
Logical Particle Filtering

Luke S. Zettlemoyer, Hanna M. Pasula, and Leslie Pack Kaelbling

MIT CSAIL
{lsz,pasula,lpk}@csail.mit.edu

Abstract. In this paper, we consider the problem of filtering in rela-
tional hidden Markov models. We present a compact representation for
such models and an associated logical particle filtering algorithm. Each
particle contains a logical formula that describes a set of states. The
algorithm updates the formulae as new observations are received. Since
a single particle tracks many states, this filter can be more accurate
than a traditional particle filter in high dimensional state spaces, as we
demonstrate in experiments.

Consider an agent operating in a complex environment, made up of an un-
known, possibly infinite, number of objects. The agent can take actions and
make observations of the state of the world, and it knows a probabilistic model
of how the state changes over time as a result of its actions and of how the
observations are generated from the states. How can it efficiently estimate the
underlying state of the environment? Filtering is the problem of predicting a
distribution over the underlying environment state given a history of the agent’s
actions and observations. This problem is pervasive in AI: a dialogue system has
to estimate the belief state of the user; an office-assistant must track the states
and relationships among people, meetings, and projects; a household robot has
to track the locations of furniture, the state of the dishes in the dishwasher, and
the desires of the humans in its house.

At their root, these problems are controlled hidden Markov models (HMMs)
or POMDPs. The standard techniques for filtering in such models require enu-
meration of the individual states of the environment. This quickly becomes in-
tractable, and is impossible in infinite worlds. Particle filtering methods [1] make
approximations by representing a small set of likely states. They can be exe-
cuted online with constant computation per time step and can be used to track
arbitrary state spaces, but reliable estimates in large domains require a very
large number of particles. This problem can often be ameliorated by using Rao-
Blackwellization, in which the filtering distribution is decomposed into two fac-
tors, one that is sampled and one that is computed exactly. Rao-Blackwellization
has been effectively applied in both propositional [2] and relational [3] state rep-
resentations. In both cases, however, a finite universe of objects must be known
in advance.

Quantified logical expressions are a powerful method for using short de-
scriptions to name large (possibly infinite) sets of states. When the underlying
model of uncertainty in the domain is nondeterministic rather than probabilistic

2 L. S. Zettlemoyer, H. M. Pasula, L. P. Kaelbling

(that is, there is a set of environment states that are consistent with the ac-
tion/observation stream at any point in time), logical expressions can be used as
the basis of algorithms [4] that track effectively in large state spaces. However, it
is not obvious how to use them in probabilistic tracking problems. Recent work
explored MCMC sampling over relational structures [5], lifted probabilistic in-
ference [6], and exact inference in relational HMMs [7] but we do not know of
relational sampling techniques for probabilistic filtering.

In this paper, we combine the ability of particle filters to focus only on the
most likely underlying states with the ability of logical expressions to tractably
name large sets of complex states. We develop an online, logical particle filtering
algorithm that maintains a set of quantified logical formula or hypotheses, each
of which potentially describes a large or infinite set of states. The hypotheses
are built up incrementally, making discriminations only as needed to track the
results of the agent’s actions and incorporate the information from its observa-
tions. Aspects of the environment about which the agent gets no information
are not explicitly represented. As a result, we get a robust and efficient filter
whose complexity is driven by the information content of the agent’s actions
and observations.

As a running example, we will consider an idealized robot that needs to
map an environment with topological structure, such as a sewer or street grid,
which is made up of a set of interconnected locations. Fig. 1(a) shows six possible
worlds, where solid lines indicate walls, dotted lines represent halls, and the circle
marks the robot’s location. At time zero, the robot does not know the structure
or size of its environment, but it does have a prior distribution over how many
locations are possible and how they might be connected. It gets local observations
indicating whether there are locations next to it, but these observations can be
noisy: the robot might fail to see some openings. It can also execute actions by
trying, sometimes unsuccessfully, to move to neighboring locations. Although
this problem seems simple, it presents a challenging filtering task because there
are infinitely many possible mazes.

