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Abstract— We propose to automate controller design for
distributed modular robots. In this paper, we present some
initial experiments with learning distributed controllers for
synthesizing compliant locomotion gaits for modular, self-
reconfigurable robots. We use both centralized and dis-
tributed policy search and find that the learning approach is
promising, as locomotion tasks are learnt well. We also find
that the additive nature of the robotic platforms can help
speed up learning if we increase the robot size incrementally.

I. I NTRODUCTION

A key challenge in self-reconfiguring modular robots
is controller design. The promise of robustness and self-
organization requires fully distributed control algorithms.
Distributed controllers such as those in [2] took hours
of designer time to synthesize, as it is hard to keep
track of many interacting pieces. Furthermore, while hand-
designed controllers have been shown to work well for
simple tasks, it is not clear how easy it is to extend the
methodology to more complex problems such as general
shape synthesis and repair. We believe that reinforcement
learning (RL) is a way of providing automated support for
these kinds of tasks. We present a first study of this idea
in the context of the gait design problem for modular self-
reconfigurable robots. Thus we can compare automatically
designed controllers to human-designed ones to evaluate
the performance of our learning methods.

RL is appealing as we only need to provide the robot
with a reward signal, rather than examples of correct be-
haviors. We investigate a distributed reinforcement learning
approach where each module of the robot is able to learn
its local behaviors (henceforth known as policy) that lead
to a global system goal.

This work builds on a sizeable body of research in multi-
robot learning as well as in (hand-developed) control for
self-reconfiguring robots.

A. Self-reconfigurable modular robotics

Several interesting self-reconfiguring robot systems have
been built [6], [12], [16]. A review of this work is avail-
able in [13]. Controllers for all of those systems were
designed by hand. In most cases, the physical robot did
not perform any task beyond very simple locomotion.
On the other hand, in simulation more complex results
have been achieved. As an example, in [2] sets of rules
resembling cellular automata are developed for compliant
locomotion over obstacle fields. Sets of up to 22 rules
long are presented, painstakingly designed and proven to
be correct for the task.

B. Multi-robot learning

While reinforcement learning seems intuitively desirable
as a means of devising robotic controllers, it has proven
a hard problem. Robots are noisy and only observe cer-
tain parts of their environment. Some researchers have
addressed specifically the problem of partial observability
in their robotic systems [3]. There has been an effort
in applying learning techniques to multi-robot tasks. A
RL approach with shaped rewards is used in [10] on a
team of robots who must avoid other robots and compete
with them to deliver pucks to a home base. Centralized
or partially centralized learning algorithms for distributed
robots have been proposed in [4]. Distributed algorithms
for a small state-space, such as adjusting weights for choice
of hand-coded behaviors, were also proposed [8]. Teams
learn communicative acts in [5] using Q-learning, and the
same algorithm with a twist is applied in [17] on floating
robotic links who learn to navigate to a goal. The approach,
also taken in this paper, of following the policy gradient is
based in part on the theory of [1], which was recently also
applied to optimization problems in a distributed sensor
network [11].

In this paper, our goal is to do a computational evaluation
of the use of RL and in particular, gradient ascent policy
search, for the task of synthesizing compliant locomotion
gaits for robots with very high degrees of freedom (DOFs).
We examine three RL algorithms that use different re-
sources: a centralized algorithm, a distributed algorithm,
and an incremental algorithm. We compare these algo-
rithms to other learning methods and to hand-designed
controllers and show experimentally that the policy learned
with our approach is competitive.

II. A S IMULATOR FOR LEARNING OF CONTROL

We have created a simulated world, which is currently
2D. The physical laws of the simulator consist of gravity:
things fall to the horizontal axis or first available surface if
suspended above it, collision detection to prevent objects
from moving through each other, and a rule explicitly dis-
allowing disconnection of modules. There is no momentum
and objects resting on the ground are fixed with respect to
the ground. At least such a primitive physics is needed for
our simulated world. As our work focuses on learning the
controllers, the robot will explore bad actions that should
fail.

In this simulated world, our ‘robot’ consists of a number
of identical modules, represented by dots, as in figure 1.
The world may contain obstacles. We make the following



Fig. 1. 2D simulation of self-reconfigurable motion. The modules (left)
are approaching an obstacle course (right).

assumptions about each module represented in our simu-
lation:

• that it has sufficient actuated degrees of freedom,
which allow it to move over a substrate of its peers

• that it cannot move by itself, without being attached
to other modules

• that it has enough computational power and memory
to effectively run the learning algorithms.

