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Abstract

Surface codes can be used to build a robust quantum memory that preserves a quantum state

exponentially well as the size of the lattice grows, if the individual probabilities of errors on qubits

and measurements are below a threshold [1]. However, the codes found so far require either

non-local classical operations for error correction, or more spatial dimensions than are physically

available. This paper examines whether the non-local classical operations can be replaced with

an approximation computed in a distributed manner (using local operations), and still have a

threshold result. If this computation can be coupled with the quantum operators used to maintain

the memory, and performed at the same rate, they could together act as a single combined local

Hamiltonian. Such an approximation seems difficult in 2D, but simpler in 1D. The bulk of this

paper is devoted to developing a surface code where defects that require correction are guaranteed to

occur in pairs along straight lines through the lattice, converting error correction to a 1D matching

problem. A small modification to the code developed by Kitaev et al. [1, 2] discovered along

the way is also presented that eliminates the need for two families of check operator, potentially

simplifying implementation.
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I. INTRODUCTION

Kitaev et al. have investigated the use of surface codes to construct a robust quantum

memory capable of preserving a quantum state perfectly in the limit of large lattice size if the

individual probability of errors on qubits and measurements is below a threshold [1, 3]. The

memory has the desirable property that all quantum operations required for its maintenance

are local. However the codes found so far require either non-local classical operations for

error correction (2D case), or more spatial dimensions than are physically available (4D

case). It is currently an open question whether this kind of code can be made to work in a

completely local manner with physically realistic connectivity.

One possible way forward would be to take the 2D surface code presented in [1] (which

will be referred to here as the “square/cross” code) and replace the non-local classical com-

putation with a local, distributed computation that achieves the same effect given sufficient

time. The purpose of the computation is to introduce an effective long-distance attraction

between pairs of “defects” that correspond to opposite ends of a chain of erroneous qubits.

If error chains grow in random-walk fashion, the expected RMS distance between their end-

points will grow with the square root of the time elapsed. Information can propagate across

the lattice linearly in time, so distributed computation can at least transmit information

faster than error chains accumulate. However, the force of attraction that could plausibly

be simulated between a pair of defects in this way is far too weak, since once a pair sepa-

rates, the noise of other defects around them effectively masks out their mutual attraction.

The non-local algorithm is not sensitive to this, since it can instantaneously match and

discount defect pairs belonging to smaller chains, but a distributed computation is continu-

ously disturbed by new errors. Simulated experiments confirm that this effect destroys the

exponential improvement in state preservation as the lattice grows in size.

For error chains in the square/cross code, the error syndrome information is not very

informative locally. It identifies the ends of the chain, but there is no information at either

end about the direction towards the other. Might some other code generate a more useful

syndrome? If so, then perhaps an attractive force can be implemented between defect pairs

that is less sensitive to the presence of unrelated defects nearby. For a code where operations

on the encoded qubits take the form of homologically non-trivial cycles, there are limits to

what we can possibly expect to determine about error chains locally. As Figure 1 illustrates,
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FIG. 1: Suppose the uppermost chain of E’s represents a homologically non-trivial cycle on a toric

lattice, implementing an encoded operation on a logical qubit. If a small fragment of the chain is

removed (grayed-out portion of middle chain), error correction should work to replace it and return

to the most plausible encoded state. If more than half the chain is removed (lowest chain), error

correction should work to remove it completely. We cannot expect local syndrome information to

determine the best direction to move in, since that depends on global knowledge (the length of the

chain).

we cannot expect that local syndrome information will allow us to determine uniquely in

which direction the error chain extends. There is at least one bit of uncertainty about

the direction of the chain. In the square/cross code, the uncertainty is greater than this.

But suppose we could find a code where the uncertainty saturates this minimum – so that

the local error syndrome is sufficient to determine exactly two directions the chain might

extend in – and where error chains cannot change direction without generating defects at the

corner. Then we could potentially greatly constrain the attractive forces between defects

to propagate along a 1D line rather than through the full 2D area. Is there any reason

to believe such codes might exist? The meandering homologically non-trivial cycles that

encode operations in the square/cross code can be seen as a product of trivial closed cycles

(which can in turn be composed as products of the check operators) and perfectly straight

homologically non-trivial cycles. If we could eliminate the trivial closed cycles, we might be

able to force all non-trivial cycles to be straight.

