Learning Distributed Control for Modular Robots

Paulina Varshavskaya, Leslie Pack Kaelbling and Daniela Rus
MIT CSAIL
Cambridge, MA, USA
{paulina,lpk,rus }@csail.mit.edu

Abstract—We propose to automate controller design for B. Multi-robot learning

iniial experiments wit leaming distiputed conoliers for Ve reinforcement learning seems inuitively desirable
synthesizing compliant locomotion gaits for modular, self- &S @ means of devising robotic controllers, it has proven
reconfigurable robots. We use both centralized and dis- a hard problem. Robots are noisy and only observe cer-
tributed policy search and find that the learning approach is tain parts of their environment. Some researchers have
ltor:gtmtiﬁ?géd?jsitil?econrggjﬂrznot??rlfz ?gié‘;gr“ﬁavt‘;g':m\éve(: :r'f?]ef:”d addressed specifically the problem of partial observability
speed up learning if we increase the robgt size incrementarl)ly. !n their .mbOtIC systems [.3]' There ha; been an effort
in applying learning techniques to multi-robot tasks. A
RL approach with shaped rewards is used in [10] on a
|. INTRODUCTION team of robots who must avoid other robots and compete
A key challenge in self-reconfiguring modular robotswith them to deliver pucks to a home base. Centralized
is controller design. The promise of robustness and selfyr partially centralized learning algorithms for distributed
organization requires fully distributed control algorithms.robots have been proposed in [4]. Distributed algorithms
Distributed controllers such as those in [2] took hourdor a small state-space, such as adjusting weights for choice
of designer time to synthesize, as it is hard to keepf hand-coded behaviors, were also proposed [8]. Teams
track of many interacting pieces. Furthermore, while handearn communicative acts in [5] using Q-learning, and the
designed controllers have been shown to work well fosame algorithm with a twist is applied in [17] on floating
simple tasks, it is not clear how easy it is to extend theobotic links who learn to navigate to a goal. The approach,
methodology to more complex problems such as generalso taken in this paper, of following the policy gradient is
shape synthesis and repair. We believe that reinforcemebésed in part on the theory of [1], which was recently also
learning (RL) is a way of providing automated support forapplied to optimization problems in a distributed sensor
these kinds of tasks. We present a first study of this ideaetwork [11].
in the context of the gait design problem for modular self- In this paper, our goal is to do a computational evaluation
reconfigurable robots. Thus we can compare automaticallyf the use of RL and in particular, gradient ascent policy
designed controllers to human-designed ones to evaluatearch, for the task of synthesizing compliant locomotion
the performance of our learning methods. gaits for robots with very high degrees of freedom (DOFs).
RL is appealing as we only need to provide the robotWe examine three RL algorithms that use different re-
with a reward signal, rather than examples of correct besources: a centralized algorithm, a distributed algorithm,
haviors. We investigate a distributed reinforcement learningnd an incremental algorithm. We compare these algo-
approach where each module of the robot is able to leamthms to other learning methods and to hand-designed
its local behaviors (henceforth known as policy) that leaatontrollers and show experimentally that the policy learned
to a global system goal. with our approach is competitive.
This work builds on a sizeable body of research in multi-

. . [1. A SIMULATOR FOR LEARNING OF CONTROL
robot learning as well as in (hand-developed) control for

self-reconfiguring robots. We have cr_eated a simulate_d world, Whic_h is curre_ntly
]) 2D. The physical laws of the simulator consist of gravity:
A. Self-reconfigurable modular robotics things fall to the horizontal axis or first available surface if

