundaries in regions with ambiguous local data.
Because the Martin detectors lack this requirement, they can
detect edges that never form part of a complete boundary
and cannot infer boundaries in data-poor regions.

Table 3: SANE and Martin et al. boundaries.
Algorithm F-measure Recall Precision

SANE 0.642 0.759 0.556

Martin BGTG 0.605 0.813 0.482

Martin BG 0.599 0.704 0.521

Martin CGTG 0.597 0.779 0.484

Martin TG 0.579 0.810 0.450

Martin CG 0.376 0.477 0.311

Future work
The motion segmentations produced by background subtrac-
tion lack T-junctions, areas where three different regions
meet, because there are only two region labels—foreground
and background. Similarly, the SANE algorithm assumes
only two region labels and therefore only distinguishes non-
overlapping objects. The next extension of this work will be
the ability to handle overlapping objects with T-junctions.

Conclusion
The SANE algorithm demonstrates the value of self-
supervised learning and the combination of local image in-
formation, shape models, and global output constraints in
the object segmentation task. Self-supervised learning al-
lows the algorithm to adapt to new environments and outper-
form generic methods, making it ideal for integration with
real-world systems. The combination of local boundary and
region models with the shape relationships encoded in the
MRF and the global requirement of producing a valid seg-
mentation allow the model to better find the class of seg-
mentations defined by the training data and to ignore dis-
tracting regional differences. Further advances could make
this type of task and environment-specific segmentation a
valuable part of actual, deployed computer vision systems.
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