Reversibility 8 6ujnduoj unjuenQuantum Computing Reversibility &

"Why do all these Quantum Computing guys use reversible logic?"

 Logical reversibility of computation Bennett '73

Elementary gates for quantum computation
 Berenco et al '95

[...] quantum computation using teleportation
 Gottesman, Chuang '99

 Logical reversibility of computation Bennett '73
 Quantum computing needs logical reversibility
 Elementary gates for quantum computation Berenco et al '95

Gates can be thermodynamically irreversible

[...] quantum computation using teleportation
 Gottesman, Chuang '99

Logical reversibility of computation

Bennett '73

 Quantum computing needs logical reversibility
 Elementary gates for quantum computation Berenco et al '95
 Gates can be thermodynamically irreversible
 [...] quantum computation using teleportation Gottesman, Chuang '99

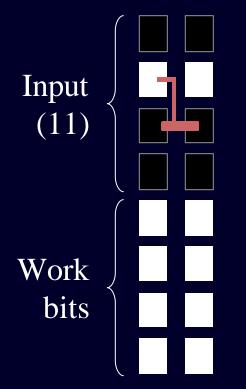
Heat Generation in Computing

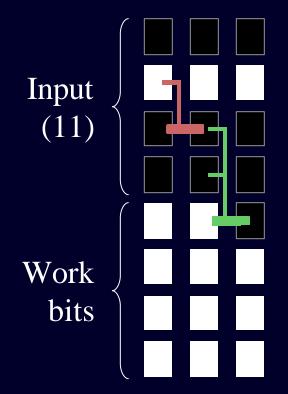
Landauer's Principle

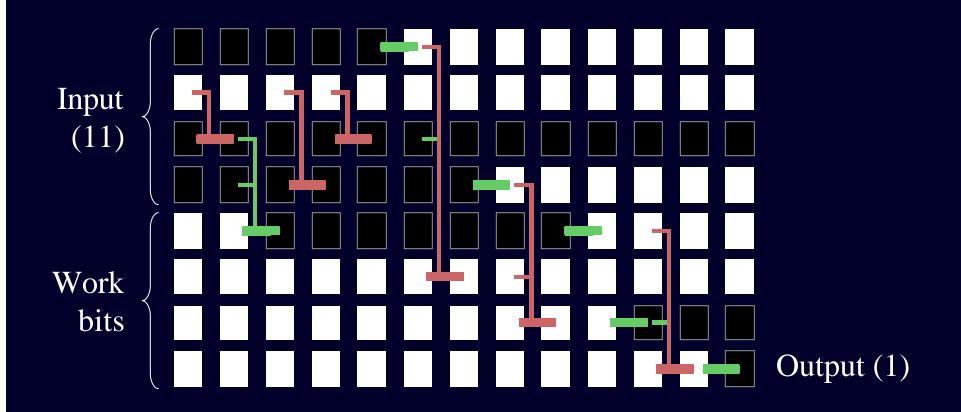
- Want to erase a random bit? It will cost you
- Storing unwanted bits just delays the inevitable