Several interesting self-reconfiguring robot systems havsuspended above it, collision detection to prevent objects
been built [6], [12], [16]. A review of this work is avail- from moving through each other, and a rule explicitly dis-
able in [13]. Controllers for all of those systems wereallowing disconnection of modules. There is no momentum
designed by hand. In most cases, the physical robot dhd objects resting on the ground are fixed with respect to
not perform any task beyond very simple locomotionthe ground. At least such a primitive physics is needed for
On the other hand, in simulation more complex result®ur simulated world. As our work focuses on learning the
have been achieved. As an example, in [2] sets of rulesontrollers, the robot will explore bad actions that should
resembling cellular automata are developed for compliarfail.
locomotion over obstacle fields. Sets of up to 22 rules In this simulated world, our ‘robot’ consists of a number
long are presented, painstakingly designed and proven td identical modules, represented by dots, as in figure 1.
be correct for the task. The world may contain obstacles. We make the following

the transition functions for learning and for acting in the
world. During each learning time step, a module senses
its current state, takes an action according to its current
stochastic policy, executes it in the world and gets a reward.
For some algorithms, in order to update its policy, the agent
must know what new state it ended up in as a result of
executing the action. That staté may well be different
from the states”, which the same agent will see on the
assumptions about each module represented in our simixt time step when all other agents have also taken their
lation: turns in the loop. We can see that while each agent is
mnretending to solve an MDP, the world it acts on has
Partially observable characteristics due to the other agents
dpresent. Their exploration of this world does not depend
only on the actions they take but also on the actions the
other modules take, which they cannot observe. In addition,
Lach module is learning its policy at the same time,
meaning that everyone’s behavior is non-stationary. We
In addition, we assume that our distributed system igherefore have a non-stationary partially observable world,

synchronous. Modules take turns computing and executinghd we can reasonably expect that learning algorithms
actions and no module can do so twice before all othergesigned for MDPs will in general fail in our case.

have taken a turn.

The task to which we put our simulated robot is locomo-
tion in one direction (eastward) with or without obstacles. In this section we present the learning algorithms that
We assume that the sensing or communication apparat§ have adapted and used on this new problem. As we
of each module allows it to observe whether or not othefletermined our learning problem to be partially observable,
modules or obstacles are present in its immediate Mooe take the approach of direct search in parameterized
neighborhood (8 nearest neighbors for a neighborhooRPlicy space. The algorithm we have taken as the basis for
of radius 1). This neighborhood condition makes up th@Ur research is Gradient Ascent in Policy Space (GAPS)
observation of each module at each discrete time step. [14]- We have explored the centralized and the distributed

A pertinent question is whether our simulated worldVersions of the basic algorithm as well as applying it to the
can be effectively modelled as a Markov Decision Proces§cremental case. While the idea of policy search and the
(MDP) or a partially observable MDP (POMDP). A multi- GAPS algonth'm are npt novel, we are applylng them to a
agent MDP is a 4-tuplec S, A, T, R >, where S is the New problem in learning on robots, against the backdrop
finite set of all possible states ande S is known by all ~ Of very few such attempts.
agents A is the finite set of actions that all agents can takeA. Basic GAPS with lookup table

T:8x A" — P(5) Is the tran3|t|o_r_1 funcﬂ_onr(_ is the The GAPS algorithm, taken directly from [14] without
number of agents an(.5) a probability distribution over . ifications, does hill-climbing in policy value space. The
S),andR : 5> A™ — R" is the reward function. The tWo ,jicies are parameterized using Boltzmann's law (where
key conditions are that the functiofisand R depend only o(t) is one agent's observation at timeand a(t) is one

on the current state and current action, and are independ ent's action at time):

