Learning Probabilistic Relational Dynamics for Multiple Tasks

1

Ashwin Deshpande

Cambridge, MA 02139
ashwind@mit.edu

Brian Milch
MIT CSAIL
Cambridge, MA 02139
milch@csail.mit.edu

MIT CSAIL

Abstract

The ways in which an agent’s actions affect the
world can often be modeled compactly using a
set of relational probabilistic planning rules. This
paper addresses the problem of learning such rule
sets for multiple related tasks. We take a hier-
archical Bayesian approach, in which the sys-
tem learns a prior distribution over rule sets. We
present a class of prior distributions parameter-
ized by arule set prototypethat is stochasti-
cally modified to produce a task-specific rule set.
We also describe a coordinate ascent algorithm
that iteratively optimizes the task-specific rule
sets and the prior distribution. Experiments us-
ing this algorithm show that transferring infor-
mation from related tasks significantly reduces
the amount of training data required to predict
action effects in blocks-world domains.

Introduction

Luke S. Zettlemoyer
MIT CSAIL
Cambridge, MA 02139
Isz@csail.mit.edu

Leslie Pack Kaelbling
MIT CSAIL
Cambridge, MA 02139
Ipk@csail.mit.edu

Algorithms have been developed for learning relational
probabilistic planning rules by observing the effects of ac-
tions [Pasulaet al, 2004; Zettlemoyeet al, 2004. But
with current algorithms, if a robot learns planning rules for
one kitchen and then moves to a new kitchen where its ac-
tions have slightly different effects (because, say, the cabi-
nets are built differently), it must learn a new rule set from
scratch. Current rule learning algorithms fail to capture an
important aspect of human learning: the ability to trans-
fer knowledge from one task to another. We address this
transfer learning problem in this paper.

In statistics, the problem of transferring predictions across
related data sets has been addressed idarchical
Bayesian model§Lindley, 1971. The first use of such
models for the multi-task learning problem appears to
be due to Baxtef1997; the approach has recently be-
come quite populafYu et al, 2005; Marxet al, 2005;
Zhanget al., 2004. The basic idea of hierarchical Bayesian
learning is to regard the task-specific modA&ls . .., Rx

as samples from a global prior distributioh This prior
distribution over models is not fixed in advance, but is
learned by the system; thus, the system discovers what the
task-specific models have in common.

One of the most important types of knowledge for an intel-
ligent agent is that which allows it to predict the effects of
its actions. For instance, imagine a robot that performs th
familiar task of retrieving items from cabinets in a kitchen.
This robot needs to know that if it grips the knob on a cab-

!tnet qloorhandﬂp])ulls,ghe td.oor Vlv'" ﬁwrllgg open, tlrf1 It (rjeleasg:lls of priors over real vectors. But a rule set is a discrete struc-
IS grip when the cabinet 1S only Slightly open, the doorwill 4, o 4 may contain any number of rules, and each rule

_prob_ably swing shut; and ifitreleases its arip when the CaancIudes a precondition and a set of outcomes that are rep-
inet is open nearly 90 degrees, the door will probably sta

Such knowled b ded " Yesented as arbitrary-length conjunctions of first-order lit-
open. such kXnowledge can be encoded compactly as a S&fals. How can we define a class of prior distributions over
of probabilistic planning ruledKushmericket al., 1995;

o such rule sets? Our proposal is to t&tbe defined by a
B.IL.Jm a_md_ La_ngford, 1999 Each rule specifies a proba? rule set prototypehat is modified stochastically to create
bility distribution over sets of changes that may occur in I

T . the task-specific rule sets.

the world when an action is executed and certain precondi-
tions hold. To represent domains concisely, the rules mugbur goal is to take data fromk' source tasksplus a lim-
be relational rather than propositional: for example, theyited set of examples fromtarget taski + 1, and find the
must make statements about cabinets in general rather thaule setR7, , | for the target task with the greatest posterior
individual cabinets. probability. In principle, this involves integrating out the

However, applying the hierarchical Bayesian approach to
sets of first-order probabilistic planning rules poses both
%onceptual and computational challenges. In most existing
applications, the modelB), are represented as real-valued
parameter vectors, and the hypothesis spacé'fiera class

pickupg X,Y): on(X,Y),clear(X),inhand-nil
block(Y), —wet
inhand X'), —clear(X'), —inhand-nil

-on(X,Y),clear(Y")

— ¢ .2: on(X,TaBLE), "on(X,Y)
.05 : no change
.05 : noise

pickup X,Y) : on(X,Y),clear(X),inhand-nil
blockY'), wet

9. inhand X), —clear(X), —=inhand-nil
“ —on(X,Y),clear(Y)

— ¢ .2: on(X,TasLE), 7on(X,Y)
.3 : nochange
.3 : noise

Figure 1: Two rules for th@ickupaction in the “slippery
gripper” blocks world domain.

other rule setsky, ..., Rx and the rule set prototypé.
As an approximation, however, we use estimatesoand

1,..., R} found by a greedy local search algorithm. We
present experiments with this algorithm on blocks worl
tasks, showing that transferring data from related tasks si

nificantly reduces the number of training examples required.

to achieve high accuracy on a new task.

2 Probabilistic Planning Rules

di_z the third outcome, which indicates no changigjs the
i

s in sentence 1 and = pickup(e-a, 8-8), both of the rules

in Fig. 1 would have the bindin@ = {X/e-»,Y/es}. The

first rule would apply, since its preconditions are all sat-
isfied, while the second one would not becaustis not

true ins. We disallow rule sets in which two or more rules
apply to the samés, a) pair (these are calledverlapping
rules). In cases where no rules apply, a default rule is used
that has an empty context and two outcomes: no change
and noise, which will be described shortly.

