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Abstract

We present a novel message passing algorithm for appraxigtae MAP prob-
lem in graphical models. The algorithm is similar in struetto max-product but
unlike max-product it always converges, and can be provéinddhe exact MAP
solution in various settings. The algorithm is derived izck coordinate descent
in a dual of the LP relaxation of MAP, but does not require amable parameters
such as step size or tree weights. We also describe a geragicli of the method
to cluster based potentials. The new method is tested oheymtand real-world
problems, and compares favorably with previous approaches

Graphical models are an effective approach for modelingpdexobjects via local interactions. In
such models, a distribution over a set of variables is asduat@ctor according to cliques of a graph
with potentials assigned to each clique. Finding the assa with highest probability in these
models is key to using them in practice, and is often refetwexs the MAP (maximum aposteriori)
assignment problem. In the general case the problem is NR Wwiah complexity exponential in the

tree-width of the underlying graph.

Linear programming (LP) relaxations have proven very usafapproximating the MAP problem,
and often yield satisfactory empirical results. These agphes relax the constraint that the solution
is integral, and generally yield non-integral solutionsowéver, when the LP solution is integral,
it is guaranteed to be the exact MAP. For some classes ofgrabthe LP relaxation is provably
correct. These include the minimum cut problem and maximenykat matching in bi-partite graphs
[7]. Although LP relaxations can be solved using standaréalRers, this may be computationally
intensive for large problems [11]. The key problem with géneP solvers is that they do not use
the graph structure explicitly and thus may be sub-optim#&ims of computational efficiency.

The max-product method [6] is a message passing algoritatrigloften used to approximate the
MAP problem. In contrast to generic LP solvers, it makesditese of the graph structure in

constructing and passing messages, and is also very simpigptement. The relation between

max-product and the LP relaxation has remained largelyvapualthough there are some notable
exceptions: For tree-structured graphs, max-product dhdath yield the exact MAP. A recent

result [1] showed that for maximum weight matching on biti@igraphs max-product and LP also
yield the exact MAP [1]. Finally, Wainwright et al. [9] proped the Tree-Reweighted max-product
(TRMP) algorithm - a variation on max-product that is guaead to converge to the LP solution

for binaryx; variables, as shown in [5].

In this work, we propose the Max Product Linear Programmilggrithm (MPLP) - a very sim-
ple variation on max-product that is always guaranteed tveme, and has several advantageous
properties. The algorithm is derived from the convex-ddahe LP relaxation [2], and is equiv-
alent to block coordinate descent in this dual. Althougk tieisults in monotone improvement of
the dual objective, global convergence is not always guaeahsince coordinate descent may get



stuck in suboptimal points. However, this can be remedi@tugarious approaches (e.g., auction
algorithms as in [2]), and in practice we have found MPLP tovesge to the LP solution in a ma-
jority of the cases we studied. To derive MPLP we use a spfarial of the dual LP, which involves
the introduction of redundant primal variables and comstsa We show how the dual variables
corresponding to these constraints turn out to bertkesagepassed in the algorithm.

We evaluate the method on Potts models and protein desidnepne, and show that it compares
favorably with max-product (which often does not conveigeliese problems) and TRMP.

1 The Max-Product and MPLP Algorithms

The max-product algorithm [6] is one of the most often usethwds for solving MAP problems.

Although it is neither guaranteed to converge to the corsetition, or in fact converge at all, it
provides satisfactory results in some cases. Here we grageralgorithms: EMPLP (edge based
MPLP) and NMPLP (node based MPLP), which are structurally wémilar to max-product, but

have several key advantages:

e They always converge.
¢ No additional parameters (e.g., tree weights as in [5]) egeired.

o If the beliefsb;(z;) are not tied (i.e.p;(x;) has a uniqgue maximizer) then the output of
MPLP is the exact MAP assignment.

e For binary variables, MPLP can be used to obtain the solutiothe LP relaxation
MAPLPR. This implies that when the LP relaxation is exact aadables are binary,
MPLP will find the MAP solution. Moreover, for any variable wée beliefs are not tied,
the MAP assignment can be found (i.e., the solution is ghrti@codable).