In addition, we assume that our distributed system is
synchronous. Modules take turns computing and executing
actions and no module can do so twice before all others
have taken a turn.

The task to which we put our simulated robot is locomo-
tion in one direction (eastward) with or without obstacles.
We assume that the sensing or communication apparatus
of each module allows it to observe whether or not other
modules or obstacles are present in its immediate Moore
neighborhood (8 nearest neighbors for a neighborhood
of radius 1). This neighborhood condition makes up the
observation of each module at each discrete time step.

A pertinent question is whether our simulated world
can be effectively modelled as a Markov Decision Process
(MDP) or a partially observable MDP (POMDP). A multi-
agent MDP is a 4-tuple< S,A, T, R >, whereS is the
finite set of all possible states ands ∈ S is known by all
agents,A is the finite set of actions that all agents can take,
T : S × An → P (S) is the transition function (n is the
number of agents andP (S) a probability distribution over
S), andR : S×An → Rn is the reward function. The two
key conditions are that the functionsT andR depend only
on the current state and current action, and are independent
of any history of the process or any hidden variables.
A multi-agent POMDP is a 5-tuple< S, O,A, T, R >,
where the world states ∈ S is not available to agents.
Instead they observe something about itoi = Oi(s). The
transition probabilitiesT : S × An → P (S) and rewards
R : S × An → Rn now may depend on the full history
of observation-action pairs for all agents, due to the partial
observability of state.

In our simulated world, each learning agent (i.e., each
robotic module) has a finite observation space (28 in the
simple case,38 in the case with obstacles) and a finite set
of actions (N, NE, E, SE, S, SW, W, NW and a NOP). One
agent’s observation is only part of the state of the world.
We reward eastward movement and punish actions leading
to movement West. Unsuccessful, physically impossible
actions are not punished, they are simply not executed.

The transition function is also complex because multiple
agents are learning at the same time. We must distinguish

the transition functions for learning and for acting in the
world. During each learning time step, a module senses
its current state, takes an action according to its current
stochastic policy, executes it in the world and gets a reward.
For some algorithms, in order to update its policy, the agent
must know what new state it ended up in as a result of
executing the action. That states′ may well be different
from the states′′, which the same agent will see on the
next time step when all other agents have also taken their
turns in the loop. We can see that while each agent is
pretending to solve an MDP, the world it acts on has
partially observable characteristics due to the other agents
present. Their exploration of this world does not depend
only on the actions they take but also on the actions the
other modules take, which they cannot observe. In addition,
each module is learning its policy at the same time,
meaning that everyone’s behavior is non-stationary. We
therefore have a non-stationary partially observable world,
and we can reasonably expect that learning algorithms
designed for MDPs will in general fail in our case.

III. L EARNING ALGORITHMS

In this section we present the learning algorithms that
we have adapted and used on this new problem. As we
determined our learning problem to be partially observable,
we take the approach of direct search in parameterized
policy space. The algorithm we have taken as the basis for
our research is Gradient Ascent in Policy Space (GAPS)
[14]. We have explored the centralized and the distributed
versions of the basic algorithm as well as applying it to the
incremental case. While the idea of policy search and the
GAPS algorithm are not novel, we are applying them to a
new problem in learning on robots, against the backdrop
of very few such attempts.

A. Basic GAPS with lookup table

The GAPS algorithm, taken directly from [14] without
modifications, does hill-climbing in policy value space. The
policies are parameterized using Boltzmann’s law (where
o(t) is one agent’s observation at timet and a(t) is one
agent’s action at timet):

π(o, a, θ) = Pr[ o(t)=o, a(t)=a | θ ] =
eθoa/τ

∑
a′ e

θoa′/τ

Each parameterθoa corresponds to an observation-action
pair. The parameters are stored in a lookup table to which
all agents have access. The value of a policy is the expected
reward received by agents at the end of a learning episode.
Following the derivation in [14] we can estimate the policy
value gradient by running the policy and observing the
experienced histories and rewards. This is a centralized
learning algorithm (1) for the situation where observations
and actions are distributed. It keeps counts of each visited
observation and observation-action pair for all agents, and
updates parameters in the direction of increasing policy
value gradient.

