MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.003: Signals and Systems—Fall 2002

Quiz question

In this problem, we use symmetry to send two real signals within the same frequency band.

Let $x_1(t)$ and $x_2(t)$ both be *real* and *even* signals which are band-limited to ω_M . The Fourier Transforms of each are shown below:

Suppose we are given the following system which combines $x_1(t)$ and $x_2(t)$ into a single signal:

(a) Draw the real and imaginary parts of $X(j\omega)$

(b) Is x(t) completely real, completely imaginary, or neither?

(c) Suppose we want to transmit a modulated version of x(t) using a cosine carrier signal as shown below:

What is the minimum value of ω_c such that there is no aliasing from replicated components of $X(j\omega)$.

(d) Now suppose that $\omega_c = \frac{\omega_M}{2}$.

Draw the real and imaginary parts of $R(j\omega)$.

(e) Given the block operations shown below (1,2,3), find the correct order (A,B,C) in which to perform the operations in order to recover x(t) from r(t).

2. Low-pass Filtering

3. Band-pass Filtering

Operation 1 (Modulation) goes in

BLOC	K A	BLOCK B	BLOCK C
Operation 2 (Low Pass Filtering) goes in			
BLOC	K A	BLOCK B	BLOCK C
Operation 3 (Band Pass Filtering) goes in			
BLOC	K A	BLOCK B	BLOCK C

- (f) Assuming that we have perfectly recovered x(t), then how can we recover $x_1(t)$? $x_1(t)$ is
 - $\operatorname{Re}(x(t))$ $\operatorname{Im}(x(t))$ $\operatorname{Odd}(x(t))$ $\operatorname{Even}(x(t))$