1 Problem and Representation

We will now define a filtering problem based on a logical representation of states,
actions, transitions, and observations. This representation is inspired by a similar
one previously used for probabilistic rule learning in the fully observable setting
[8]. Let s be the (possibly countably infinite) set of possible states, and o be the
finite set of possible observations. Then let si ∈ s and oi ∈ o be a specific state
and a specific observation at time i, s0:t be a sequence {s0, . . . , st} of t+1 states,
and o1:t be a sequence {o1, . . . , ot} of t observations. The filtering problem is to
compute the distribution p(st|o1:t) for a sequence of time steps t = 1 . . . T . The
dynamics of the world are

p(s0:t, o1:t) = p(s0)
t∏

i=1

p(si|si−1)p(oi|si) .

Logical Particle Filtering 3

S
ta

te
s

(a)

, , , , , , . . .

(b)

=
at = l0, left(l0) = l1, right(l1) = l0,
right(l0) = null, up(l0) = null, down(l0) = null,
left(l1) = null, up(l1) = null, down(l1) = null

T
ra

n
si

ti
o
n (c)

go-left :

X : at = X
Y : left(X) = Y

ff
no context

→

.9 : at = Y

.1 : no change

,
go-left :

˘
X : at = X

¯
left(X) = null
→

˘
1 : no change

, . . .

O
b
se

rv
a
ti

o
n (d)

∗ :

X : at = X
Y : left(X) = Y

ff
no context

→

.9 : hall-left

.1 : ¬hall-left

, . . .

H
y
p
. (e)

= ∃V1. at = V1 ∧ up(V1) = null

(f)

=
∃V1.∃V2 6= V1. at = V1 ∧ left(V1) = V2 ∧ right(V2) = V1

∧up(V1) = null ∧ down(V1) = null
∧up(V2) = null ∧ down(V2) = null

Fig. 1. Maze world representation: states, transition rules, observation rules, and hy-
potheses.

where p(s0:t, o1:t) is a joint distribution over state and observation sequences.1

1.1 States, Observations, and Actions

A state is represented by a conjunctive formula with constants denoting objects
in the world and proposition and function symbols representing the objects’
properties and relations.2 For example, Fig. 1(b) shows a maze world state with
two locations, where the robot is at l0, and there is a location to the left, l1. Each
state is a full description of the world where each constant names a unique object.
Observations are constructed using a set of n propositions: each observation
can include truth values for some subset of the propositions. For example, in
the maze world, the propositions are hall-left, hall-right, hall-up and hall-down.
An observation might be {¬hall-right, hall-left}. Finally, we assume a finite,
unparameterized, set of actions a. In the maze world, the actions are go-left,
go-right, go-up, and go-down.
1 In this paper, we actually use the model p(s0:t, o1:t|a1:t) =

p(s0)
Qt

i=1 p(si|si−1, ai)p(oi|si, ai) for fixed action sequences a1:t. To simplify
notation, we drop a1:t when it is not directly relevant to the discussion.

2 Our algorithm never explicitly represents fully ramified states; instead it uses logical
formulae describing state sets.

4 L. S. Zettlemoyer, H. M. Pasula, L. P. Kaelbling

1.2 Transition Rules

The transition distribution p(st|st−1, at) is defined using a set of rules. Each
rule has a set of applicability conditions and a distribution over a set of changes
to the previous world state. Fig. 1(c) shows two transition rules. The first rule
models the situation where the robot is at a location with an accessible location
to the left of it, and attempts to move left. There is a high probability that it
will move to the new location, but it might stay where it was. The second rule
models the case where there is no accessible location to the left. Here the robot
will never move. In a full transition model for the maze world, similar rules are
defined for each direction the robot can move.

Each rule has three parts that determine when it is applicable: an action, a
set of deictic references defining variables, and a context that encodes a set of
preconditions. Both of these rules in Fig. 1(c) model the go-left action. The first
has two deictic references and the second has one. Each reference is defined by
a single functional term that specifies how to bind the variable in a state st−1.
For example, the deictic reference X : at = X, specifies that X binds to the
value of the at function, or fails to bind if this value is null. Given a particular
state st−1, we can determine whether a rule applies by computing a binding θ
that finds objects for all the variables and then tests whether the preconditions
hold for this binding. For example, in the state in Fig. 1(b), the first rule would
have the binding θ = {X/l0, Y/l1} and the second rule would have the binding
θ = {X/l0}. The first rule would apply, since it has no preconditions in the
context, while the second one would not because left(l0) = l1 instead of null.