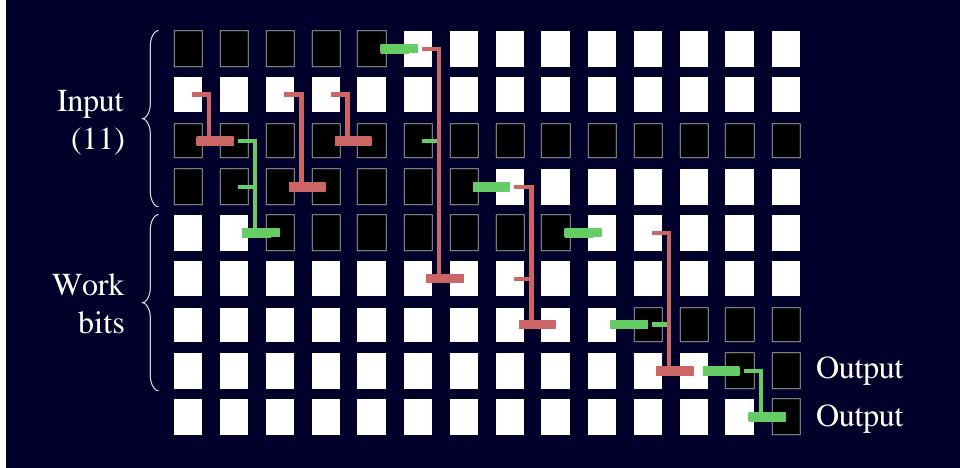
Bennett's Loophole

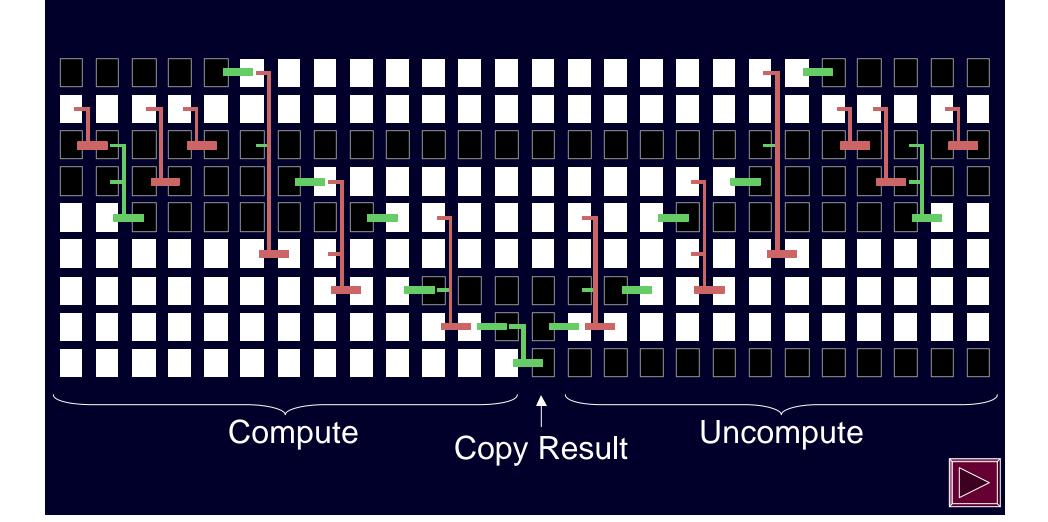
- Computed bits are not random
- Can uncompute them if we're careful



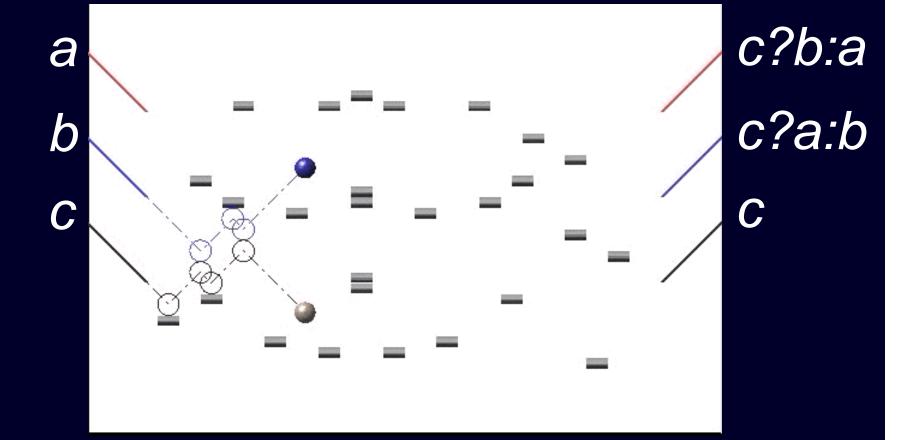








Thermodynamic Reversibility



Logical reversibility of computation

Bennett '73

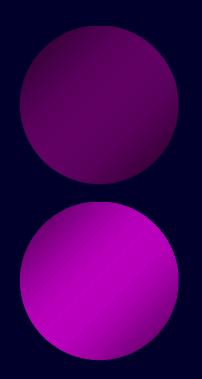
- Quantum computing needs logical reversibility
 Elementary gates for quantum computation Berenco et al '95
 Gates can be thermodynamically irreversible
- [...] quantum computation using teleportation
 Gottesman, Chuang '99