For example, suppose we used the check operator shown in Figure 2 – something nice and

awkward that makes generating trivial cycles a chore. Here we associate qubits with the
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FIG. 2: An example check operator (left). The operator is associated with the vertices of a lattice,

and operates on qubits in the squares of the lattice. The defects generated by X and Z errors are

shown in the middle and right. A useful property is that along any horizontal or vertical line, the

defects are generated in pairs and so preserve the parity of the number of defects on that line.
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FIG. 3: The syndrome information generated by a chain of X errors is shown here. Suppose we

have two such chains and wish to splice them together to form a homologically non-trivial chain

that generates no syndrome information. If we choose a neighborhood around a pair of ends, such

as the shaded regions shown, then we see that splicing is not possible. The parity of defects is odd

along six horizontal lines within these regions. These parities can never be made even by adding

X and Z operators within the neighborhood.

squares (plaquettes/faces/cells) of a toric lattice, and check operators with the vertices of

this lattice. For this check operator, both X and Z errors anti-commute with even numbers

of check operators horizontally and vertically. Chains of X or Z errors leave odd numbers

of errors at either end of the chain. There is therefore no way to “splice” the ends of two

such chains together and remove all syndrome information in the neighborhood where they

meet (Figure 3), unless they are collinear. Homologically non-trivial cycles of this form that

generate no defects must be straight, and cannot turn. Furthermore, the pattern of defects

at either end of error chains of this form is sufficient to determine the overall direction of

the chain (although not, of course, which sense it extends in).
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FIG. 4: The two families of check operator are shown on the upper left, shaded to show where they

may appear on the lattice, which is visualized as a toroidal chessboard. Each check operator now

responds to only one kind of error. The defects generated by X and Z errors are shown on the

upper right. A useful property is that along any diagonal, defects are always generated in pairs.

The lower row demonstrates that the check operators commute satisfactorily with each other.

For this code, chains exist (such as a chain of Y errors) that leave an even number of

defects at either end of the chain and hence can be spliced. In general, there will be some

chains that can turn without generating defects, and others that must remain straight. If we

can encode information in a manner that is immune to chains that can turn, then we could

simply ignore them. Controlling the chains that cannot turn without generating defects is

likely to be much simpler than controlling more general chains, as argued earlier.

The check operator used here serves well for the purposes of illustration but in practice

it has some undesirable properties. The next section introduces a more tractable version.

II. THE CHESSBOARD CODE

Consider the code defined by the check operators shown in Figure 4. The check operators

come in two families, one containing only Z operators, and one containing only X operators.

The check operators alternate so that neighboring vertices are associated with opposite

families. There are the same number of check operators as qubits. There are two sources of

redundancies between the operators. One source is due to products of the check operators

taken along a diagonal in either direction, giving a total of 2L redundancies. This could let

us encode 2L logical qubits, but it is unreasonable to do so since they can be affected by
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FIG. 5: The lattice width L must be even for the code to be well defined. There are 2L redundancies

in the check operators associated with diagonals. An example of such a redundancy is shown on the

left – if a product of the check operators associated with the set of highlighted vertices is taken, the

result is the identity. A more useful redundancy, shown on the right, occurs when L is a multiple

of four. There are a pair of redundancies of this form.

very small sets of errors. Another source is due to products of the check operators across

the entire lattice, which gives an extra two redundancies (see Figure 5) if L is a multiple of

four. For the remainder of this section, L is assumed to be of this form, allowing two logical

qubits to be encoded robustly.

This choice for the check operators has the property that X and Z errors anti-commute

with even numbers of check operators associated with the vertices along any diagonal, as

Figure 4 showed. Certain diagonal chains of errors generate odd syndrome counts at either

end, preventing splicing – the chain labelled Z3 in Figure 6 is a good example. A chain like

Z3 but in the perpendicular direction is possible if it lies on black squares. And there are

analogous chains in X which go in the opposite direction to the Z chain on the same colored

squares. The chain Z1 also cannot be spliced (unless it is overlaid with a shifted copy of

itself, Z2). We could hope to prevent such chains from occurring using relatively simple

defect matching along the diagonals. Unfortunately, Z3-style chains extended to be cycles

cannot be made to anti-commute with X versions of themselves (they intersect on an even

number of squares), and Z1-style chains can be masked as in Z2. So we cannot choose a

pair of such cycles as the encoded operations on the same qubit. Even if this were possible,

other uncontrolled cycles could still anti-commute with them and cause mischief.