The reward signal for our locomotion task is the robot’s
center of mass along thex axis at the end of each episode.
As the task is episodic, there is no need to discount rewards.



Algorithm 1 GAPS (State-spaceS, Actors M )
Initialize parametersθ ← 0
for each episodedo

Calculate policyπ(θ)
Initialize observation countsN ← 0
Initialize observation-action countsC ← 0
for each timestep in episodedo

for each actorm do
observem’s stateom and incrementN(om)
choosea from π(om, θ) and incrementC(om, a)
executea

end for
end for
Get global rewardR
Updateθ according to
θ ( o, a ) += α R ( C(o, a)− π(o, a, θ) N(o) )
Updateπ(θ) using Boltzmann’s law

end for

B. Distributed GAPS

In the case where each agent not only observes and
acts but also learns its own parameterized policy, the
algorithm can be extended in the most obvious way to
Distributed GAPS (DGAPS), as was also done in [14].
It has been proven that DGAPS makes exactly the same
parameter updates as centralized GAPS in cooperative
scenarios, so long as all agents get the same reward.
In our domain of a distributed modular robot, DGAPS
(2) is naturally preferable. However, instead of requiring
an identical reward signal for all agents, we take each
module’s displacement along thex axis to be its reward
signal: Rm = xm, since we assume that modules do not
communicate. This means that the policy value landscape
is now different for each agent. However, the agents are
physically coupled with no disconnections allowed. If the

true reward isR =
∑N

m=1
[xm]

N , and each individual reward
is Rm = xm, then eachRm is a bounded estimate ofR
that’s at mostN/2 away from it (in the worst-case scenario
where all modules are connected in one line). Furthermore,
as each episode is initialized, modules are placed at random
in the starting configuration of the robot. Therefore, the
robot’s center of mass andR = E[xm] is the expected
value of any one module’s position along thex axis. We
can easily see that in the limit, as the number of turns
per episode increases and as learning progresses, eachxm

approaches the true reward.
This estimate is better the fewer modules we have and

the larger R is. Therefore it makes sense to simplify
the problem in the initial phase of learning, while the
rewards are small, by starting with fewer modules, as we
demonstrate below.

C. Incremental GAPS

It is possible to leverage off the modular nature of our
problem in order to improve the convergence rate of both
GAPS and DGAPS. We notice that the learning problem is
easier when the robot has less modules than the size of its
neighborhood, since it means that each module will see and
have to learn a policy for a smaller number of states. If we

Algorithm 2 DGAPS (State-spaceS, Actor m)
Initialize parametersθm ← 0
for each episodedo

Calculate policyπ(θm) from θm

Initialize state countsNm ← 0
Initialize state-action countsCm ← 0
for each timestep in episodedo

observem’s stateo and incrementNm(o)
choosea from π(o, θm) and incrementCm(o, a)
executea

end for
Get local rewardRm

Updateθm according to
θm(o, a)+= α Rm(Cm(o, a)− π(o, a, θm)Nm(o))
Updateπ(θm) using Boltzmann’s law

end for

Algorithm 3 IGAPS (State-spaceS, Actors M ), θ

if θ not giventhen
Initialize θ ← 0

end if
n ← 1
repeat

Increasen
Run GAPS body withn actors andθ

until n == size(M)

Returnθ

start with only two modules, and add more incrementally,
we effectively reduce the problem state-space. With only
two modules, given the physical coupling between them,
there are effectively only four states to explore. Adding one
other module, we add another nine possible observations
and so forth. The problem becomes more manageable.
Therefore, we propose the Incremental GAPS (IGAPS)
algorithm (3), which takes as input the policy parameters
to which a previous running instance of IGAPS with fewer
modules has converged.

As will be seen in section V, we obtain a significant
advantage when using this incremental strategy.

IV. A LTERNATIVE DESIGN METHODS

The alternative to automated design by learning is hand-
coding, which has been extensively used to date. While an
obvious choice for toy domains, design by hand becomes
tedious and time-consuming when the task complexity
increases.

Alternative automated design methods might include
other learning algorithms, in particular other RL algo-
rithms, some of which have been applied to robotics
previously. Q-learning [15] is probably the most popular
online model-free RL technique. It has nice convergence
properties when the learning problem is a fully observable
MDP. As we have seen earlier, our world can only be
modelled as a POMDP, and in those cases there are no
longer any guarantees of the algorithm converging due to
a very strong Markov assumption.