Quantum State

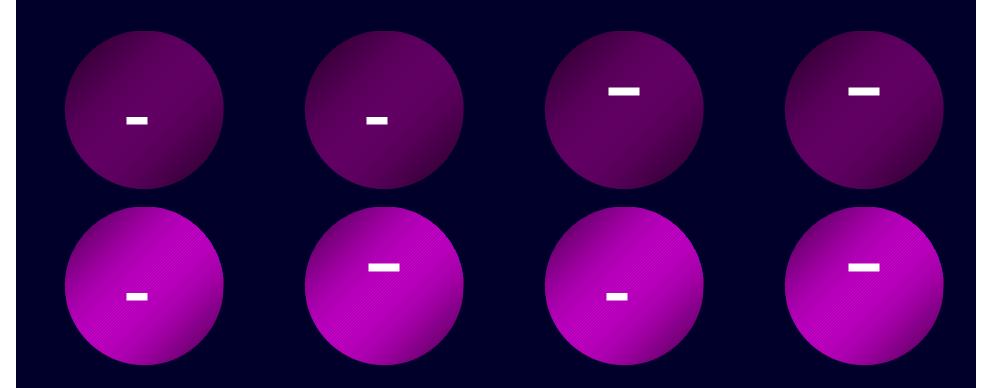
Two Distinguishable States

$|a|^2 + |b|^2 = 1$ $a, b \in C$

Two Spin-1/2 Particles



Four Distinguishable States

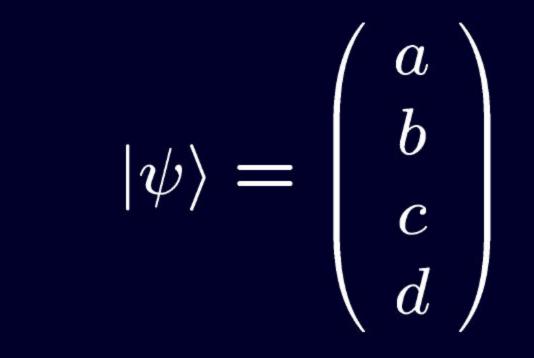


a + b + c + d =

 $|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$ $a, b, c, d \in C$

$a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$

$|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$ $a, b, c, d \in C$



$|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$ $a, b, c, d \in C$

State Evolution

$$i\hbar rac{d|\psi
angle}{dt} = H|\psi
angle$$
 (Continuous form) $|\psi'
angle = U|\psi
angle$ (Discrete form)

H is Hermitian, *U* is Unitary
Linear, deterministic, reversible

Measurement

$$|\psi'_m\rangle = \frac{1}{\sqrt{p(m)}} M_m |\psi\rangle$$

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle$$

Outcome *m* occurs with probability *p(m)* Operators *M_m* non-unitary
 Probabilistic, irreversible

Deriving Measurement

"Like a snake trying to swallow itself by the tail" "It can be done up to a point... But it becomes embarrassing to the spectators even before it becomes uncomfortable for the snake"