of any history of the process or any hidden variables.
A multi-agent POMDP is a 5-tuplec S,0,A,T,R >, 7(0,a,0) = Prlo(t)=o0,a(t)=a|0] =
where the world state € S is not available to agents. o ’ Dw efoar /7
Instead they observe something aboub;it= O;(s). The Each parametef,, corresponds to an observation-action
transition probabilitiesI” : S x A™ — P(S) and rewards pair. The parameters are stored in a lookup table to which
R: S x A" — R" now may depend on the full history all agents have access. The value of a policy is the expected
of observation-action pairs for all agents, due to the partizeward received by agents at the end of a learning episode.
observability of state. Following the derivation in [14] we can estimate the policy
In our simulated world, each learning agent (i.e., eaclalue gradient by running the policy and observing the
robotic module) has a finite observation spa2é i the experienced histories and rewards. This is a centralized
simple case3® in the case with obstacles) and a finite setearning algorithm (1) for the situation where observations
of actions (N, NE, E, SE, S, SW, W, NW and a NOP). Oneand actions are distributed. It keeps counts of each visited
agent’s observation is only part of the state of the worldpbservation and observation-action pair for all agents, and
We reward eastward movement and punish actions leadingdates parameters in the direction of increasing policy
to movement West. Unsuccessful, physically impossiblgalue gradient.
actions are not punished, they are simply not executed. =~ The reward signal for our locomotion task is the robot's
The transition function is also complex because multipleenter of mass along theaxis at the end of each episode.
agents are learning at the same time. We must distinguigks the task is episodic, there is no need to discount rewards.

[N ¥]
e
LS B

L LB & B
aee LB & B

Fig. 1. 2D simulation of self-reconfigurable motion. The modules (left)
are approaching an obstacle course (right).

« that it has sufficient actuated degrees of freedo
which allow it to move over a substrate of its peers

« that it cannot move by itself, without being attache
to other modules

« that it has enough computational power and memor
to effectively run the learning algorithms.

Ill. L EARNING ALGORITHMS

600,1/7'

Algorithm 1 GAPS (State-spac$, Actors M) Algorithm 2 DGAPS (State-spac#, Actor m)

Initialize parameterg — 0 Initialize parameter®,,, — 0
for each episodelo for each episodelo
Calculate policyr(9) Calculate policyr(60.,) from 6.,
Initialize observation count® «— 0 Initialize state countsV,, < 0
Initialize observation-action counts < 0 Initialize state-action count§’,, < 0
for each timestep in episodio for each timestep in episodio
for each actorn do observemn’s stateo and incrementV,, (o)
observem’s stateo,, and incrementV (o,) choosea from 7 (o, 6,,) and increment, (o, a)
choosea from 7 (o, 6) and incrementC (o, a) executeq
executeq end for
end for Get local rewardR,,
end for Update#d,,, according to
Get global rewardR? Om(0,a) += a R (Cm(o,a) — 7(0,a,0m)Nm(0))
Updateé according to Updater(6,,) using Boltzmann’s law
0(07a)+:aR(C(0,a)_7T(0>a79)N(0)) end for
Updater () using Boltzmann’'s law
end for

Algorithm 3 IGAPS (State-spac$, Actors M), 0

if 6 not giventhen
o Initialize 6 < 0
B. Distributed GAPS end if
In the case where each agent not only observes and” < 1
acts but also learns its own parameterized policy, the reﬁ’ﬁ;teasen
algorithm can be extended in the most obvious way 10 Ryn GAPS body with: actors and?
Distributed GAPS (DGAPS), as was also done in [14]. until n == size(M)
It has been proven that DGAPS makes exactly the same Returng
parameter updates as centralized GAPS in cooperative

scenarios, so long as all agents get the same reward.

In our domain of a distributed modular robot, DGAPSstart with only two modules, and add more incrementally,
(2) is naturally preferable. However, instead of requiringye effectively reduce the problem state-space. With only
an identical reward Signal for all agentS, we take eaChNo modules, given the physica| Coup"ng between them,
module’s displacement along the axis to be its reward there are effectively only four states to explore. Adding one
signal: R,, = x,, since we assume that modules do nopther module, we add another nine possible observations
communicate. This means that the pOllcy value |andsca%d SO forth_ The prob'em becomes more manageab'e_
is now different for each agent. However, the agents ar¢herefore, we propose the Incremental GAPS (IGAPS)
physically coupled with no disconnections allowed. If theaigorithm (3), which takes as input the policy parameters
true reward iskR = w and each individual reward to which a previous running instance of IGAPS with fewer
is R,, = z.m, then eachR,, is a bounded estimate g¢ modules has converged.

