Check operator, applied to all vertices in lattice, gives $2 L-1$ redundancies

X	Y		Z
	X	Z	Y
Y	Z	X	
Z		Y	X

Response is even along rows and columns

Upon separation, response is locally odd on two rows (if separation is horizontal - columns otherwise)

					X		X	X		X	X	X	X	X					

- Straight cycles of $X X X X$ s and $Z Z Z Z s$ and $Y Y Y Y$ s are the only obvious non-trivial 1D cycles that commute with check operator.
- Encoded Z operations produced from standard form are, with one simple exception, ZZZZ-style cycles (horizontal and vertical).
- Encoded X operations are area-filling, not chain-like at all.
- If there are actually no other forms for these operations (not proven), encoded states should be easy to protect with 1 D error correction.