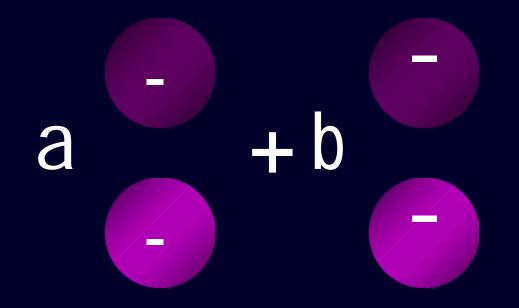
– Bell

A Simple Measurement

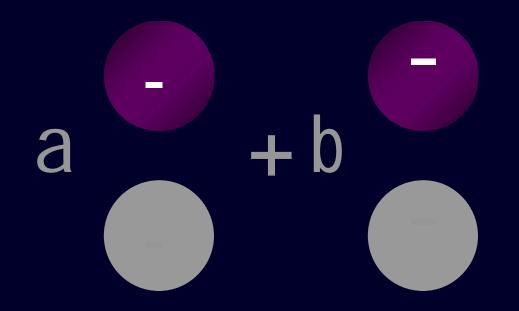
a - +b -

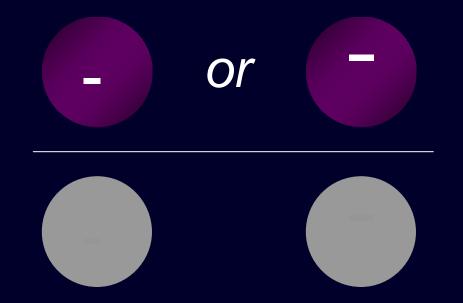
Outcome – with probability $|a|^2$ Outcome – with probability $|b|^2$

 $(a|0
angle+b|1
angle)\otimes|0
angle$



 $a|00
angle + \overline{b}|11
angle$

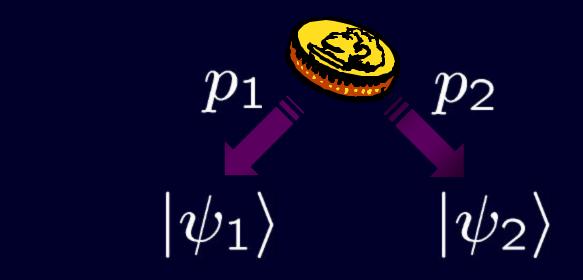




Terms remain orthogonal – evolve independently, no interference

Density Operator Representation

 $\rho = |\psi\rangle \langle \psi| = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \begin{pmatrix} a^* \ b^* \ c^* \ d^* \end{pmatrix}$



$\rho = p_1 |\psi_1\rangle \langle \psi_1| + p_2 |\psi_2\rangle \langle \psi_2|$

Partial Trace

 $\operatorname{tr}_B(|a_0\rangle\langle a_1|\otimes |b_0\rangle\langle b_1|) = |a_0\rangle\langle a_1|\operatorname{tr}(|b_0\rangle\langle b_1|)$

$$a + b = \begin{cases} A \\ B \end{cases}$$

 $|\psi\rangle = a|00\rangle + b|11\rangle$

 $\rho_A = tr_B(|\psi\rangle\langle\psi|)$ = $|a|^2 |0\rangle\langle0| + |b|^2 |1\rangle\langle1|$

Discarding a Qubit

$$|\psi
angle = \sum_{x \in \{0,1\}^m} a(x) |x
angle |g(x)
angle$$

$$\rho_{reduced} = \frac{1}{2} |\psi_{good}\rangle \langle \psi_{good}| + \frac{1}{2} |\psi_{bad}\rangle \langle \psi_{bad}|$$

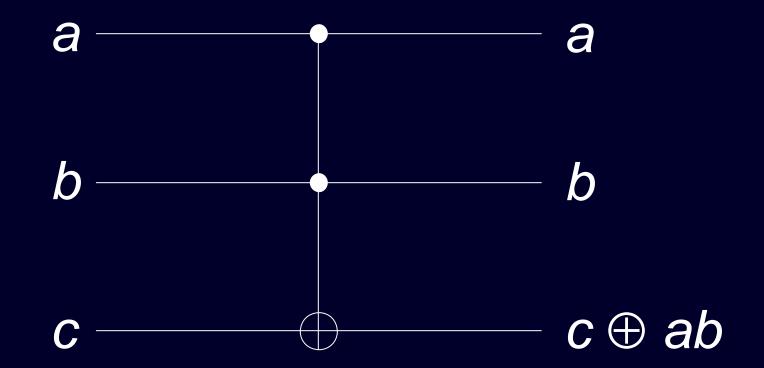
$$ert \psi_{good}
angle = \sum_{x} a(x) ert x
angle$$
 $ert \psi_{bad}
angle = \sum_{x} (-1)^{g(x)} a(x) ert x
angle$