Multiple rules can apply to a single state, as long as they do not conflict. To
discover conflicts, we take each of the applicable rules and construct the set of
ground terms it can affect by applying the binding to all the terms in the rule’s
outcomes. If any term is found that can be affected by more than one rule, all
the relevant rules are marked as conflicting and ignored.

Given a set of non-conflicting applicable rules, the distribution over outcomes,
described on the right of the →, defines what changes may happen from st−1

to st. Each outcome describes a set of conditions that might be true at time t.
For example, the first outcome of the first rule in Fig. 1(c) specifies that at = Y
will be true for the current value of Y in θ, with probability 0.9. To compute
p(st|st−1, at) we must sum all of the ways st can be constructed from st−1 given
the applicable rules. Because we assume a small number of rules with a small
number of outcomes, this computation is tractable.

1.3 Observation Rules

The observation distribution p(ot|st, at) is also defined using a set of rules. The
preconditions for an observation rule work like those of a transition rule, but the
effects are described in the observation language. To generate an observation, we
assume that nothing is observed by default and only add the propositions in the
outcomes sampled from the applicable rules. To compute the probability of an
observation, we sum all ways of generating it from the rules, as we did with the

Logical Particle Filtering 5

transition rules. For example, the rule in Fig. 1(d) models the situation where
the robot is at a location that has an accessible location to the left of it. With
high probability the robot will receive an observation hall-left, but sometimes
it will not see the hall. This rule uses the special ∗ symbol to indicate that it
applies for any action. The full observation model includes additional rules for
the other directions.

1.4 Hypotheses

Hypotheses are logical formulae ht that describe sets of states. Each ht is a
first-order sentence consisting of existentially quantified variables that are con-
strained to not equal each other, and a conjunction of literals formed with these
variables. For example, the hypothesis in Fig. 1(e) represents all of the (poten-
tially infinitely many) states where the robot is at a location with a wall above
it. The hypothesis in Fig. 1(f) describes states where there is a horizontal hall
of length at least two and the robot is in the right location.

Representing sets of world states this way allows us to compute the transition
probabilities p(ht|ht−1, at) and observation probabilities p(ot|ht, at) efficiently
for a wide range of hypotheses. For example, the hypothesis in Fig. 1(f) contains
enough information to determine the effects of the go-left action. No matter
which st ∈ ht we consider, the robot will always either stay at the location V1

describes, or move to the location named by V2 with known probability. The
update would be more difficult if the robot instead executed go-right. In order
to predict this action’s effects, we would need to know whether there is a location
to the right. This location might exist in some, but not all states st ∈ ht.

More formally, we say that a rule r has uniform application to a hypothesis
h if it applies either to all s ∈ h, or to none of them. This can be checked by
directly computing application to the hypothesis, like we did for states above.
If any of the necessary information about the deictic referents or precondition
truth values is missing, r applies to some states in h and not others. For example,
in Fig. 1(c), the first go-left rule has uniform application to the hypothesis in
Fig. 1(f) under the binding θ = {X/V1, Y/V2}, while a similar rule for the
go-right action does not because we cannot find a binding that satisfies the
preconditions, or guarantee that one does not exist. Given a rule set R, if each
rule r ∈ R has uniform application to h, we say that h is specific enough for R.
When a hypothesis is specific enough, transition and observation probabilities
can be computed by collecting applicable rules and summing over outcomes, just
as for a specific st.