Pseudo code for the algorithms (and for max-product) isrgimeFig. 1. As we show in the next
sections, MPLP is essentially a coordinate descent algoiiit the dual of MAPLPR. Every update
of the MPLP messages corresponds to exact minimization ef afglual variables. For EMPLP
minimization is over the set of variables correspondingricedge, and for NMPLP it is over the
set of variables corresponding to all the edges a given nppeaas in (i.e., a star). The coordinate
descent property immediately implies both monotone impneent of the dual objective and con-
vergence. The other properties of MPLP also result froneitation to the LP dual. In what follows
we describe the derivation of the MPLP algorithms and prbeé fproperties.

2 The MAP Problem and its LP Relaxation

We consider functions over variablesz = {z1,...,x,} defined as follows. Given a gragh =
(V, E) with n vertices, and potentiats; (z;, z,) for all edgesj € E, define the functioh
ijeE

The MAP problem is defined as finding an assignmept that maximizes the functiofi(x; 9).
Below we describe the standard LP relaxation for this probBenote by u;; (z;, z;) }:je g distri-
butions over variables corresponding to edges E and{y;(x;)}:cyv distributions corresponding
to nodes € V. We will useu to denote a given set of distributions over all edges and siotlee
setM(G) is defined as the set @f where pairwise and singleton distributions are consistent

_ Do Hig (Biy w5) = py(@5) o Dog. pag (@i, 25) = palas) Vij € B, xi, x;
Mp(G) = {N >0 >, pilz) =1 VieV
Now consider the following linear program:

MAPLPR : L* — arg  max 0. 2
MAPLPR ® g Juax  p 2

We note that some authors also add a 18071, 6:(x:) to f(a; @). However, these terms can be included
in the pairwise function8;; (x;, z;), so we ignore them for simplicity.



wherep-0 is shorthand fop-6 = 3~ Zzi_’zj 0 (i, i) pij(xi, z5). Itis easy to show (seee.g.,
[9]) that the optimum of MAPLPR yields an upper bound on theRMalue, i.eul* -0 > f(xy).
Furthermore, when the optimal;(x;) have only integral values, the assignment that maximizes
wi(z;) yields the correct MAP assignment. In what follows we show tiee MPLP algorithms can

be derived from the dual of MAPLPR.

3 The LP Relaxation Dual

Since MAPLPR is an LP, it has an equivalent convex dual. In.Afppve derive a special dual of
MAPLPR using a different representation 8, (G) with redundant variables. The advantage of
this dual is that it allows the derivation of simple messagsspg algorithms. This does not seem
to be possible in the standard MAPLPR dual . The dual is desdrin the following proposition.

Proposition 1 The following optimization problem is a convex dual of MARLP

DMAPLPR:

min Smax Y. max S (ak, x;) 3)
i TiokeN(i) Tk

s.t. Bji(xj, xi) + Bij(wi, x5) = 0i(wi, x;) ,

where the dual variables arg;; (z;, z;) for all i5, ji € E and values of; andx;.

The dual has an intuitive interpretation in terms of re-pagterizations. Consider thstar
shaped graplG; consisting of nodei and all its neighborsV(i). Assume the potential on
edgek: (for k € N(i)) is Bri(xk, ;). The value of the MAP assignment for this model is
max Y, max O (xk, ;). Thisis exactly the term in the objective of DMAPLPR. Thus thual

i geN(i) Tk
corresponds to individually decoding star graphs arouubales; € V where the potentials on the
graph edges should sum to the original potential. It is easee that this will always result in an
upper bound on the MAP value. The somewhat surprising restiie duality is that there exists a
3 assignment such thatar decodingields the optimal value of MAPLPR.

4 Block Coordinate Descent in the Dual

To obtain a convergent algorithm for DMAPLPR we use a simpdelbcoordinate descent strategy.
At every iteration, fix all variables except a subset, andnoge over this subset. It turns out that
this can be done in closed form for the cases we consider.