that's at mostV/2 away from it (in the worst-case scenario As Will be seen in section V, we obtain a significant
where all modules are connected in one line). Furthermor@dvantage when using this incremental strategy.

as each episode is initialized, modules are placed at random
in the starting configuration of the robot. Therefore, the
robot’s center of mass ant = E[z,,] is the expected The alternative to automated design by learning is hand-
value of any one module’s position along theaxis. We coding, which has been extensively used to date. While an
can easily see that in the limit, as the number of turn@bvious choice for toy domains, design by hand becomes
per episode increases and as learning progressesygach tedious and time-consuming when the task complexity
approaches the true reward. increases.

This estimate is better the fewer modules we have and Alternative automated design methods might include
the larger R is. Therefore it makes sense to simplify other learning algorithms, in particular other RL algo-
the problem in the initial phase of learning, while therithms, some of which have been applied to robotics
rewards are small, by starting with fewer modules, as wgreviously. Q-learning [15] is probably the most popular

IV. ALTERNATIVE DESIGNMETHODS

demonstrate below. online model-free RL technique. It has nice convergence
properties when the learning problem is a fully observable
C. Incremental GAPS MDP. As we have seen earlier, our world can only be

It is possible to leverage off the modular nature of oumodelled as a POMDP, and in those cases there are no
problem in order to improve the convergence rate of botlonger any guarantees of the algorithm converging due to
GAPS and DGAPS. We notice that the learning problem is very strong Markov assumption.
easier when the robot has less modules than the size of itsin practice, researchers have applied this method to
neighborhood, since it means that each module will see anghrtially observable robotic domains and even obtained
have to learn a policy for a smaller number of states. If wgood convergence results, such as in [5], [17]. However,

150

—&— standard 2000 4
—m— incremental

100 + 1500

1000
50 4

episodes until convergence (hundreds)
time to convergence

500

0 T T T T T — ¥

2 3 4 B 9 10 15 20 50 70

number of modules

Fig. 2. Convergence time in hundreds of episodes as a function of the

number of modules. Fig. 3. Convergence times for the incremental approach.

45

such results are only empirical, and nothing can be said in
general about these applications. Alternatively, the results
are from hybrid systems where other techniques were used ¥]
to disambiguate the state, such as in, e.g., behavior selec- - 0
tion using Q-learning [7], [9]. In section V we compare our

policy search results with Q-learning and find empirically

that, predictably, the latter oscillates (does not converge)
most of the time even for simple instances of our problem. | |—+—ocars
In table | the reward achieved by Q-learning is marked by 101 | —-a—-10 mod test
* because the algorithm does not converge predictably. 59 |---a-- hand-designed e

40 4

25 1

average reward

V. EXPERIMENTAL RESULTS w 18 a0 0 50 0

number of modules

A. Centralized versus distributed learning
) . Fig. 4. Average rewards obtained by IGAPS, the best hand-designed
When one agent learns from the combined experiengslicy, and the policy obtained by IGAPS on 10 modules. Rewards
of all modules’ observations. actions and rewards. it is ndgiecrease because locomotion on a substrate of peers takes longer as the
. . ’ . ' number of modules increases.
surprising that the learning algorithm converges faster than
in the distributed case, as the learner has more data on
gach epilsode. We can see thl; effect in table . Howevegs Incremental increase in task complexity
in practice we would like to implement learning in a Often the task structure is reflected in the robot's ob
completely decentralized fashion, as in DGAPS. Sharin € € task structure is reflecte € Tobots ob-

data among distributed learning agents can still be achievggrvat'ons' For examples, these will be different for the

with the use of near-neighbors communication, which Wénodules in the fr(_)nt de_pendlng on whether there are
relegate to future work. obstacles present in their path. We can take advantage