1.5 The Prior

For standard particle filters, the prior p(s0) is only used to sample initial states
s0. However, for the logical particle filter, we will need to be able to compute
p(h) =

∑
s0∈h p(s0) for a wide range of possible hypotheses. If we assume a

6 L. S. Zettlemoyer, H. M. Pasula, L. P. Kaelbling

relatively simple prior, this can be done efficiently.3 For example, the prior for the
maze world first selects the size of a grid of locations according to a distribution
and then, for each pair of adjacent locations, makes an independent probabilistic
decision as to whether they are connected by a hall. Finally, the robot is placed
in the center location. Thus, we can compute the probability of any particular
initial state by summing the probabilities of the grid sizes that are big enough to
have generated the world times the probabilities of the existence of the world’s
halls. Since hypotheses are just partial state descriptions, their probabilities
are calculated analogously. In both cases, because the probability of a hall is
independent of the size of the maze, if we constrain the distribution over maze
sizes to be integrable in closed form, the computations will be efficient with time
that does not depend on the number of possible states, which is essential for
infinite state spaces.

2 Probabilistic Logical Filtering

Before we describe the logical particle filter, we will present an algorithm that can
compute p(s0:t|o1:t) exactly.4 The algorithm works by constructing a partition
H0:t. Each h0:t ∈ H0:t is a sequence of t hypotheses, where each hypothesis
ht describes a set of states. Thus, p(h0:t) =

∑
s0:t∈h0:t

p(s0:t), and p(s0:t|h0:t) =
p(s0:t)/p(h0:t) if s0:t ∈ h0:t and 0 otherwise. These definitions allow us to compute

p(s0:t|o1:t) =
X

h0:t∈H0:t

p(s0:t|h0:t)p(h0:t|o1:t) (1)

where p(s0:t|h0:t, o1:t) is simplified to p(s0:t|h0:t) because the hypotheses are con-
structed so that the s0:t are conditionally independent of o1:t given h0:t, as we
will see shortly. We will also ensure that, for each h0:t, every s0:t ∈ h0:t will have
the same transition and observation probabilities. This property will enable us
to compute p(s0:t|h0:t) and p(h0:t|o1:t) efficiently. As a running example, we use
a further simplified maze world with only one direction left, one observation
hall-left, and one action go-left. The robot’s task is to estimate the length of the
corridor and its current location.

The partition H0:t is defined recursively by, at each time step, taking each
h0:t−1 ∈ H0:t−1 and using it to construct an Ht. Each ht ∈ Ht is added to the
corresponding h0:t−1 to create an h0:t. We always start with an initial hypothesis
set, H0, that contains the single hypothesis h0 = true. The process for computing
a new Ht given an ht−1 has three steps. It makes use of the Specialize procedure,
described later in this section, which takes a hypothesis h and a rule set R and
partitions h into a set of new hypotheses which are each specific enough for
3 Exploring more complex priors is an important area for future work. One possi-

ble approach would be to use general purpose first-order probabilistic models and
inference algorithms (see, for example, BLOG [9].)

4 We focus on computing p(s0:t|o1:t) instead of the filtering distribution p(st|o1:t)
because it is easier to describe sampling techniques for this problem. The same
sampling techniques can also estimate the marginal p(st|o1:t).

Logical Particle Filtering 7

R. This procedure is used repeatedly to ensure we can compute transition and
observation probabilities for hypotheses as they are constructed.

Step 1: Transition Specialize First, we specialize each ht−1, by splitting it
into a set of mutually exclusive hypotheses •Ht−1 so that each new hypothesis
is specific enough for the relevant transition rules. For example, with the go-left
action, h0 would become

•h1
0 : ∃x.at = x ∧ left(x) = null

•h2
0 : ∃x, y.x 6= y ∧ at = x ∧ left(x) = y

where •h2
0 describes the set of states with an accessible location to the left of the

current location and •h1
0 the ones without such a location. We can compute the

probability of each of these hypotheses using the prior, for example p(•h2
0) is the

sum of the probabilities of the initial states that have a location to the left.

Step 2: Transition Now that we have specialized, we can compute all of the
possible transitions efficiently. To do this, we create a new set of hypotheses ◦Ht

for the subsequent time t that model all the possible action effects in all of the
•ht−1. In our example, ◦H1 is:

◦h1
1 : ∃x.at = x ∧ left(x) = null

◦h2
1 : ∃x, y.x 6= y ∧ at = x ∧ left(x) = y

◦h3
1 : ∃x, y.x 6= y ∧ at = y ∧ left(x) = y

where ◦h1
1 models the fact that the go-left action would not have changed any

aspects of the states described by •h1
0, because there is no location to move to.