Given the applicable rule, the discrete distributiop over
outcomeg), described on the right of the:, defines what
changes may happen frosp_; to s;. Each non-noise out-
comeo € O implicitly defines asuccessor state functigi
with associated probability,, an entry inp. The function
fo builds s; from s;_; by copyings;_; and then changing
the values of the relevant literals i to match the corre-
sponding values ifi(0). In our running example of execut-
ing pickup(e-, 8-8) in sentence 1, for the first outcome of
the first rule, where the picking up succeefiswould set
five truth values, including settingn(s-,s-) to be false.

entity function. In this paper, we will enforce the restric-
on that outcomes do not overlap: for each pair of out-
comesv; andos in aruler, there cannot exist a state—action
pair (s, a) such that- is applicable and,, (s) = f,,(s). In
other words, if we observe the state that results from apply-
ing a rule, then there is no ambiguity about which outcome

Probabilistic planning rule sets define a state transition dispccurredt Finally, thenoise outcomés treated as a special

tribution p(s¢|s:—1,a:). In this section, we present a sim-
plified version of the representation developed| Bgttle-
moyeret al, 2009. A states, is represented by a conjunc-

case. There is no associated successor function, which al-
lows the rule to define a type of partial model whemoes
not describe how to construct the next state with probabil-

tive formula_ yvith constant.s denoting objects in _the worldity p,,..... Noise outcomes allow rule learners to ignore
and proposition and function symbols representing the oboverly complex, rare action effects and have been shown

jects’ properties and relations. The sentence

inhand-nil A on(s-a, 8-8) A on(s-8, TABLE) A clear(s-a)

Ablock(s-a) A block(s-8) A table(tasLE) (1)

to improve learning in noisy domaidZettlemoyeret al.,
2004. Since rules with noise outcomes are partial models,
the distributionp(s¢|s;—1, a;) is replaced with an approxi-
mation:

represents a blocks world where the gripper holds nothing

and the two blocks are in a single stack on the table. This

is a full description of the world; all of the false literals
are omitted for compactness. Bloek is on top of the
stack, whiless is belowe-a and on the tabless.e. Actions

if fo(se—1) = s¢
otherwise

Do

pnoisepmin

p(st]st-1,a¢) = { v

where the set of possible outcomes € O is deter-
mined by the applicable rule. The probabilitips and

a; are ground literals where the predicate names the actiolgnm‘ge make up the parameter vectpr The constant
to be performed and the arguments are constant terms that = * can pe viewed as an approximation to a distribution
correspond to the objects which will be manipulated. Forp<5t|st_1’ at, Onoise) that would provide a complete model.

examplea, = pickup(s-», s-8) would represent an attempt
to pick blocks-a up off of blocks-s.

Each ruler has two parts that determine when it is ap-

plicable: an actiorn: and a context¥ that encodes a set
of preconditions. Both of the rules in Fig. 1 model the
pickup(X, Y") action. Given a particular state_; and ac-
tion a, we can determine whether a rudppliesby com-

3 Hierarchical Bayesian Model
In a hierarchical Bayesian model, as illustrated in Fig. 2,
the data points;,, in taskk come from a task-specific dis-

1This restriction simplifies parameter estimation (as we will
see in Sec. 4) without limiting the class of transition distributions

puting a bindingd that finds objects for all the variables, that can be defined. Any rule with overlapping outcomes can be

by matching against, and then testing whether the pre- repjaced by an equivalent set of rules applying to more specific
conditions hold for this binding. For example, for the statecontexts, with non-overlapping outcomes.

can be found by identifying the single rule Ry, that ap-
plies to (s;—1, at) (or the default rule, if no explicit rule
applies) and using Eq. 2. Then the probability of the entire
data set for task is p(zx| Ri) = [T2", p(xn| Ri)-

The distribution forG and Ry, ..., R is defined by a
é é ‘ generative process that first creat@s and then creates
@ Ry, ..., R; by modifyingG. Note that this generative pro-
M N, Nk cess is purely a conceptual device for defining our probabil-

ity model: we never actually draw samples from it. As we
will see in Sec. 4, our learning algorithm uses the genera-
tive model solely to define a scoring function for evaluating
rule sets and prototypes.

tribution p(z,|Rx), and the task-specific parametdts Two difficulties arise in using our generative process to de-
are in turn modeled by a prior distributigii 2 |G). The fine a joint distribution. One is that the process can yield
hyperparamete has its own prior distributiop(G). By rule setsk; that are invalid, in the sense of containing over-
observing data from the firgt” tasks, the learner gets in- |apping rules or outcomes. It is difficult to design a genera-

Figure 2: A hierarchical Bayesian model wifki tasks,
where the number of examples for tdsis Ny.

formation aboutfzy, ..., Rx and hence abou¥. Forin- tive process that avoids creating invalid rule sets, but still
stance, the learner can compute (perhaps approximatelgliows the probability of a rule set to be computed effi-
the valueg Ry, ..., R}, G*) that have maximuna poste- ciently. Intuitively, we want to discard runs of the gener-

riori (MAP) probability given the data on the firsf tasks. ative process that yield invalid rule sets. The other diffi-
Then when it encounters tagk+ 1, the learner’s estimates culty is that there may be many possible runs of a gener-
of the task-specific modét ;, are influenced by both the - ative process that yield the same rule set. For instance, as
data observed for task’ + 1 and the priom(Rx+1|G*), we will see, a rule set prototype is generated by choosing
which captures its expectations about the model based O numberm, generating a Sequencemf rule prototypes

the preceding tasks. independently, and then returning the set of distinct rule
prototypes that were generated. In principle, a setdf
3.1 Rule Set Prototypes distinct rules could be created by generating a list of any

lengthm > m* (with duplicates); we do not want to force
In the context of learning planning rules, the task-specificourselves to sum over all these possibilities to compute the
modelsR;, are rule sets. Our intuition is that if the tasks probability of a given rule set prototype. Again, it is conve-
are related, then these rule sets have some things in comient to discard certain non-canonical runs of the generative
mon. Certain rules may appear in the rule sets for manyprocess: in this case, runs where the same rule prototype is
tasks, perhaps with some modifications to their contextsgenerated twice.