of that structure of the observation space by extending
our incremental strategy to task complexity. However,
we find that the naive approach of learning obstacle-free
Figure 2 shows the convergence rates of the GAPS algcomotion then adding obstacles after the algorithms has
rithm. On the “standard” curve we plot mean convergenceonverged, does not work well. In future work, we will
times for 2, 3, 4 and 6 modules, where each of them starteed to carefully design an incremental strategy for task
from the initial parameterg set to0 (all actions equally complexity.
likely). On the “incremental” curve, whenever modules are _ _
added, the parameters to which the previous number & €omparison to hand-designed controllers
modules have converged are taken as a starting point. WeThe structure of the reward signal used during the
observe a dramatic decrease in convergence time. Tableldarning phase determines what the learned policies will
where mean convergence times and mean rewards achiewdml to achieve maximum reward. In the case of eastward
after convergence are shown for all the algorithms showslacomotion the reward does not depend on the shape of
similar result. Also, observe in figure 3 that once the robothe modular robot, only on how far east is has gone at the
size has reached the number of modules in its immediaend of an episode. On the other hand, the hand-designed
Moore neighborhood, the learner’s convergence times stgplicies of [2] were made to maintain the roughly square
steadily low. or cubic overall shape of the robot. It turns out that one

B. Incremental addition of modules

TABLE |
COMPARISON BETWEEN LEARNING ALGORITHMS AND WITH HAND-DESIGNED POLICIES !

mean reward
13.1 (33%)
37.3 (93%)

policy convergence time| std
From [2] - -
Hand-designed - -

Distributed Q-Learning oscillates - *32.9 (82%)
GAPS 10,000 1,500 | 37.7 (94%)
Distributed GAPS 16,000 2,200 | 35.5 (89%)
IGAPS (from 6 to 9 mods 90 80 37.6 (94%)
IGAPS (cumulative) 5,000 1,100 | 37.6 (94%)

TABLE Il

ideal run and it is not the global optimum, achieving an
HAND-DESIGNED RULES FOR EASTWARD LOCOMOTION

average reward of only 13.5 (34% of possible reward). We
argue that this policy will still correctly perform the task

e - of eastward locomotion with high probability as the, a)
8 ,08 ,88 — SE ® current actor gets larger for the actions shown.
° e Oe Note first of all that if the rules in 11l were deterministic,
00,000,000 — E O neighbor module then we could make an argument akin to the one in [2]
o 00 where correctness is proven for a hand-designed policy.
ge e Qe o s Intuitively, if we start with a rectangular array of modules
TABLE Il and assume that each module gets a chance to execute an

action during a turn, then some rule can always be applied,

and none of the rules move any modules west, so that east-
ward locomotion will always result. This crucially depends

o on our assumption of synchrony. Figure 5 shows the first

LEARNED RULES FOR EASTWARD LOCOMOTIONA LOCAL OPTIMUM.

000 — N several actions of the only possible cyclic sequence:far

o modules following these rules if treated as deterministic.
€0 ,00 — NE The particular assignment of module IDs in the figure is
° e Oe chosen for clarity and is not essential to the argument.
00,000,000 — E ® current actor

However, the rules are stochastic. The probability of the

[J e Oe ? i

3 .00.00 . SE O neighbor module robots_, center of mass moving east_vyard over the course of
an episode is equal to the probability, where thereZare