◦h3
1 represents the effects of successfully moving from the states in •h2

0, while ◦h2
1

describes failure from those same states. Notice that, after the transition, we still
have a partition of the possible state sequences, because the effects of the action
are mutually exclusive. For example, in this case, either the robot moves, or it
does not. We can also compute the joint probability of the hypothesis sequences
by multiplying the transition likelihoods by the prior probabilities from the last
step. For example, p(◦h3

1,
•h2

0) = p(•h2
0)p(◦h3

1|•h
2
0) = p(•h2

0) · 0.9, where 0.9 is the
probability that the robot successfully moves.

Step 3: Observation Specialize The final step, which yields Ht, is another
specialization which ensures that the hypotheses are specific enough for the
observation rules. In our example, given the observation o1 = ¬hall-left, we
would create the following H1:

h1
1 : ∃x.at = x ∧ left(x) = null

h2
1 : ∃x, y.x 6= y ∧ at = x ∧ left(x) = y

h3
1 : ∃x, y.x 6= y ∧ at = y ∧ left(x) = y ∧ left(y) = null

h4
1 : ∃x, y, z.x 6= y 6= z ∧ at = y ∧ left(x) = y ∧ left(y) = z

8 L. S. Zettlemoyer, H. M. Pasula, L. P. Kaelbling

where we split ◦h3
1 into h3

1 and h4
1 so that each hypothesis specifies whether

there is a location to the left. We can also now compute the joint probabil-
ity of the new hypothesis and the observation. For example, p(h4

1, o1,
•h2

0) is
p(o1|h4

1)p(h4
1|◦h

3
1)p(◦h3

1,
•h2

0) where p(◦h3
1,

•h2
0) is defined above, p(o1|h4

1) is the
observation probability (in this case 0.1) and p(h4

1|◦h
3
1) is the specialization prob-

ability, which will be described shortly.
As the robot acts in the world, we repeatedly perform the same three-step

process for each time step.

2.1 The distributions

As we build H0:t, we compute p(s0:t|h0:t) and p(h0:t|o1:t) as follows. The distri-
bution

p(h0:t|o1:t) =
∏

t

p(ht|ot, ht−1)p(h0)

is built incrementally by computing p(ht|ot, ht−1) for each ht. We do this by first
computing p(ht, ot|ht−1) and then the conditional p(ht|ot, ht−1) by dividing by
p(ot|ht−1) =

∑
ht

p(ht, ot|ht−1). The distribution p(ht, ot|ht−1) can be computed
directly by multiplying together the probabilities of the steps used to construct
ht, as we saw in the example above for the specific case of p(h4

1, o1|•h2
0)p(•h2

0).
We also need to compute p(s0:t|h0:t). For s0:t ∈ h0:t, p(s0:t|h0:t) =

p(s0)
Q

t p(st|st−1)P
s′
0:t∈h0:t

p(s′0)
Q

t p(s′t|s′t−1)
=

p(s0)P
s′
0:t∈h0:t

p(s′0)

where the products cancel because all of the s′0:t described by h0:t, including s0:t,
must have the same transition probabilities. Now, the summation

∑
s′
0:t∈h0:t

p(s′0)
is a single computation with complexity independent of the time step t.

This same trick can be used for the specialization probabilities from before.
Whenever we want to replace a hypothesis ht with a more specific hypothesis
h′t, we must compute the specialization probability p(h′0:t|h0:t). We can write
out the products, like we did above, and the transition probabilities will cancel
yielding

p(h′0:t|h0:t) =

∑
s0:t∈h′

0:t
p(s0)∑

s0:t∈h0:t
p(s0)

,

which is two computations with the prior.