outcomes,_ _and outcome probabilities. To capture thes%hus, we will define measureB;(G) and Puod (Rx|G)

commonalities, we assume that the rule sets are all 9€0Rat give the probability of generating a rule set prototype

erated from an underlyingile set prototype. G, or a rule setRy, through a “valid” sampling run. Be-

A rule set prototype consists of a setmofle prototypes ~ cause some runs are considered invalid, these measures do

A rule prototype is like an ordinary rule, except that rathernot sum to one. The resulting joint distribution is:

than specifying a probability distribution over its outcomes,

it specifies a vector of Dirichlet parameters that define a »(G, Ry,..., Rk, z1,...,2x)

prior over outcome distributions. For a rule prototype with K

n explicit outcomes, this is a vectdrof n+2 non-negative lPG(G) [Puoa(Be|G)p(ax|Rk) (3)

real numbers®,, . ; corresponds to a specisged outcome z k=1

o}, that generates new outcomes in local rules, @nd.

accounts for the noise outcome. Unlike in local rule sets;The normalization constarf is the total probability of

we allow overlapping rules and outcomes in rule set protovalid runs of our generative process. Since we are just inter-

type to allow for better generalization. ested in the relative probabilities of hypotheses, we never
need to compute this normalization constant.

3.2 Overview of Model
; ; : i i ‘trily. 2One might be tempted to define a model where the normaliza-
Our hierarchical model defines a joint probability distribu tion is more local: for instance, to replace the fadkop.a(Rx|G)

tion p(G, Ry, ..., Ric,x1,...,&x). In our setting, each j, Eq. 3 with a normalized distributiorPoa(Rx|G)/Z(G).
examplezy,, is a states; obtained by performing a known However, the normalization factoZ(G) is not constant, so it
actiona; in a known initial states;_;. Thus, p(zk.|Rx) would have to be computed to compare alternative valués of

3.3 Maodifying the Rule Set Prototype setR of sizem from a prototype of sizem™ is:

Prod(R|G) =
We begin the discussion of our generative process by de- m
scribing how a rule set prototyg@ is modified to create a Poum(mm®)-m!- [D Pa(as|G)Pre(rilas) (5)
rule setR (the process that generat@swill be a simpli- =Sy

fied version of this process). The first step is to choose the
rule set sizem from a distribution Py, (m|m*), where
m* is the number of rule prototypes i&. We define
Prum(m|m*) so that all natural numbers have non-zero

probability, butmn is likely to be close ton*, and the prob- e will now define the distributiot, . (r|r*), wherer*

ability drops off geometrically for greater valuesrof may be either a rule prototype, or the value indicating
thatr is generated from scratch. Supposeonsists of a
context formula¥, an action ternz, a set of non-noise
outcomes), and a probability vectgs. The corresponding
parts ofr* will be referred to asl*, z*, O*, and® (recall

(4) thatthis last component is a vector of Dirichlet parameters).
If r* = ni, thenU™* is an empty formulaz* is n, O*
consists of just the seed outcome, ands a two-element
vector consisting of a 1 for the seed outcome and a 1 for

Here Geom[a] is a geometric distribution with success the noise outcome.

probability . Thus, ifm > m*, then Pyym,(m|m*) =

(1 —a)al™™"), We seta to a small value to discourage

the rule setR from being much larger thaf¥. The sum of

the Geom|[«] distribution over all values greater than zero

is «, leaving a probability mass df— « to be apportioned

over rule set sizes from 0 through*. The binomial dis-

tribution Binom[m*, 3] — which yields the probability of

getting exactlyn heads when flippingn* coins with heads

3.4 Modifying and Creating Rules

Poum(m|m™) =

Geom[a](m —m™) if m >m*
(1 — «)Binom[m™, 8](m) otherwise

For rules derived from a rule prototype, we assume the ac-
tion term is unchanged. Soif* is notni, we use the dis-
tribution P, (z|2*) that assigns probability one t3. If a

rule is generated from scratch, we need to generate its ac-
tion term. For simplicity, we assume that each action term
consists of an action symbol and a distinct logical variable
for each argument; we do not allow repeated variables or

y . . A . more complex terms in the argument list. The distribution
probability 3 — is a convenient distribution over this range N . :
. P,.+(z]|z*) chooses the action term uniformly from the set
of integers. We sef to a value close to 1 to express a pref- N
of such terms when* = .

erence for local rule sets that are not much smaller than the

prototype set. The next step in generatings to choose its contextt. We
define the distribution fo# by means of a general formula-
modification distributionP,, (¥|¥*, v), wheret is the set
of logical variables that occur in and thus are eligible to
be included in¥. This distribution is explained in Sec. 3.5.