oe 8. 89 turns in an episode, that duritgout of T' turns the center

© .0 .0 - S of mass moved eastward ahd- 7'—¢. This will be true if

Pr[R > 0] >> Pr[R <=0]. The increase in parameter

can go farther faster if this constraint is relaxed, as cafi(o; @) only happens for positivé?. As 6(0,a) — oo so
be seen in table I. The shape-maintaining hand-designédo; a,#) — 1 for the correct actiom. And when the
policy achieves an average reward per episode of 13.g0rrect actions are executed, the center of mass is always
whereas its counterpart learned using DGAPS achieves &fPected to move eastwards during a turn.
average reward of 35.5 (37.3 using GAPS). Naturally, in practice once the algorithm has converged,
A hand-designed policy with this constraint relaxed isve can extract deterministic rules from the table of learned
presented in table II. Note that this policy may be sensitivdarameters by selecting the highest parameter value per
to the initial shape and number of modules. We findstate.
experimentally that our best hand-designed policy does
on?y as well as the one found by GAPS (figurep4). V1. CONCLUSION AND FUTURE WORK
. We investigate how to automate the design of distributed
E. Remarks on policy correctness controllers for self-reconfigurable modular robots. We have
Consider the stochastic policy to which GAPS convergegbrmulated the locomotion problem for such a robot as
in table 1ll. The table only shows those observation-actio multi-agent POMDP and applied gradient-ascent search
pairs wheref)(o,a) >> 6(o,a’) for all a’ and where exe- in policy value space to solve it. Our results suggest that
cuting a results in motion. This policy is a local optimum automating controller design by learning is a promising
in policy space — a small change in aéfo,a) will lead approach. We should, however, bear in mind the potential
to less reward. It was found by the learner on a less thagrawbacks of direct policy search as the learning technique
1The mean convergence time is measured in episodes until convergent?ef ChOI(?e' . Lo .
‘As with all hill-climbing methods, there is a guarantee

The mean reward is per episode in percent of achievable reward, for ease ’) .)
of comparison. These results are for the 9-module case. of GAPS converging to a local optimum in policy value

[1] [1] [1] [2
1] 2] 3 2[3 2[3 2[3 3
als[e] |.] | [alslal |.I | [a]sls n] [4]s]e n] [a]s[e] |.[[n]
o g g g i
2]1 2]1 (2] |1 [2]1
4] 3 AE - 4] 3 - 43 -
sle| |.[[n] 5|6 5|6 5] 6
\ g n] 7| n| ™| n| 7

TO0 o0 OO0 oo

Fig. 5.

n andm of the original rectangular shape.

space, given infinite data, but no proof of convergence tg2]
the global optimum is possible. A local optimum is the
best solution we can find to a POMDP problem. (3]

In addition, we have seen that GAPS takes on average
a rather long time (measured in thousands of episodes)
to learn. During the initial hundreds of episodes Where[4]
the algorithm explores the policy space, the modules will
attempt to execute undesirable or impossible actions which
could lead to damage on a physical robot. Naturally, one
may not have the luxury of thousands of trial runs on a[s]
physical robot anyway.

We expect to take the following paths as we apply the
learning approach to real robots. On the one hand, we
are now well-posed to develop new learning algorithms tol®]
specifically fit our problem. Those would take more notice
of the structure of the agents’ observed environment and
interaction with other agents. In particular, modules will [7]
communicate with their neighbors directly and not only
through physical coupling with the world. For DGAPS, [8]
for example, near-neighbor communication of observation
and observation-action pair counts or rewards may reducg,]
the learning time. Following our preliminary results in
increasing task complexity incrementally, it would also
be interesting to attempt design automation in a morgg
hierarchical way, taking explicit advantage of task decom-
position. We could give the robots a set of initial behaviord!1]
or rules as a starting point, from which it would then learn
to perform more advanced tasks. [12]

We will measure the success of any future methods
against the performance of algorithms presented in thi[§3]
paper. We are also currently working on formal arguments
for probable correctness of our learning approach.

ACKNOWLEDGMENTS (4]

The authors would like to thank Leonid Peshkin and1s]
Luke Zettlemoyer for very helpful discussions. Support[16]
for this work was provided through NSF awards IRI-
9714332, EIA-9901589, 11S-9818299, 11S-9912193 and
EIA-0202789, ONR award N00014-01-1-0675, Intel, and'’]
MIT’s project Oxygen. We are grateful for this support.