2.2 Specialization

Fig. 2 shows the Specialize algorithm which splits a hypothesis into new hypothe-
ses that are specific enough for a rule set. There are two reasons why Specialize
might split a hypothesis. First, we might not be able to prove that a deictic ref-
erence binds. Second, we might not be able to prove whether the preconditions
hold. In both of these cases, the algorithm creates a set of new, mutually exclu-
sive hypotheses, each of which has a different referent for the unknown deictic

Logical Particle Filtering 9

Specialize(Inputs: Rule set R, Hypothesis h)
Initialize H = {h}
For each r ∈ R and

h = ∃v0, . . . , vn. v0 6= . . . 6= vn ∧ p1 ∧ . . . ∧ pn ∈ H
For each deictic reference vi : d = vi ∈ r

If vi does not have a unique reference in h
Remove h from H
Add each {h ∧ d = v0, . . . , h ∧ d = vn} to H
Add h ∧ d = null to H
Add ∃v0, . . . , vn, vn+1. v0 6= . . . 6= vn 6= vn+1

∧p1 ∧ . . . ∧ pn ∧ d = vn+1 to H
For each context literal p ∈ r

If truth of p is undefined in h
Remove h from H
Add h ∧ p and h ∧ ¬p to H

Return H

Fig. 2. The Specialize algorithm.

reference or a different truth value for the unknown precondition literal. In •h1
0

from step 1 in our example above, the variable x was added as a referent for the
deictic reference that names the location of the robot in the go-left transition
rule and left(x) = null was added to satisfy a precondition.

2.3 Discussion

If the size of the partition H0:t is small, this exact algorithm is efficient: the sum
in Eq. 1 involves a small number of terms, and each term can be computed effi-
ciently. The size of H0:t can never exceed the number of possible state sequences,
since it partitions this space. Its rate of growth is determined by the structure
of the transition and observation rules. Rules with local structure, those that
have only a few deictic references and simple preconditions, will ensure that
H0:t grows slowly. With enough specialization, H0:t can, in general, reach its full
size. However, since we only specialize for the given actions and the observations
that are actually encountered, this will not always happen. For example, if the
robot only explores part of the maze, it never needs to represent or reason about
the locations it has not visited.

3 The Logical Particle Filter

In complex domains, the partition H0:t will grow so large that computing the
sum in Eq. 1 will become unmanageable. However, many of the h0:t ∈ H0:t will
have low probabilities and we can obtain a good approximation by sampling
from the distribution over the hypotheses. In this section, we recast filtering as
computing an expectation

I(f) = Ep(s0:t|o1:t)[f(s0:t)] ,

10 L. S. Zettlemoyer, H. M. Pasula, L. P. Kaelbling

and approximate this expectation by sampling.5

A straightforward sampling technique is to draw samples s
(i)
0:t, i = 1 . . . n,

from p(s0:t|o1:t) and approximate I(f) as

În(f) = (1/n)
n∑

i=1

f(s0:t) .

However, we want to sample hypothesis sequences h0:t, not state sequences.
Recall that p(s0:t|o1:t) = p(s0:t, h0:t|o1:t) when s0:t ∈ h0:t, and so

Ep(s0:t|o1:t)[f(s0:t)] = Ep(s0:t,h0:t|o1:t)[f(s0:t)] .

Now, because of the conditional independence, Ep(s0:t,h0:t|o1:t)[f(s0:t)] can be
decomposed into Ep(h0:t|o1:t)[Ep(s0:t|h0:t)[f(s0:t)]]. We sample values for the outer
expectation, computing the inner one exactly for each sample.

When we sample h0:t, we are performing a type of Rao-Blackwellization,
which is a variance–reduction technique that can be applied to sampling schemes
that compute the expectation of a function of more than one random variable.
The desired expectation is rewritten as

Ep(x1,x2)[f(x1, x2)] = Ep(x2)[Ep(x1|x2)[f(x1, x2)]]

and the outer expectation is approximated by sampling. The key to applying it
to logical hypothesis sequences is to define a random variable over the sets in
each partition.6

The final step for defining the logical particle filter (LPF) is to show that
this sampling can be done online. We do this by applying particle filter (PF)
techniques; see [2] for a general discussion of Rao-Blackwellized particle filters
(RBPFs). Fig. 3 shows the LPF algorithm, which performs online importance
sampling from a proposal distribution q(h0:t|o1:t) that factors into

q(h0:t|o1:t) = q(h0)
∏

t

q(ht|ht−1, ot) .