But while we cannot protect a qubit completely, we can potentially protect it from either

a bit or phase error (but not both). For example, suppose we choose our encoded operation

X̄safe on the first logical qubit to be the unusual cycle X7. Cycles in Z that anti-commute

with this small cycle all correspond to the kinds of chains we can control with 1D matching.
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FIG. 6: Several error chains and the defects they generate. Chain Z1, the chain identified with

the superscript 1 on its errors, leaves defects at either end that are odd in the diagonals parallel

to the chain. Two such chains can overlap (Z2) to leave even defects on the diagonals, and we

will see this chain can turn. Z1 and Z2 lie on black squares; on white squares a chain in the same

orientation (Z3) has no gaps, like Z2, but leaves odd defects (like Z1). In the opposite orientation

(Z4) the chain behaves just like Z1. It has gaps, and can be overlapped and hence can turn (Z5).

Finally, there are very small cycles (Z6, X7) that commutes with all the check operators but are

independent of them. This can be seen as a by-product of the family of redundancies in the check

operators along diagonals.

Hence we can prevent the operation Z̄safe from occurring (of course, X̄safe itself cannot be

prevented and requires only four errors to occur). We are clearly free to choose X̄safe in this

way since we could put the check matrix for the code in standard form [4, 5], solve for a full

set of Z̄ and X̄ operators, and then find some Z̄i with which X̄safe anti-commutes. Then

we can replace X̄i with X̄safe, and every Z̄k that also anti-commutes with X̄safe with Z̄iZ̄k

(other than Z̄i itself). As a sanity check, I tried this procedure for a 16× 16 lattice, and it

went through fine (although not every choice of X7-like cycle anti-commutes with a Z̄i; it is

useful to choose a diagonal cycle Z̄safe that anti-commutes with X̄safe and install it first in

the same manner before installing X̄safe itself).

This is an encouraging result. Using purely local error correction procedures, Dennis et

al. showed that a full qubit could be protected in a 4D lattice, while in a 3D lattice a code

could only be found to protect against either bit or phase flips (but not both) [1]. The

current result suggests that this latter kind of protection is possible in a 2D lattice if we are
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FIG. 7: Error correction on a line. Filled circles represent defects, the empty circle represents a

successfully annihilated pair. Each of the four lines represents a successive iteration. Arrows are

defect messages being transmitted up and down the line. When these messages lose support, they

are destroyed at twice the rate that they propagate.

willing to perform error correction along 1D lines extending out from defects. Perhaps then

in a 3D lattice with error correction in a similarly constrained geometry, full protection of a

qubit is possible? This is pure speculation of course, but at an intuitive level the quest for

full protection in the 2D case is plagued with problems related to geometric intersections –

which are clearly sensitive to the physical dimension.

Figure 7 gives a sketch of how error correction can be done along a line (such as the

diagonal lines of the chessboard code proposed in this section). Binary message flags declar-

ing the presence of a defect are transmitted outwards at some rate r; messages which lack

the support of messages behind them are destroyed at a faster rate. When these messages

reach defects, they induce motion towards their source (at a slower rate than r), using the

appropriate operators on local qubits. If messages are received from both directions, no

motion results. When defects meet, they annihilate. While Figure 7 shows a simple case,

the key case to consider is when a pair of defects are far from each other and have been so

for a long enough time to dominate their neighborhood with messages, but not long enough

for those messages to reach each other. All new, close defects outside the pair will tend to

get drawn to them, which is why it is important their messages reach each other faster than

they move so they can annihilate before adding on to the error chain. It doesn’t matter

what new defects appearing inside the pair do – they may be frozen, or move towards one

of the pairs, or annihilate. The lattice needs to be larger than it would be for instantaneous

non-local error correction, so that the largest chains that correction is intended to cope with

have time to discover each other and annihilate before their messages loop back around the

torus. But this is just a constant scaling factor in the width of the lattice. This scheme is
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FIG. 8: L × L qubits are associated with the squares of a toric lattice, with check operators

associated with the vertices (circled). Two example instances of the check operator are shown on

the left. On the right, overlapping check operators are shown to commute satisfactorily.

inherently robust to sporadic false errors in the syndrome, but caution is required to deal

with missed errors. The messages themselves need to be robustly propagated, since they

support each other.

III. THE DIAGONAL CODE

This section is somewhat of a tangent to the rest of the paper. It presents an alternative

form of the square/cross code used by Kitaev et al. which is particularly regular, and might

offer some advantages for implementation. It was found while searching for codes with

constrained error chains, which it unfortunately does not have.