Next, fori = 1 to m, we generate a local rulg. The
first step in generating; is to choose which rule prototype
in G it will be derived from. This choice is represented
by an assignment variablé;, whose value is either a rule
prototype inG, or a special valuaw indicating that this To generate the outcome geffrom O*, we use essentially
rule is generated from scratch with no prototype. The disthe same method we used to generate the rul® freim G.
tribution P4 (a;|G) assigns the probability,,.. tone and We begin by choosing the sizeof the outcome set from
spreads the remaining mass uniformly over the rule prothe distributionP,,, (n|n*), wheren* = |O*|. The dis-
totypes. Since thel; are chosen independently, a single tribution P, here is the same one used in Sec. 3.3 (one
rule in G may serve as the prototype for several rule®jn could use differentv and 5 parameters here). Then, for
or for none. Next, given the rule prototype (or null value) i = 1 to n, we choose which prototype outcome serves as
a;, the local ruler; is generated according to a distribution the source for théth local outcome. This choice is rep-
Pue(rila;). We discuss this distribution in Section 3.4. resented by an assignment varialile As in the case of

. rules, we allow some local outcomes to be generated from
The rule set generated by this process is the set of distinc o R
) i . Scratch rather than from a prototype; this choice is repre-

rules in the listry, ..., r,,. We consider a run of the gener-)

. oo sented by the seed outcome. The valueBpfis chosen
ative process to be invalid if any of these rules have overlap: N X : o

) o :) . from Pg(b;|O*), which assigns probability,,; to the seed
ping contexts; in particular, this constraint rules out cases

where the same rule occurs twice. So the probability ofoutcome and is uniform over the rest of the outcomes.
generating a se€fry, ..., ., } on a valid run is the sum of Once the source for each local outcome has been chosen,
the probabilities of all permutations of this set. Thigné the next step is to generate the outcomes themselves. Recall
times the probability of generating the rules in any particu-that an outcome is just a formula. Thus, we define the out-
lar order. Thus, the probability of getting a valid local rule come modification distribution using the general formula-

modification proces$*,,(o;|b;, v) that we will discuss in whereT is a set of simple terms anfis a function from
Sec. 3.5 (again; is the set of logical variables ir). If b;is elements ofl" to values. This representation guarantees
the seed outcome, théh,,, treats it as an empty formula. A that the elements d¢f are unordered, and each element is
list of outcomes is considered valid if it contains no repeatamapped to only one value.

and no overlapping outcomes. Since repeats are excludegb
the probability of a set of outcomes is! times the proba-
bility of any corresponding list. Thus, we get the following
probability of generating a valid outcome €gtand an as-
signment vectob, given that the prototype outcome set is
O* and the number of local outcomesnis

to define our formula-modification distribution
Peor(ple*,0), we will supposeyp = (7,I) and
p* = (T*,I*). Recall thatv is the set of logical
variables that may be used imand ¢*. To generatep,
we first choose a se€fi., C T, where each term in
N T* is included inTi.p independently with probability
Pout (0, b]O",n) = n!HPB(bilo*)Pfor(Oilbi,ﬂ) ©) Brerm- The terms indeep, Will be included inr. Next,
pal we generate a séft,.,, of new terms to include iff". The

The last step is to generate the outcome probabiliies $ize Of Ty, denotediey, is chosen from a geometric

These probabilities are sampled from a Dirichlet distribu-diStribution with parametetye.,. Then, fori = 1 to

tion whose parameter vector depends on the prototype p pﬂcw' wei genirr?te ;. tte.rbmt. accoLdmg 0 a d|stcrj|.bu';|on
rameters® and the assignment vectbr = (by,...,b,). term (t1[0). IS distribution chooses a predicate or

Specifically, define the functiofi(®, b) to yield a parame- function symbolf uniformly at random, and then chooses
each argument of uniformly from the set of constant

/ / .
ter vector(®},..., @,) such that symbols pluss. We consider a run invalid if any element
. o of Thew IS In T*: this ensures that while computing the
) = { ooy Tism (7) probability of a term sef’ given a prototype term sét*,
D0 ifi=n+1 we can recovVelyeep, asT N T™* andT ey asT \ T*.

This definition says that i6; is generated from prototype Next, we choose the term-to-value functidn For a term
outcomeb; (including the seed outcome), thdr is ob- ¢ € TNT*, the valuel (¢) is equal tol *(¢) with probability
tained by dividing up®,, over all the local outcomes de- p, and with probability(1 — p) it is sampled according to
rived fromb;. The number of such outcomes is computeda distribution P, (7). If t ¢ T, thenI(t) is always
by the functionC(b, b;), which returns the number of in- sampled fromP, ;.. (x|v). This distributionPy,;..(z|v) is
dicesj € {1,...,n} such thath; = b;. Finally, for the uniform over the constant symbols in the language, plus
noise outcome, we haw, | = ®,, ;5.

To define the overall distribution for a local rutegiven a 3.6 Generative Model for Rule Set Prototypes
rule prototype*, we sum out the assignment variables

For valid rules-, we get: The process that generates rule set prototypéssimilar
to the process that generates local rule sets fégnbut
Prate(7|7") = Pact(2]27) Pror (¥, 7) Poum(n|n™) - all the rule prototypes are generated from scratch — there

3" Pou(O,b|O",n) Dir[f(®,b)|(p) (8) &€ MO higher-level prototypes from which they could be
derived. We assume that the number of rule prototypes in
G has a geometric distribution with parametgf.,. Thus

HereDir[f(®, b)] is the Dirichlet distribution with param- the probability of*a rule*set _prototyp@ of sizem™ with
eter vectorf (@, b). rule prototypegrj,... 75 . }is:

be
(O*U{NIL})™

3.5 Modifying Formulas Pe(G) = Geom[aproto] (m™) - m™! - E Pproto(ri) (9)

The formulas that serve as contexts and outcomes are veljfe consider a generative run to be invalid if it generates
simple: they are just conjunctions of literals, where a literalthe same rule prototype more than once, although we allow
has the formt = z for some termt and valuex. The term rule prototypes to have overlapping contexts.