REFERENCES

[1] J. Baxter and P. L. Bartlett. Infinite-horizon gradient-based policy
search. Journal of Artificial Intelligence Research5:319-350,
2001.

Locomotion ofnm modules following rules in table Ill, treated as deterministic. After the last state shown, modidecutes action S,
modulesl then 2 execute action E, then modudecan execute action NE, and so forth. The length of the sequence is determined by the dimensions

Z. Butler, K. Kotay, D. Rus, and K. Tomita. Cellular automata for
decentralized control of self-reconfigurable robots.Phoceedings

of the International Conference on Robots and Automatafdl.

G. Z. Grudic, V. Kumar, and L. Ungar. Using policy reinforcemnet
learning on autonomous robot controllers. Bmoceedings of the
IEEE/RSJ Intl. Conference on Intelligent Robots and Systeas
Vegas, Nevada, October 2003.

K. Ito and A. Gofuku. Hybrid autonomous control for heteroge-
neous multi-agent system: Combining of centralized reinforcement
learning and distributed rule-based control. Rroceedings of the
IEEE/RSJ Intl. Conference on Intelligent Robots and Systpauyes
2500-2505, Las Vegas, Nevada, October 2003.

K. Kawabata, H. Asama, and M. Tanaka. A study of communication
emergence among mobile robots: Simulations of intention transmis-
sion. In H. Asama, T. Arai, T. Fukuda, and T. Hasegawa, editors,
Proceedings of the Intl. Workshop on Distributed Autonomous
Robotic Systemsolume 5, pages 71-80. Springer, 2002.

K. Kotay, D. Rus, M. Vona, and C. McGray. The self-reconfiguring
robotic molecule. InProceedings of the IEEE International
Conference on Robotics and Automatigages 424-431, Leuven,
Belgium, 1998.

G. Laurent and E. Piat. Learning mixed behaviors by parallel
g-learning. InProceedings of the IEEE/RSJ Intl. Conference on
Intelligent Robots and Systemsausanne, Switzerland, 2002.

J. B. Lee and R. C. Arkin. Adaptive multi-robot behavior via learn-
ing momentum. IrProceedings of the IEEE/RSJ Intl. Conference on
Intelligent Robots and Systensas Vegas, Nevada, October 2003.
E. Martinson, A. Stoychev, and R. C. Arkin. Robot behavior
selection using g-learning. IRroceedings of the IEEE/RSJ Intl.
Conference on Intelligent Robots and Systebsisanne, Switzer-
land, 2002.

] M. J. Matart. Reinforcement learning in the multi-robot domain.

Autonomous Robat#(1):73—-83, March 1997.

C. C. Moallemi and B. Van Roy. Distributed optimization in adaptive
networks. InProceedings of Intl. Conference on Neural Information
Processing SystemBecember 2003.

S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, and S. Kokaji.
Self-repairing mechanical system#&utonomous Robatd0:7-21,
2001.

L. E. Parker. Current state of the art in distributed autonomous mo-
bile robotics. In G. Bekey and J. Barhen, edité?mceedings of the
Workshop on Distributed Autonomous Robotic Systemisme 4,
pages 3-12. Springer, 2000.

L. Peshkin.Reinforcement Learning by Policy SeardPhD thesis,
Brown University, November 2001.

C. J. C. H. Watkins and P. Dayan. Q-learnindachine Learning
8:279-292, 1992.

M. Yim, D. G. Duff, and K. D. Roufas. Polybot: a modular
reconfigurable robot. IrProceedings of the IEEE International
Conference on Robotics and Automafi@d00.

W. Yu, |. Takuya, D. lijima, H. Yokoi, and Y. Kakazu. Using
interaction-based learning to construct an adaptive and fault-tolerant
multi-link floating robot. In H. Asama, T. Arai, T. Fukuda,
and T. Hasegawa, editor®roceedings of the Intl. Workshop on
Distributed Autonomous Robotic Syster@ume 5, pages 455-464.
Springer, 2002.