Consider an array of L×L qubits associated with the squares of a toric lattice, as shown

in Figure 8. With each vertex of the lattice we can associate the 2×2 check operator shown.

Each instance of the operator commutes with every other. There are the same number of

operators as qubits. If the width of the lattice is even, then two of the check operators can

be expressed as a product of others, as shown in Figure 9. These are the only redundancies,

so there are a total of L2 − 2 independent commuting operators. This is two less than the

number of qubits, so there are two encoded logical qubits.

The properties of this code are analogous to that of the square/cross code. Defects are

created in pairs, and can be separated from each other along a chain (see Figure 10). Closed

cycles that are homologically trivial can be shrunk until they disappear, and so clearly have

no effect on the encoded state. Cycles that are homologically non-trivial commute with the

check operators but are not in the stabilizer they define. Such cycles operate on the encoded

state. Figure 11 shows encoded operations suitable for acting on the encoded qubits.
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FIG. 9: Redundancies in the check operators. If the operators associated with the vertices circled

in either lattice are multiplied together, the result is the identity operator. Hence any one of

the operators could be expressed as a product of the remainder in the same set. There are two

redundancies if the width of the lattice is even, otherwise there is just one.
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FIG. 10: The behavior of defects is analogous to the square/cross code. They are created in pairs,

and can be separated along a chain of errors (shown on left). If defects are brought together, they

annihilate, leaving either a homologically trivial cycle that is a product of the check operators, or

a homologically non-trivial cycle that is not (shown on right).
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FIG. 11: Encoded operators for two logical qubits (left). The qubits where the encoded X̄ and

Z̄ operators intersect are highlighted. For Z̄1 and Z̄2 with a Z operator leftmost as shown, it is

important that one be in an even-numbered row and one be in an odd-numbered row (if not, one

needs to start with an X instead). The same applies to the columns of X̄1 and X̄2. The encoded

operators on the right apply when the lattice width L is odd and there is a single encoded qubit.
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FIG. 12: Planar version of the diagonal code. The border needs to be a staircase, as shown on

the left (although it need not be as regular as shown). There are now check operators along the

border that act on three qubits rather than four. Edges can be classed as “X receptive” or “Z

receptive” (analogous to the rough/smooth distinction in the square/cross code [2]). Defects can

now appear singly, from chains terminating in X or Z at an appropriate edge. Encoded operators

arise as chains reaching between corresponding edges.

Error correction can follow essentially the same pattern as for the dual-operator code.

Pairs of errors can be matched up using the Edmonds algorithm along diagonals, and cor-

rected using the shortest chain between them. Importantly, consideration of whether to

apply a correction in X or Z is not required to choose that path – these can be read off

trivially from the shape of the correcting path (diagonals in one direction require a Z, diag-

onals in the other require an X, straight lines alternate X and Z, and the defects at either

end of the path determine whether an X or Z is required there).

In the same way as the square/cross code, the diagonal code can be made planar rather

than toroidal, as shown in Figure 12. The shape of the border is crucial. One feasible choice

is the diamond shape shown. The check operators are as before – unless the corner of an

operator lies outside the border, in which case that corner is simply omitted. Operators are

associated with every non-trivial vertex in the grid. There are L2 +(L−1)2 = 2L(L−1)+1

qubits, and 2L(L − 1) check operators. There is one more qubit than check operator, so

there is a single encoded qubit – again, like the planar version of the square/cross code.

It is still possible to interpret defects as anyonic excitations [6–8] for this code, if we

associate a chessboard pattern with the vertices of the lattice. Defects at white-colored

vertices and defects at black-colored vertices have the appropriate Aharonov-Bohm style

interaction where moving one defect around the other introduces a global phase.
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This code has the advantage of requiring just a single type of check operator, rather than

two, so the syndrome measurement is extremely regular. This simplification to the quantum

component of the error correction process may be useful in practice. Error correction can

also be done in one pass for all errors, rather than in two iterations for X and Z errors

separately – but this is not particularly significant, since the vertices segregate out into two

non-interacting sets anyway.

IV. CONCLUSIONS

The various check operators presented in this paper are a small subset of those possible,

particularly if X and Z operators are mixed. While all the surface codes defined on a

2D lattice have much in common, particular codes can have technical advantages such as

the chessboard code presented in Section II. It is interesting that even the simple diagonal

code lies outside the formalism developed by Freedman and Meyer [9] which otherwise makes

surface codes much easier to develop. There appears to be quite a lot of room for exploration

in this area, and Raginsky has argued that the same is true for physical implementation [10].
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