”?“St besimplein the sense that e".:lCh of ".[S argur_ne_nts 'SThe rule prototypes are generated independently from the
either a constant symbol or a logical variable; similarly,

. ; distribution P00 (7*). This is similar to the distribution
g mustt be a Ct;) nstt?;:t syr;bol 1?Ir'ta Iolgu_:al v?rlable?/.\le d1‘or generating a local rule from scratch (as given by Eq. 8).
0 not caré about the order ot literals In a 1ormula, antrpq 5 qign terme* is chosen from the uniform distribution
we would also like to rule out self-contradictory formulas

in which multiol | ioned 1o th ¢ Pt (z*|nL); the context formulal* is generated by run-
II? i;vclgnvg;ﬁe:ﬁ ?ovf;];iso?r: %s;:;l]%rllg asoa pi\i?(%“m}a) ermhing our formula modification process on the empty for-

mula () given the logical variables from z*; the num-
3\We are treatingrue andfalseas constant symbols, so a literal Per of outcomes.™ has a geometric distribution; and each
such as-on(X,Y) is represented an(X,Y) = false outcomeo* in the outcome seD* is also generated from

Pior(0*|0,7). The main difference from the case of local the outcome probabilities:
rules is that rather than generating an outcome probabil-

ity vector p, we generate a vector of Dirichlet weighbs P(G,R},... R%) x

defining a prior over outcome distributions. We use a hy- %

perprior Py (®|n*) on ® in which the sum of the Dirichlet Ps(G) H/ Paoa(Ri|G)P(z|Ry) (10)
weights has an exponential distribution. Thusy*ifcon- k=17 Rf

sists of an action term” containing logical variables, & s equation trades off three factors: the complexity of the
context¥”, and an outcome s€t” of sizen*, then: rule set prototype, represented By, (G); the differences
between the local rule sets and the prototypg,q (R« |G),
o) P) @ TB e ol ol ksl e e[,
. X B omputing the value of Eq. or a given choice
- Geom[a](n®) Py (®(n") H Pror(0]0,9) andR;, ..., Rx is expensive, because it involves summing
0€o” over all possible mappings from local rules to global rules
(the a values in Eg. 5) and all mappings from local out-
comes to prototype outcomes (thealues in Eq. 8). Inte-
grating out the outcome probabilitisin each rule is not a
computational bottleneck: we can push the integral inside
In our problem formulation, we are given sets of exam-the sums oves andb, and use a modified version of a stan-
plesz1, ..., zx from K source tasks, and a set of examplesdard estimation techniquainka, 2003 for the Polya (or
(x+1) from the target task . In principle, one could max- Dirichlet-multinomial) parameters.

imize the objective in Eq. 3 using the data from the sourcerather than summing over all possible local-to-global
and target tasks simultaneously. HoweverKifis fairly correspondences for rules and outcomes, we approxi-
large, the data from task” + 1 is unlikely to have a large mate by using a single correspondence. Specifically,
effect on our beliefs about the rule set prototypeThus, for each rule setR, = {ri,...,rm}, we choose

we work in two stages. First, we find the best rule set prothe rule correspondence vectér that maximizes the
totype G* given the data for thé< source tasks. Then, probability of the local rule contextst; given the
holdingG* fixed, we find the best rule sétj. , givenG™ global rule contexts¥(,,) (ignoring outcomes)a =
andz 1. This approach has the benefit of allowing us t0,rg1ax e, PA(ai|G)Pfor(\Iji|\Ilz*a_)’ ;). Since each
throw away our data from the source tasks, and just transfefctor contains only one assignmént variable we can

the relatively smalG*. find the corresponding rule prototype for each local rule
Our goal in the first stage, then, is to find the prototge separately. Given the rule correspondeacee next con-
with the greatest posterior probability given, ..., zx. struct an outcome correspondence for gaphwpIWe use
Doing this exactly would involve integrating out the source th€ outcome correspondence that maximizes the probabil-
rule setsRy, .. ., Rx. It turns out that if we think of each 1ty Of the local outcomes,, ..., o, given the outcome set
rule setR, as consisting of a structurBS and parame- 0" oftherule prototypa; (ignoring the outcome probabil-
tersRY (namely the outcome probability vectors for all the ities)b = argmaxy, [[;, Pr(bi|O) Pror(0i[bs, v). Again,
rules), then we can integrate off efficiently. However, ~the maximization decomposes into a separate maximiza-
summing over all the discrete structur& is difficult. ~ tion for each outcome. This greedy matching scheme can
Thus, we apply another MAP approximation, searching forvield a poor result if a Iocal_rule,; has a context similar to
the prototypes and rule set structureS, . .., RS, thatto- @ prototype rule, but very dlﬁgrent outcomes. So as a final
gether have maximal posterior probability. It is important StéP, we compute the probability of eactbeing generated
that we integrate out the parametéts, because the pos- from scratch, and set; to i if this is a better correspon-
terior density forRY is defined over a union of spaces of dence.

different dimensions (corresponding to different numbersthese approximations yield the following scoring function

of rules and outcomes iRy,). The heights of density peaks (an approximate version of Eq. 10), which we use to guide
in spaces of differing dimension are not necessarily comgyr search.

parable. So it would not be correct to use a MAP estimate
of RY' obtained by maximizing this density.