 Logical reversibility of computation Bennett '73
 Quantum computing needs logical reversibility

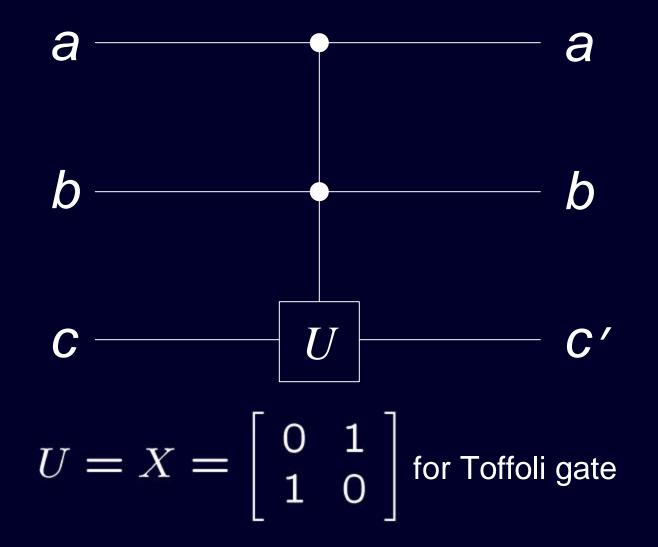
Elementary gates for quantum computation
 Berenco et al '95

 Gates can be thermodynamically irreversible
 [...] quantum computation using teleportation Gottesman, Chuang '99

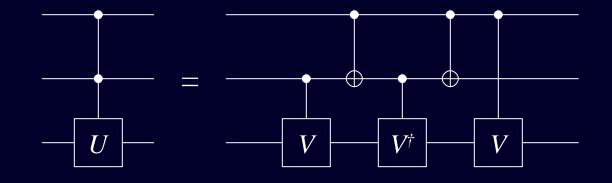
Toffoli Gate



Deutsch's Controlled-U Gate



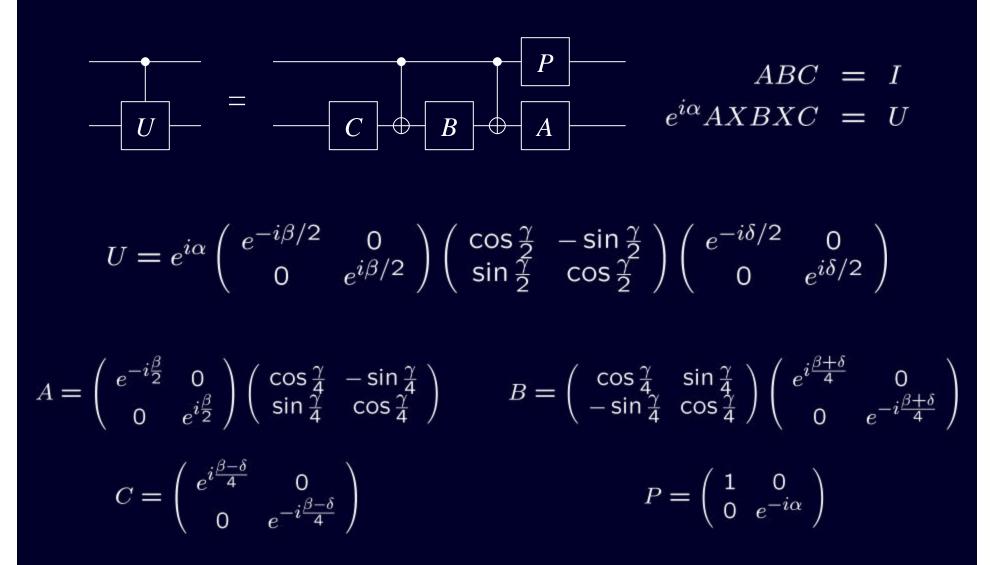
Equivalent Gate Array



 $V^2 = U$

$$V = \frac{(1-i)(I+iX)}{2}$$
 for Toffoli gate

Equivalent Gate Array



Almost Any Gate is Universal

$$U = e^{-iHt}$$

$$e^{i(A+B)\Delta t} = e^{iA\Delta t/2}e^{iB\Delta t}e^{iA\Delta t/2} + O(\Delta t^3)$$