In practice, researchers have applied this method to
partially observable robotic domains and even obtained
good convergence results, such as in [5], [17]. However,



Fig. 2. Convergence time in hundreds of episodes as a function of the
number of modules.

such results are only empirical, and nothing can be said in
general about these applications. Alternatively, the results
are from hybrid systems where other techniques were used
to disambiguate the state, such as in, e.g., behavior selec-
tion using Q-learning [7], [9]. In section V we compare our
policy search results with Q-learning and find empirically
that, predictably, the latter oscillates (does not converge)
most of the time even for simple instances of our problem.
In table I the reward achieved by Q-learning is marked by
* because the algorithm does not converge predictably.

V. EXPERIMENTAL RESULTS

A. Centralized versus distributed learning

When one agent learns from the combined experience
of all modules’ observations, actions and rewards, it is not
surprising that the learning algorithm converges faster than
in the distributed case, as the learner has more data on
each episode. We can see this effect in table I. However,
in practice we would like to implement learning in a
completely decentralized fashion, as in DGAPS. Sharing
data among distributed learning agents can still be achieved
with the use of near-neighbors communication, which we
relegate to future work.

B. Incremental addition of modules

Figure 2 shows the convergence rates of the GAPS algo-
rithm. On the “standard” curve we plot mean convergence
times for 2, 3, 4 and 6 modules, where each of them start
from the initial parametersθ set to0 (all actions equally
likely). On the “incremental” curve, whenever modules are
added, the parameters to which the previous number of
modules have converged are taken as a starting point. We
observe a dramatic decrease in convergence time. Table I,
where mean convergence times and mean rewards achieved
after convergence are shown for all the algorithms shows a
similar result. Also, observe in figure 3 that once the robot
size has reached the number of modules in its immediate
Moore neighborhood, the learner’s convergence times stay
steadily low.

Fig. 3. Convergence times for the incremental approach.

Fig. 4. Average rewards obtained by IGAPS, the best hand-designed
policy, and the policy obtained by IGAPS on 10 modules. Rewards
decrease because locomotion on a substrate of peers takes longer as the
number of modules increases.

C. Incremental increase in task complexity

Often the task structure is reflected in the robot’s ob-
servations. For examples, these will be different for the
modules in the front depending on whether there are
obstacles present in their path. We can take advantage
of that structure of the observation space by extending
our incremental strategy to task complexity. However,
we find that the naive approach of learning obstacle-free
locomotion then adding obstacles after the algorithms has
converged, does not work well. In future work, we will
need to carefully design an incremental strategy for task
complexity.

D. Comparison to hand-designed controllers

The structure of the reward signal used during the
learning phase determines what the learned policies will
do to achieve maximum reward. In the case of eastward
locomotion the reward does not depend on the shape of
the modular robot, only on how far east is has gone at the
end of an episode. On the other hand, the hand-designed
policies of [2] were made to maintain the roughly square
or cubic overall shape of the robot. It turns out that one



TABLE I

COMPARISON BETWEEN LEARNING ALGORITHMS AND WITH HAND-DESIGNED POLICIES. 1

policy convergence time std mean reward
From [2] - - 13.1 (33%)
Hand-designed - - 37.3 (93%)
Distributed Q-Learning oscillates - *32.9 (82%)
GAPS 10,000 1,500 37.7 (94%)
Distributed GAPS 16,000 2,200 35.5 (89%)
IGAPS (from 6 to 9 mods) 90 80 37.6 (94%)
IGAPS (cumulative) 5,000 1,100 37.6 (94%)

TABLE II

HAND-DESIGNED RULES FOR EASTWARD LOCOMOTION.

t d → NE

dt , d dt , dd dt → SE

dt d , d td d , dd dt d → E

dd t
, dd
d t

, dd
d td

→ S

t current actor

d neighbor module

TABLE III

LEARNED RULES FOR EASTWARD LOCOMOTION: A LOCAL OPTIMUM .

d d dt dd
→ N

t d , d dt d
→ NE

d dt
, d d dt

, dd dt d → E

dt , d dt , d dd t
→ SE

dd t
, dd
d t

, dd
d td

→ S

t current actor

d neighbor module

can go farther faster if this constraint is relaxed, as can
be seen in table I. The shape-maintaining hand-designed
policy achieves an average reward per episode of 13.1,
whereas its counterpart learned using DGAPS achieves an
average reward of 35.5 (37.3 using GAPS).