4 Learning

Score((?,l%?,...,}%%)

K o~
P&] [PusalBalC)ParlR) - QD)
k=1 R},

4.1 Scoring Function _ _ .
“We modify the standard technique to take into account our

g S . hyperpriorPs. Also, we adjust for cases where some global out-
In our search ove& and Ry, . .., Ry, our goal is to max- comes are not included in a corresponding local rule. For a more
imize the marginal probability obtained by integrating out detailed explanation, see the master’s thesis by Deshpjaadd.

uses a subalgorithm to find the best set of outcomes. This
outcome learning is done with a greedy search algorithm,
as described in the next section. The following operators
construct changes to the current rule set.

Hereﬁmod is a version of the measuie,,q from Eq. 5in
which we simply usé rather than summing oves values,
and we replacé’,,1c with a modified version that usds

rather than summing ovér vectors.
9 Add/Remove Rule. Two types of new rules can be added

to the set. Rules can be created byExplainExamples
procedurdZettlemoyeret al,, 200§ which uses a heuristic
search to find high quality potential rules in a data driven

We find a local maximum of Eq. 3 using a coordinate as- In additi | b db ina th
cent algorithm. We alternate between maximizing over jp-manner. In addition, rules can be created by copying the

cal rule set structures given an estimate of the rule set pro"’}Ctlon and context of one of the prototypes in the global

totypeG, and maximizing over the rule set prototype given :ﬁlef[ﬁet' ths pfrovuiljets %stron? IsfearcPh b'a,‘[S tiwa,:lds rulles
estimates of the rule set structurds;, ..., R%): at have been tound o be usetulior othertasks. Newrule

sets can also be created by removing one of the existing

4.2 Coordinate Ascent

K .
argmazgs s H/p Pax|Re) P(Ri|G) rules in the current set.
k=171
K Add/Remove Literal. This operator selects a rule in the
argmaza P(QG) H P(R}|G) current rule set, and replaces it with a new rule that is the
k=1

same except that one literal is added or removed from the

We begin with an empty rule set prototype, and use gLontext. All possible additions and deletions are proposed.

greedy local search algorithm (described below) to opti-) , o
mize the local rule sets. Sinde,, ..., Rx are condition- Split on Literal. This operator chooses an existing rule
ally independent giver, we car,l do7 this search for each @nd a new term that does not occur in that rule’s context. It

task separately. When these searches stabilize — that {E€MoVves the chosen rule and adds multiple new rules, one
no search operator improves the objective function — wdor each possible assignment of a value to the chosen term.

run another greedy local search to optimize We repeat Any time a new rule is added to a rule set, there is a check to

this alternation until no more changes occur. make sure that only one rule is applicable for each training
example. Any preexisting rules with overlapping applica-
4.3 Learning Local Rule Sets bility are removed from the rule set.

During the coordinate ascent one task is to find the highes& 32 Outcome Search

scoring local rule seit; given the rule seG. The search

?s closely related the rule set learning algorithm.probllemGiven a rule action: and a context, the set of outcomes

in Zettlemoyeret aI._ [20014. _There are three major dif- 0 is learned with a greedy search that optimizes the score,

ferences: (1)o provides a prior that did not exist before; comnyted as described in section 4.1. This algorithm is

(2) the outcomes for each rule are constrained to be non- 4 mqgified version of a previous outcome search procedure

overlapping; and (3) the rule parametgrsare integrated [pagyigt al, 2004, which has been changed to ensure that

out instead of being set to maximum likelihood estimates. iha outcomes do not overlap. Initialig, contains only the
noise outcome, which can never be removed. It each step,

4.3.1 Rule Set Search a set of search operators is applied to build new outcome

sets, which are scored and the best one is selected. The

In this section, we briefly outline a local rule learning algo- search finishes when no improvements can be found. The
rithm that is a direct adaptation of the approach of Zettle- P '

moyeret al. [2009 and highlight the places where the two operators include:

algorithms differ. The search starts with a rule set that con- .
tains only the noisy default rule. At every step, we take the*dd/Remove Outcome. This operator adds or removes

current rule set and apply a set of search operators to cr&n outcome from the set. Possible additions include any
ate new rule sets. Each of these new rule sets is scored, §4tcomes from the corresponding prototype rule or an out-

described in section 4.1. The highest scoring set is selectégPMe derived from concatenating the changes seen as a re-
and set as the ne,,, and the search continues until no sult of action effects in a training example (followifiga-
new improvements are found. sulaet al., 2004). Any existing outcome can be removed.

The operators create new rule sets by directly manipulatingygd/Remove Literal. This operator appends or removes
the current set: either adding or removing some number of jiteral from a specific outcome in the set. Any literal that

evant operator constructs the rule’s action and context angyn pe removed.

Split on Literal.
and replaces it with multiple new outcomes, each contain-
ing one of the possible value assignments for a new term.

Merge Outcomes. This operator creates a new outcome
computing the union of an existing outcome and one that
could be added by the add operator described above. The

original outcome is removed from the set. 2.

Two of the operators, add outcome and remove function,
have the potential to create overlapping outcomes. To fix
this condition, functions are greedily added to overlapping
outcomes until no pair of outcomes overlap. This new out-
come set is scored, and the search continues.

4.4 Learning the Rule Set Prototype

The second optimization involves finding the highest scor-
ing rule set prototypeG given rule sets(Rj, ..., R}).

Again, we adopt an approach based on greedy search4.

through the space of possible rule sets. This search has ex-
actly the same initialization and uses all of the same search

operators as the local rule set search. There are three differ-2-

ences: (1) théAddRuleoperator tries to add rules that are
present in the local rule sets, without directly referencing

outcomes can not overlap, simplifying some of the check-
ing that the operators have to perform; and (3) we need to

estimate the Dirichlet parameters for the outcomes for each 7.

new prototype rule considered by the structure search.