 $e^{(A+B)\Delta t} = e^{A\Delta t} e^{B\Delta t} e^{-\frac{1}{2}[A,B]\Delta t^2} + O(\Delta t^3)$

Material

Logical reversibility of computation

 Bennett '73

 Quantum computing needs logical reversibility
 Elementary gates for quantum computation

 Berenco et al '95

 Gates can be thermodynamically irreversible
 [...] quantum computation using teleportation Gottesman, Chuang '99

Protecting against a Bit-Flip (X)

 $egin{array}{ccc} |0
angle &\longmapsto & |000
angle \ |1
angle &\longmapsto & |111
angle \end{array}$

Protecting against a Phase-Flip (Z)

Phase flip (Z) $\begin{cases} |0\rangle \stackrel{z}{\mapsto} |0\rangle \\ & Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \\ & |1\rangle \stackrel{z}{\mapsto} -|1\rangle \end{cases}$

$$egin{array}{rcl} |0
angle &\longmapsto & rac{1}{2\sqrt{2}} \left(|0
angle + |1
angle
ight) \left(|0
angle + |1
angle
ight) \left(|0
angle + |1
angle
ight) \ |1
angle &\longmapsto & rac{1}{2\sqrt{2}} \left(|0
angle - |1
angle
ight) \end{array}$$

General Errors

Pauli matrices form basis for 1-qubit operators:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- I is identity, X is bit-flip, Z is phase-flip
- Y is bit-flip and phase-flip combined (Y = i XZ)

9-Qubit Shor Code

$$\begin{array}{rcl} |0\rangle &\longmapsto & \displaystyle \frac{1}{2\sqrt{2}}(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle) \\ |1\rangle &\longmapsto & \displaystyle \frac{1}{2\sqrt{2}}(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle) \end{array}$$

Protects against all one-qubit errors
Error measurements must be erased
Implies heat generation

Material

Logical reversibility of computation

 Bennett '73

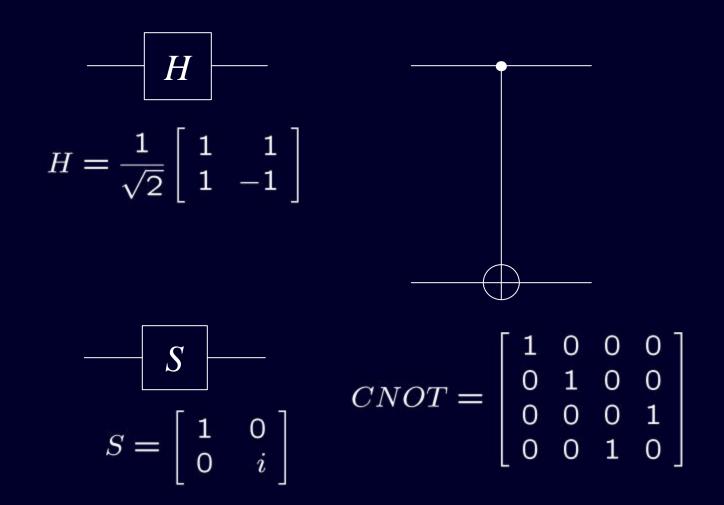
 Quantum computing needs logical reversibility
 Elementary gates for quantum computation

 Berenco et al '95

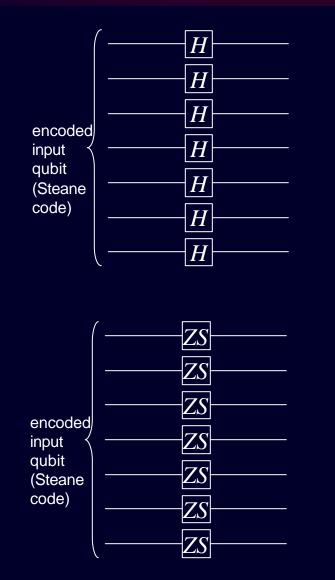
Gates can be thermodynamically irreversible

