MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.003: Signals and Systems-Fall 2002

Tutorial for the week of December 2nd - December 6th

Alex's Office Hours
Monday 4-6pm
Tuesday 5-7pm

Important Due Dates:

- Problem Set 10 due on Wednesday. (Last one!!!)
- Lab 3 due on Friday

Today

1. A little more on Z-Transforms
2. Work through elements of Prob. 8 on PS 10.

Intentionally blank....

[Example]

Consider a signal $y[n]$ which is related to two signals $x_{1}[n]$ and $x_{2}[n]$ by

$$
y[n]=x_{1}[n+3] * x_{2}[-n+1]
$$

where

$$
x_{1}[n]=\left(\frac{1}{2}\right)^{n} u[n] \quad \text { and } \quad x_{2}[n]=\left(\frac{1}{3}\right)^{n} u[n]
$$

Use the properties of the z-transform to determine the z-transform, $Y(z)$, of $y[n]$.

[Example]

Consider the causal digital filter structure shown below

(a) Find $H(z)$ for this filter. Plot the pole-zero pattern and indicate the region of convergence.
(b) For what values of the k is the system stable?
(c) Determine $y[n]$ if $k=1$ and $x[n]=(2 / 3)^{n}$ for all n.

Work Page

Problem 8

To refresh your memory, the problem is briefly restated below:
Suppose we have a band-limited DT waveform which is being modulated by a cosine carrier of frequency ω_{0} and has an unknown phase ϕ.

Our goal is to use a feedback loop to get an estimate of ϕ. In the diagram below, this estimate is denoted as $\hat{\phi}[n]$.

Notice that if $x[n]$ is constant (say at 10), then

$$
e[n]=-10 \cos \left(\omega_{0} n+\phi\right) \sin \left(\omega_{0} n+\hat{\phi}\right)
$$

We then use the angle sum identity (remember your high school trig!!!)

$$
-2 \sin (B) \cos (A)=\sin (A+B)+\sin (B-A)
$$

If we let $A=\omega_{0} n+\phi$ and $B=\omega_{0} n+\hat{\phi}$, then we get that

$$
\begin{aligned}
e[n] & =-10 \cos (A) \sin (B) \\
& =5(\sin (A+B)+\sin (B-A)) \\
& =5 \sin \left(2 \omega_{0} n+\phi+\hat{\phi}\right)+5 \sin (\hat{\phi}-\phi)
\end{aligned}
$$

Since the second term can be approximated for very small $\hat{\phi}-\phi$,

$$
\sin (\hat{\phi}-\phi) \approx \hat{\phi}-\phi
$$

we can linearize the system for slowly varying $\hat{\phi}[n]$.

1. Determine $H(z)=\frac{\hat{\Phi}(z)}{\Phi(z)}$ and $G(z)=\frac{E(z)}{\Phi(z)}$. For what range of values of K is the closedloop system stable?
2. Suppose that the input $\phi[n]$ is a step, i.e., $\phi[n]=\phi_{0} u[n]$ for some ϕ_{0}. Find an α for which

$$
\lim _{n \rightarrow \infty} e[n]=0
$$

3. Suppose now that the input $\phi[n]$ is given by $\phi[n]=\cos \left(\Omega_{0} n\right)$, where $\Omega_{0} \approx \pi / 2$. Then the output $\hat{\phi}[n]$ is of the form $A \sin \left(\omega_{0} n+\psi\right)$. Show that

$$
A \approx \frac{|5 K|}{\sqrt{1+(5 K-1)^{2}}}
$$

4. Going back to the original, non-linearized system, based on your answer to the previous part, how should we choose K to filter out the harmonic components at $2 \omega_{0}$ in $e[n]$.

Work Page

Work Page