Estimating the Dirichlet parameters for the Polya distri-
bution does not have a closed form solution, but gradient
ascent techniques have been developed for the maximum
likelihood solution[Minka, 2003. To estimate the parame-

This operator takes an existing outcome 1. GenerateX “source task” rule sets from a prior dis-

tribution. This prior distribution is implemented by
a special-purpose program for each family of tasks.
This is slightly more realistic than generating the rule
sets from a rule set prototype expressed in our model-
ing language.

For each source task, generate a setVgf,ce State
transitions to serve as a training set. In each state tran-
sition, the action ipickupg(A, B) and the initial state is
created by assigning random values to all functions on
{A, B}.% Then the resulting state is sampled according
to the task-specific rule set. Note that the state tran-
sitions are sampled independently of each other; they
do not form a trajectory.

. Run our full learning algorithm on th& source-task

training sets to find the best rule set prototype

Generate a “target task” rule sBf . ; from the same
distribution used in Step 1.

Generate a training set dfiarget State transitions as in
Step 2, usingR i 11 as the rule set.

the training sets; (2) we relax the restriction that rules and 6. Learn a rule sefix, for the target task using the

algorithm from Sec. 4.3, witli* as the fixed rule set
prototype.

Generate a test set of 1000 initial states using the same
distribution as in Step 2. For each initial statecom-

pute thevariational distancebetween the next-state
distributions defined by the true rule sBix ., and

the learned rule se@KH. This is defined in our case

as follows, witha equal topickup(A, B) ands’ ranging

ters for a rule prototype*, the required occurrence counts over possible next states:
are computed for each prototype outcome and each local
rule that corresponds to* (under the correspondenée

described in Sec. 4.1). If a local rule contains several out-
comes corresponding to the same prototype outcome (un-

derb), their counts are merged.

Z ’P(5'|Sa a, Rgy1) — p(s']s, a, EK+1)

Finally, compute the average variational distance over
the test set.

> Experiments Variational distance is a measure of error, but we would like

] . . the y-axis in our graphs to be a measure of accuracy, so we
We evaluate our learning algorithm on synthetic data from, 5.7 _ (variational distance

four families of related tasks, all variants of the classic

blocks world. We restrict ourselves to learning the effectsThe free parameters in our hierarchical Bayesian model
of a single actionpickup X,Y). Adding more actions (and hence in our scoring function) are set to the same val-
would not significantly change the problem: since the acues in all experiments. While we found that the scoring

tion is always observed, one can learn a rule set for multipléunction in Eq. 11 leads to good results on large training

actions by learning a rule set for each action separately. Sets, we also saw that with small training sets, the very
small probabilities of formulas (in contexts and outcomes)

51 Methodology tend to dominate the score. For the experiments reported

h f . . fthe followi . °The distribution used here is biased so thais always a
Each run of our experiments consists of the following stepsp ok and the robot's gripper is usually empty; this focuses our

evaluation on cases whep&kup(A, B) has a chance of success.

Gripper Size Domain Slippery Gripper Domain

9
©)
o o
= c
o o
2 k]
a a
© ©
c =
2 ke]
s]
a c
2 2
< 084 No Transfer —+— - 06+ No Transfer —+— 7
082 T 1x5000 =+] 1x5000 =
ogl— . .. 2x2500 x- 05 L ... 2x@500 ke
) 20 40 60 80 100 120 140 160 180 200 ’ 20 40 60 80 100 120 140 160 180 200
Target Task Examples Target Task Examples
(@) (b)
Slippery Gripper with Size Domain Random Domain
1 T 1
o X R T A A e
] g ooy
= = -
i) S E
R 0 1
a a 08
© © k|
s S i
s i 0.7?,
< c ‘
> > No Transfer —+—
- 08 No Transfer —+— 1 I 06 1x1000 >
T 1x5000 X 4%250 K
o5l o, 2x@500 % o5l ., 10x100 -5
' 20 40 60 80 100 120 140 160 180 200 ’ 20 40 60 80 100 120 140 160 180 200
Target Task Examples Target Task Examples
(© (d)

Figure 3: Accuracy using an empty rule set prototype (labeled “No Transfer”) and transfer learning, ldkdledhere
K represents the number of source tasks dnepresents the number of examples per source task.

here, we use a modified scoring function in which each ocblocks on the table; the robot can only pick up blocks that
currence of the formula distributio®;,, is raised to the are the same size as its gripper. Thus, each task can be
power 0.5. The fact that thiad hocmodification yields described by a single rule saying that if blogk has the
better results suggests that our distribution over formulaproper size, thepickupg X, Y') succeeds with some signif-

is overly flat, and it would be worthwhile to develop a for- icant probability (this probability also varies across tasks).
mula distribution that gives common literals or subformu-If X has the wrong size, then no rule applies and there is
las higher probability. no change. Since the “proper size” varies from task to task,
the rules for different tasks have different contexts. To in-
crease the learning difficulty, two extra distracter predicates
(color andtexturg are randomly set to different values in

In this section, we present results in the four blocks worldeach example state.