A hand-designed policy with this constraint relaxed is
presented in table II. Note that this policy may be sensitive
to the initial shape and number of modules. We find
experimentally that our best hand-designed policy does
only as well as the one found by GAPS (figure 4).

E. Remarks on policy correctness

Consider the stochastic policy to which GAPS converged
in table III. The table only shows those observation-action
pairs whereθ(o, a) >> θ(o, a′) for all a′ and where exe-
cuting a results in motion. This policy is a local optimum
in policy space – a small change in anyθ(o, a) will lead
to less reward. It was found by the learner on a less than

1The mean convergence time is measured in episodes until convergence.
The mean reward is per episode in percent of achievable reward, for ease
of comparison. These results are for the 9-module case.

ideal run and it is not the global optimum, achieving an
average reward of only 13.5 (34% of possible reward). We
argue that this policy will still correctly perform the task
of eastward locomotion with high probability as theθ(o, a)
gets larger for the actionsa shown.

Note first of all that if the rules in III were deterministic,
then we could make an argument akin to the one in [2]
where correctness is proven for a hand-designed policy.
Intuitively, if we start with a rectangular array of modules
and assume that each module gets a chance to execute an
action during a turn, then some rule can always be applied,
and none of the rules move any modules west, so that east-
ward locomotion will always result. This crucially depends
on our assumption of synchrony. Figure 5 shows the first
several actions of the only possible cyclic sequence fornm
modules following these rules if treated as deterministic.
The particular assignment of module IDs in the figure is
chosen for clarity and is not essential to the argument.

However, the rules are stochastic. The probability of the
robot’s center of mass moving eastward over the course of
an episode is equal to the probability, where there areT
turns in an episode, that duringt out of T turns the center
of mass moved eastward andt > T −t. This will be true if
Pr [ R > 0 ] >> Pr [R <= 0 ]. The increase in parameter
θ(o, a) only happens for positiveR. As θ(o, a) → ∞ so
π(o, a, θ) → 1 for the correct actiona. And when the
correct actions are executed, the center of mass is always
expected to move eastwards during a turn.

Naturally, in practice once the algorithm has converged,
we can extract deterministic rules from the table of learned
parameters by selecting the highest parameter value per
state.

VI. CONCLUSION AND FUTURE WORK

We investigate how to automate the design of distributed
controllers for self-reconfigurable modular robots. We have
formulated the locomotion problem for such a robot as
a multi-agent POMDP and applied gradient-ascent search
in policy value space to solve it. Our results suggest that
automating controller design by learning is a promising
approach. We should, however, bear in mind the potential
drawbacks of direct policy search as the learning technique
of choice.

As with all hill-climbing methods, there is a guarantee
of GAPS converging to a local optimum in policy value
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Fig. 5. Locomotion ofnm modules following rules in table III, treated as deterministic. After the last state shown, modulen executes action S,
modules1 then2 execute action E, then module4 can execute action NE, and so forth. The length of the sequence is determined by the dimensions
n andm of the original rectangular shape.

space, given infinite data, but no proof of convergence to
the global optimum is possible. A local optimum is the
best solution we can find to a POMDP problem.

In addition, we have seen that GAPS takes on average
a rather long time (measured in thousands of episodes)
to learn. During the initial hundreds of episodes where
the algorithm explores the policy space, the modules will
attempt to execute undesirable or impossible actions which
could lead to damage on a physical robot. Naturally, one
may not have the luxury of thousands of trial runs on a
physical robot anyway.

We expect to take the following paths as we apply the
learning approach to real robots. On the one hand, we
are now well-posed to develop new learning algorithms to
specifically fit our problem. Those would take more notice
of the structure of the agents’ observed environment and
interaction with other agents. In particular, modules will
communicate with their neighbors directly and not only
through physical coupling with the world. For DGAPS,
for example, near-neighbor communication of observation
and observation-action pair counts or rewards may reduce
the learning time. Following our preliminary results in
increasing task complexity incrementally, it would also
be interesting to attempt design automation in a more
hierarchical way, taking explicit advantage of task decom-
position. We could give the robots a set of initial behaviors
or rules as a starting point, from which it would then learn
to perform more advanced tasks.

We will measure the success of any future methods
against the performance of algorithms presented in this
paper. We are also currently working on formal arguments
for probable correctness of our learning approach.
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