The LPF uses p(ht|ht−1, ot) for this proposal distribution because it minimizes
the variance of the importance weights conditioned on ht−1 and ot [1]. The as-
sociated importance weights are then p(ot|ht−1). We can use this combination
because, as we saw before, p(ht|ht−1, ot) can be computed efficiently by enumer-
ation; similar reasoning applies to the importance weights.

5 This generalizes the standard filtering problem: setting f(x) = δs0:t(x), the Dirac-
delta function at s0:t, yields Ep(s′

0:t|o1:t)[δs0:t(s
′
0:t)] = p(s0:t|o1:t).

6 A more traditional way of applying Rao-Blackwellization is to factor each state so
that s = (a, b). Then p(a0:t, b0:t|o1:t) is represented compactly, often with a dynamic

Bayes net, allowing E
p(a0:t|b

(i)
0:t,o1:t)

[f(a0:t, b
(i)
0:t)] to be computed efficiently. This can

be seen as a partition H0:t with sets h0:t = {s0:t|b0:t = b} for each possible b.

Logical Particle Filtering 11

Initialization: For i = 1 . . . n, set h
(i)
0 = true.

Filtering: For t = 1 . . . T :

1. For i = 1 . . . n, draw:

h
(i)
t ∼ q(ht|h(i)

t−1, ot)

and set
h

(i)
0:t = (h

(i)
0:t−1, h

(i)
t)

2. Calculate the importance weights:

w(h
(i)
0:t) =

p(ot|h(i)
t)p(h

(i)
t |h(i)

t−1)

q(h
(i)
t |h(i)

t−1, ot)

3. Normalize the importance weights:

ew(h
(i)
0:t) =

w(h
(i)
0:t)Pn

i=1 w(h
(i)
0:t)

4. Resample new particles h
(i)
0:t according to the distribution defined by the

weights ew(h
(i)
0:t).

Fig. 3. The logical particle filter.

After sampling, the LPF estimate of I(f) is

Îrbpf
n (f) =

n∑
i=1

E
p(s0:t|h(i)

0:t)
[f(s0:t)] .

This expectation may be hard to compute in general, but consider f(x) =
δs0:t(x), the Dirac-delta function at s0:t. In this case,

E
p(s′

0:t|h
(i)
0:t)

[δs0:t(s
′
0:t)] = p(s0:t|h(i)

0:t) ,

which we saw how to compute in Sec. 2.1. There are other interesting choices for
f(x) that could be computed directly from the sampled h

(i)
0:t. For example, we

could define a function that returns the total distance the robot has traveled in
the maze. Exploring the full range of possibilities is an important area for future
work.

3.1 Discussion

Since the time complexity of extending the hypotheses h0:t at each time step t
does not depend on t, the LPF is an online sampling method.

While sampling from the q(ht|ht−1, ot) proposal distribution is a form of
Rao-Blackwellization, it also has another added benefit. Since we are building
ht online without ever specifying full states, we are, in effect, sampling aspects

12 L. S. Zettlemoyer, H. M. Pasula, L. P. Kaelbling

of the initial state s0, only as observations ot are received for which they are
relevant. For example, consider sampling one of the hi

1 that we saw in step 3
in Sec. 2 when the observation o1 = ¬hall-left is received. The LPF would be
much more likely to sample h1

1 or h3
1 than the others because they do not have

a hall to the left. However, at this stage of sampling in a traditional particle
filter, the entire state of the maze would already be determined (sampled from
the prior) and there would be no chance to use the observation in the proposal
distribution. Since this same effect is seen at every time step, the LPF provides
a type of infinite look-ahead sampling of the prior that can significantly improve
performance.

Crisan and Doucet [10] present an analysis of RBPF algorithms. Although
the estimate is biased, it converges to I(f) as n →∞. Also, the sample variance
is never larger than that of a traditional PF. Because the LPF is an RBPF,
these results apply directly. The amount of variance reduction depends on the
size of H0:t. Even if H0:t grows large, it is often small for early sampling steps,
significantly reducing the variance.