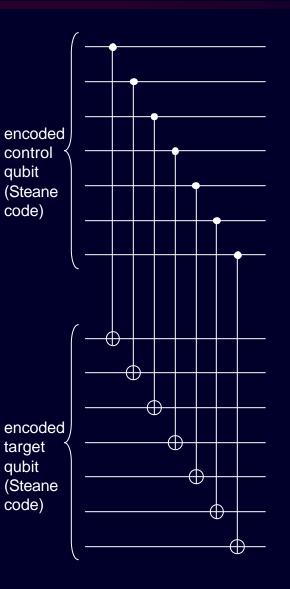
[...] quantum computation using teleportation
 Gottesman, Chuang '99

Fault Tolerant Gates



Fault Tolerant Gates

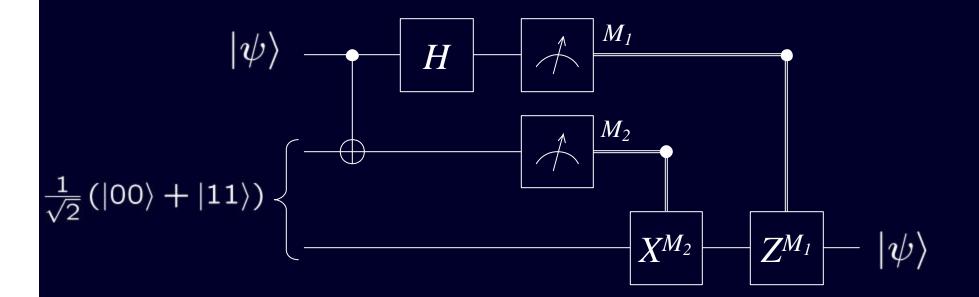


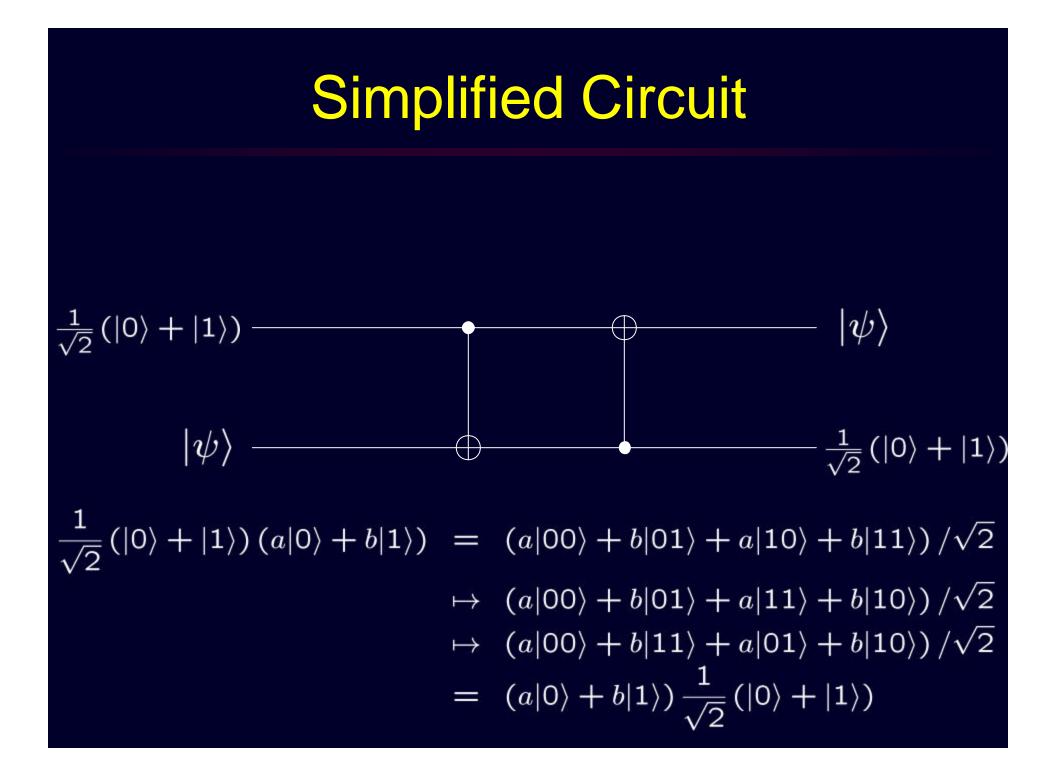


Clifford Group

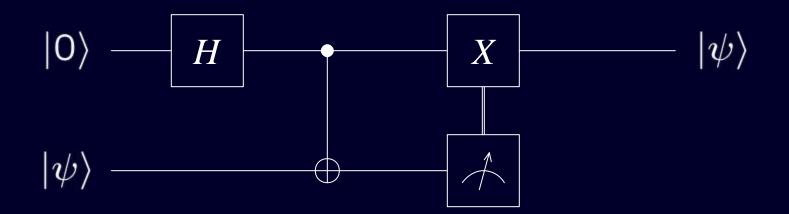
- Encoded operators are tricky to design
- Manageable for operators in *Clifford group* using stabilizer codes, Heisenberg representation
- Map Pauli operators to Pauli operators
- Not universal

Teleportation Circuit

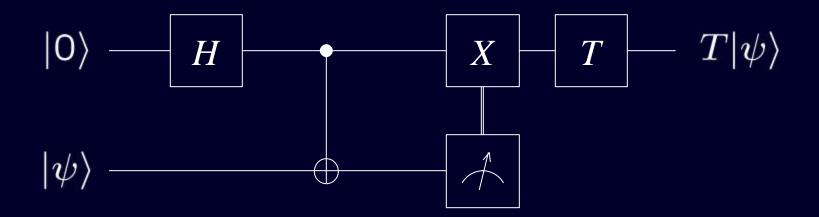




Equivalent Circuit

