
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.003: Signals and Systems—Fall 2002

Tutorial for the week of October 28st - November 1st

Alex’s Office Hours
Monday 3-5pm
Tuesday, 6-8pm

Important Due Dates:

• Problem Set 6 due on Wednesday.

• Lab 2 due Friday, November 8th (No late submissions accepted).

Today

1. Time and Frequency Characterizations of signals and systems (Chapter 6)

2. Sampling (Chapter 7)

1



Visualizing System Characterizations

Up until now, we have learned how to characterize LTI systems in terms of:

• h(t), which is the impulse response. This is computed as the output of the system
when the input is δ(t)).

e.g. h(t) = e−atu(t)

• H(jω), which is the frequency response. This is computed as the Fourier transform of
the impulse response.

e.g. H(jω) =
1

1 + ajω

• LCCDE. This is the Linear Constant Coefficient Differential Equation that relates y(t)
to x(t).

e.g.
dy

dt
+ ay(t) = x(t)

Frequency Characterization - Bode Plots

For continuous time, in particular, Bode plots are a useful way of visualizing a system’s
frequency response. Bode plots stem from two simple observations

1. H(jω) = |H(jω)|e∠H(jω)

2. log(AB) = log(A) + log(B)

Therefore, if we focus on plotting log |H(jω)| separately from ∠H(jω), then we can visualize
complicated systems as the sum of simpler systems which we know how to plot.

H(jω) = H1(jω)H2(jω)

= |H1(jω)||H2(jω)|e∠H1(jω)+∠H2(jω)

⇒ log |H(jω)| = log |H1(jω)|+ log |H2(jω)|
⇒ ∠H(jω) = ∠H1(jω) + ∠H2(jω)

In particular, we note that H1(jω) = 1 + ajω looks like 1 for aω very small. It looks like
ajω for aω very large. Therefore,

ω H1(jω) log |H1(jω)| ∠H1(jω)
ω << a−1 1 0 0
ω >> a−1 aωj log(ω)− log(a−1) π

2

Therefore, if we plot log |H(jω)| versus log(ω), then this simple first order system looks
asymptotically like a piecewise linear function with a breakpoint at ω = a−1. Knowing this,
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we can plot the magnitude of any system that is a cascade of first order systems.

H(jω =
(1 + a1jω) · · · (1 + aNjω)

(1 + b1jω) · · · (1 + bMjω)

⇒ log |H(jω)| =
N∑

i=1

log |(1 + aijω)| −
M∑

k=1

log |(1 + bkjω)|

⇒ ∠H(jω) =
N∑

i=1

∠(1 + aijω)−
M∑

k=1

∠(1 + bkjω)

Time Characterization - Impulse and Step Response

Another useful way of visualizing system characteristics is to view the time domain responses
by plotting h(t) the response of the system to an impulse, and/or s(t), the response of the
system to a unit step.

For most of the system examples that we will look at in this course, h(t) will consist of
linear combinations of eat, teat, t2eat, where a can be complex.
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[Example]

We are given the following frequency responses:

H1(jω) =
jω+100

10(jω+10)
H2(jω) =

jω−100
10(jω+10)

H3(jω) =
10(jω+10)

jω+100
H4(jω) =

100
(jω)2+4jω+100

H5(jω) =
jω+100

(jω)2+4jω+100
H6(jω) =

jω+100
10jω(jω+10)

(a) Match each of the frequency response functions above to its corresponding Bode mag-
nitude plot.
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Figure 4

(b) Draw the Bode phase plots for H1(jω) and H2(jω).

(c) Does there exist H7(jω) such that |H7(jω)| = |H1(jω)| and|H7(jω)| = |H2(jω)|, but
∠H7(jω) is not identical to ∠H1(jω) nor ∠H2(jω) ? If there exists, find an expression
for H7(jω). If not, explain why.

(d) Draw the Bode plots for the frequency responses for which there are not corresponding
magnitude plots in (a).
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Work Space
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Sampling

Sampling is where 6.003 really starts to get interesting. As Victor mentioned on Friday, the
majority of signal processing that gets done these days is performed digitally, with computers
or microprocessors that can only deal with a discrete amount of data. The idea of sampling
is to take a continuous time signal, and only look at that signal at certain discrete points in
time. The values at those points are known as samples. Chapter 7 focuses on some important
questions related to sampling.

1. When do samples represent an unambiguous representation of a signal?

2. What can we do to the samples of a signal, and what does that do to the signal itself?

The important thing to remember for this chapter is:

PICTURES, PICTURES, PICTURES

It’s always easier to understand what’s happening by drawing pictures of the Frequency
domain representation... Don’t get lost in the equations!

Start with a signal, x(t) which has a frequency response, X(jω) as below: If we sample

✛ ✲
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✁
✁
✁
✁
✁
✁✁❆

❆
❆
❆
❆
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X(jw)

a

−ωc ωc
ω

x(t) by taking values only at multiples of T , then we are essentially multiplying x(t) with a
periodic impulse train. So our sampled signal is

xs(t) = x(t) · Σ∞
k=−∞δ(t − kT )

Since the Fourier transform of an impulse train is another impulse train

Σδ(t − kT ) ←→ 2π

T
Σδ(ω − m

2π

T
)

Then Xs(jω) is the convolution of X(jω) with an impulse train. So Xs(jω) is just a bunch
of X(jω)’s that are repeated at multiples of ωs =

2π
T

and that are scaled by 1
T
. Notice that

there is no overlapping of the repeated versions as long as the cut-off frequency, ωc, is less
than half of the sampling frequency, ωs. If there is some interference or distortion due to
ωs ≤ 2ωc. This is called aliasing.

By the way, aliasing is not always a bad thing!!!
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[Example]

How can we convert x(t) = cos(2πt) to y(t) = cos(πt)?

[Example]

Consider x(t) = sin(50πt)
πt

.

(a) What is the lowest frequency that x(t) can be sampled at to avoid aliasing?

(b) What about (x(t))2?

[Example]

Suppose you have one of those clocks that has a sweeping second hand.

(a) What is the period of this clock?

(b) How fast do we have to sample the clock in order to get the second-hand to seem like
it is moving backwards?
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Work Space
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