domains. For each domain, we briefly describe the taslgjy 3(a) shows the transfer learning curves for this do-
generation distribution and then present resulBor each main. The transfer learners are consistently able to learn
experiment, we graph variational distance as a function ofye gynamics of the domain with fewer examples than the
the number of training examples in the target task. Eactyon.transfer learner. In practice, in each source task, the
experiment was repeated 20 times; our graphs show the aggorithm learns the specifiickuprule with the appropri-
erage results with 95% confidence bars. The time requirediesizeliteral in the context. The algorithm learns a single
for each run varied from 30 seconds to 10 minutes dependye prototype whose context also contains scize lit-

ing on the complexity of the domain. eral. This rule prototype provides a strong bias for learning
Our first experiment investigates transfer learning in a dofhe correct target-task rule set: the learner only has to re-
main where the rule sets are very simple — just Sing|eolace thesizeliteral in the prototype with the corresize
rules — but the rule contexts vary across tasks. We uséteral for the given task.

a family of tasks where the robot is equipped with grip-Tq see how transfer learning works for more complex rule
pers of varying sizes. There are seven different sizes °§ets, our next experiment uses a “slippery gripper” domain
adapted froniKushmericket al,, 1995. The correct model

6 . . .
Deshpandd2007 presents a more detailed description of o this gomain has four fairly complex rules, describing
these domains.

5.2 Results

cases where the gripper is wet or not wet (which influencesglifferent tasks. This learning problem is particularly diffi-
the success probability fgrickup and the block is being cult due to the need to learn relational structure along with
picked up from the table or from another block (in the lat- probabilities simultaneously for a large number of tasks.
ter case, the rule must include an additional outcome for th&he current approach addresses many of the fundamental
block falling on the table). The various tasks are all mod-challenges for this task and provides a strong example that
eled by rules with the same structure, but include relativelycan be extended to work in more complex domains and
large variation in outcome probabilities. with a wide range of representation languages.

Fig. 3(b) shows the transfer learning curves for the slip-

pery gripper domain. Again, transfer significantly reducesREferenCes
the number of examples required to achieve high accura¢@axter, 1997 J. Baxter. A Bayesian/information theoretic
We found that the transfer learners create prototype rulenodel of learning to learn via multiple task samplilda-
sets that effectively represent the dynamics of the domairghine Learning28:7-39, 1997.

However, the structure of the prototype rules do not ex-
actly match the structure of the four specific rules that aﬁglum and Langford, 1999A. L. Blum and J. C. Langford.

present in each source task. Despite this fact, these protg’—rObabIIIStIC planning in the Graphplan _framework. In
types still capture common structure that can be specialize@roc‘ 5th European Conference on Plannidg99.

to quickly learn the correct rules in the target task. [Deshpande, 20Q7A. Deshpande. Learning probabilistic
relational dynamics for multiple tasks. Master’s thesis,

Our third domain, the slippery gripper domain with size, is ;
ppery gripp Massachusets Institute of Technology, 2007.

a cross between the slippery gripper domain and the grip
per size domain. In this domain, all four rules of the slipfkushmericket al, 1999 N. Kushmerick, S. Hanks, and

pery gripper domain apply with the addition that each rulep. S. Weld. An algorithm for probabilistic planningrti-
can only succeed if the targeted block is of a certain taskficial Intelligence 76:239-286, 1995.

specific size. Thus, the domain exhibits both structural and, i L
parametric variation between tasks. Lindley, 1971 D. V. Lindley. The estimation of many pa-

rameters. In V. P. Godambe and D. A. Sprott, editBosin-

As can be seen in Fig. 3(c), the transfer learners perforrgations of Statistical InferencéHolt, Rinehart and Win-
significantly better than the non-transfer learner. In thisston, Toronto, 1971.

case, the rule set prototype provides both a parametric alnd ,
structural bias to better learn the domain. Marx et al, 2009 Z. Marx, M. T. Rosenstein, L. P. Kael-

bling, and T. G. Dietterich. Transfer learning with an en-

Our final experiment investigates whether our algorithmsemble of background tasks. MPS Workshop on Induc-
can avoid erroneous transfer when the tasks are actuallye Transfer 2005.

unrelated. For this experiment, we generate random source) o .)
and target rule sets with 1 to 4 rules. Rule contexts arYlinka, 2003 T. P. Minka. Estimating a Dirichlet dis-

outcomes are of random length and contain random Segibgtion. Avail_a_ble at http://research.microsoft.com/
of literals. Since rule sets sampled this way may contairf>Minka/papers/dirichlet, 2003.

overlapping rules or outcomes, we use rejection sampli@asulzet al, 2004 H. M. Pasula, L. S. Zettlemoyer, and
to ensure that a valid rule set is generated for each task. | p, Kaelbling. Learning probabilistic relational planning

As can be seen in Fig. 3(d), the transfer and non-transfédlles. InProc. 14th International Conference on Auto-
learners’ performances are statistically indistinguishablemated Planning and Scheduling004.

The learning algorithm often builds a rule set prototypeyy et al, 200§ K. Yu, V. Tresp, and A. Schwaighofer.

ance outcome distribution priors. These prototype rules d@gc. 22nd International Conference on Machine Learn-
not provide any specific guidance about the structure or pgpg, 2005.

rameters of the specific rules to be learned in the target task.

However, their presence does not lower performance in théettiemoyeret al, 2009 L. S. Zettlemoyer, H. M. Pasula,
target task. and L. P. Kaelbling. Learning planning rules in noisy

stochastic worlds. IrfProc. 20th National Conference on
Artificial Intelligence 2005.

[Zhanget al., 2004 J. Zhang, Z. Ghahramani, and Y. Yang.
In this paper, we developed a transfer learning approach fdrearning multiple related tasks using latent independent
relational probabilistic world dynamics. We presented a hi-component analysis. 1Advances in Neural Information
erarchical Bayesian model and an algorithm for learning &Processing Systems.1@IT Press, 2006.
generic rule set prior which, at least in our initial exper-
iments, holds significant promise for generalizing across

6 Conclusion