4 Evaluation and Discussion

As an initial experiment, we compared the LPF to a PF in the maze world, with
four directions, described earlier. Since it is difficult to evaluate the performance
of approximate inference algorithms in domains where the true answer can not
be computed, we limited the size of the maze to be no larger than a three by
three grid of locations and computed p(s0:t|o1:t, a1:t) exactly by enumeration.
Fig. 4 shows the average variational distance (absolute difference) of each filter’s
estimates (computed by setting f(x) = δs0:t(x)) of this probability as a func-
tion of the amount of computation time used. Each data point is an average
over ten runs on state and observation sequences sampled from the joint model
p(s0:t, o1:t|a1:t) for randomly chosen sequences of ten actions and is labeled with
the number of particles used by the filter. As we would expect, the LPF has lower
error and less variance. Although our unoptimized implementation of the LPF
runs, on average, 10 times slower per particle, the improvement in performance
significantly outweighs this extra cost.

Although it is not possible to do an exact comparison in larger domains, we
know that the LPF will never produce a worse estimate than a PF, because it
reduces to a traditional PF algorithm in the worst case when each hypothesis
describes a single state. There are also a wide range of domains where the LPF
can compute reasonable estimates but the PF will perform poorly. For example,
consider any domain where the prior p(s0) assigns a very low probability to most
of the states. With high probability the true state sequence s0:t will contain one
of these states, but it will be extremely unlikely for the PF to sample it. De-
pending on the transition distribution, if the true initial state is not sampled,
the filter may never recover. For example, in the maze world, if none of the par-
ticles contain the true maze structure, the PF will never converge on the proper
structure. In contrast, the LPF, with its delayed sampling of the prior, will have

Logical Particle Filtering 13

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10 12

V
ar

ia
tio

na
l D

is
ta

nc
e

Computation Time

10
50 100 500

10

100
500

1000
5000

PF
LPF

Fig. 4. The variational distance between the estimated and true probabilities as a
function of computation time. Each data point is labeled with the number of particles
used.

a good chance of sampling the proper structure, by extending its hypotheses to
incorporate new observations about the maze as they are received. In particular,
for the case of deterministic transition and observation distributions, the LPF
will perform optimally. In the maze world, the hypotheses will simply record the
maze as it is observed and provably compute the correct estimate with a single
particle.

Our biggest focus for future work will be to explore different methods for
constructing partitions. In particular, we might not want to always specialize
at each time step. If we instead knew that some of the aspects of the world
in our hypotheses were no longer needed for our tracking application, we could
marginalize them out and generalize the partition, preventing it from growing
to contain all possible state sequences.

References

1. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Prac-
tice. (2001)

2. Doucet, A., de Freitas, N., Murphy, K., Russell, S.: Rao-Blackwellized particle
filtering for dynamic Bayesian networks. In: Proceedings of the Conference on
Uncertainty in Artificial Intelligence. (2000)

3. Sanghai, S., Domingos, P., Weld, D.: Relational dynamic Bayesian networks. Jour-
nal of Artificial Intelligence Research 24 (2005)

4. Shirazi, A., Amir, E.: First-order logical filtering. In: Proceeding of the Interna-
tional Joint Conferences on Artificial Intelligence. (2005)

5. Milch, B., Russell, S.: General-purpose MCMC inference over relational structures.
In: Proceedings of the Conference on Uncertainty in Artificial Intelligence. (2006)

14 L. S. Zettlemoyer, H. M. Pasula, L. P. Kaelbling

6. de Salvo Braz, R., Amir, E., Roth, D.: MPE and partial inversion in lifted proba-
bilistic variable elimination. In: Proceedings of the National Conference on Artifi-
cial Intelligence. (2006)

7. Kersting, K., Raedt, L.D., Raiko, T.: Logical hidden Markov models. Journal of
Artificial Intelligence Research 25 (2006)

8. Zettlemoyer, L., Pasula, H., Kaelbling, L.: Learning planning rules in stochastic
worlds. In: Proceedings of the National Conference on Artificial Intelligence. (2005)

9. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: BLOG:
Probabilistic models with unknown objects. In: Proceeding of the International
Joint Conferences on Artificial Intelligence. (2005)

10. Crisan, D., Doucet, A.: Convergence of generalized particle filters. TR 381, Cam-
bridge University (2000)