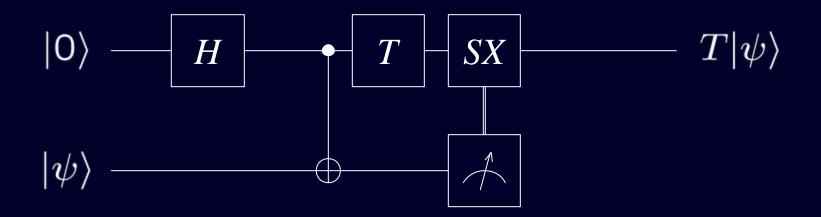


Implementing a Gate



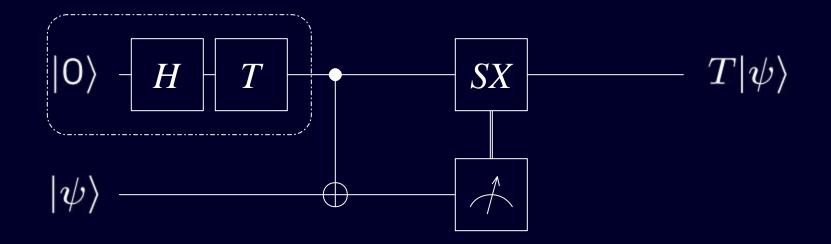
$$T = \left[\begin{array}{cc} 1 & 0 \\ 0 & e^{i\pi/4} \end{array} \right]$$

Implementing a Gate



 $S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \quad SX = TXT^{\dagger}$

Implementing a Gate



Works for U if $\forall P$, UPU^{\dagger} is in the Clifford group

Conclusions

- Quantum computing requires logical reversibility
 - Entangled qubits cannot be erased by dispersion
- Does not require thermodynamic reversibility
 - Ancilla preparation, error measurement = refrigerator