We begin by deriving the EMPLP algorithm. Consider fixingtak 3 variables except those cor-
responding to some edgg € E (i.e., 8;; andj;;), and minimizing DMAPLPR over the non-fixed
variables. Only two terms in the DMAPLPR objective depengigrandj;;. We can write those as

f(Bij» Bji) = max A () + max ﬁji(xjal'i):| + max |:/\j_i(xj) + max fi; (i, 2;) | (4)

where we defined” (z;) = Z%N(i)\j ki (x;) andAg; (z;) = maxy, Oki(Tk, z;) asin App. A.
Note that the functiorf (3;;, 5;;) depends on the othgrvalues only through ™ (z;) and\;” (z;).
This implies that the optimization can be done solely in ®oh\;;(z;) and there is no need to
store thes values explicitly. The optimas;;, 5;; are obtained by minimizing(5;;, 5;;) subject to
the re-parameterizatioronstraint3;; (x;, x;) + Bij(x:, r;) = 0s;(x;, x;). The following proposi-
tion characterizes the minimum ¢{;;(z;, x;)). In fact, as mentioned above, we do not need to
characterize the optimah; (z;, z;) itself, but only the newA values.

Proposition 1 Maximizing the functiorf(3;;, 5;;) yields the following\;; (z;) and\;; (x;)

1. _; 1 i
Ajilwi) = =g A (@) + 5 max A7 (2) + 6 (i, ;)]
The proposition is proved in App. B. Theupdates above resultin the EMPLP algorithm, described

in Fig. 1. Note that since thg optimization affects both; (x;) and);;(z;), both thesenessages
need to be updated simultaneously.



Inputs: A graphG = (V, E), potential function®;; (z, =;) for each edge; € E.
mi;(x;) =0
Nij () = % max 0;;(xs, x;)

Initialization: Vij, ji € F set:

Yij (T5) = max |:9ij(5ciyxj) +1 > max@ki(mk,m)}

Algorithm: keEN(i)\j Tk

e |terate until convergence
— MAXPROD: Update all messages;{ shiftsmax., m;;(z;) to zero)

mi (i) max [mf(%‘) + 9z‘j(wz‘7%‘)} — Gji

zj
— EMPLP: Iterate over edges, and figr ji € E update
Aji(@i)e— — %/\?j (zi) + % max [/\fi(%‘) + 0ij (%%‘)}
Tj

— NMPLP: Iterate over nodesc V' and update aly;;(x;) wherej € N (i)
2
vig (25) = max | 0ij (zi, 25) = vji(@:) + NG +1 > i)
‘ keN (i)

e Calculate node “beliefs”: Séf(x;) to be the sum of incoming messages into nodeV’
(e.g., for NMPLP seb_, _ v ;) vki(i))-

Output: Return assignment defined asc; = arg maxs, b(£;).

Figure 1: The max-product, EMPLP and NMPLP algorithms. Max-prod&¥|PLP and NMPLP use mes-
sagesn;;, Ai; and-y;; respectively. We use the notation; (z;) = >, c n(j)\: Mk (T5)-

We proceed to derive the NMPLP algorithm. For a given nodel/, we consider all its neighbors
j € N(i), and wish optimize over the variablgs; (x;, z;) for ji,ij € E (i.e., all the edges in a
star centered on), while the other variables are fixed. One way of doing so isse the EMPLP
algorithm for the edges in the star, and iterate it until @gence. We now show that the result of
this optimization can be found in closed form. The assunmginout3 being fixed outside the star
implies that\>" (x;) is fixed. Define:v;;(z;) = max,, [0i;(z:, ;) + A;*(z;)]. Simple algebra
yields the following relation betweek, 7 (x;) and~;(x;) for k € N (i)

; 2
T () — — o~ Ay
A () Vii(@i) + IN(@)| + 1 Z i (23) ®)
kEN (1)
Plugging this into the definition ofj; (x;) we obtain the NMPLP update in Fig. 1. Initialization for
both algorithms follows from setting = 0.

5 Convergence Properties

The MPLP algorithm improves the dual objective at evenitien. This in itself does not guarantee
convergence to the optimum of the dual, since coordinatesaesigorithms may get stuck at a point
where no improvement is possible over single coordinatesyfosets of coordinates as used here),
but the point is not a global optimum. There are ways of ouaiog this difficulty, for example
by not movinge away from the optimum for a given coordinate (see [2], p. 638k leave such
extensions for further work. In this section we provide sal/eesults about the properties of the
MPLP fixed points and their relation to the correspondingRift, we claim that if all beliefs have
unigue maxima then thexactMAP assignment is obtained.

Proposition 2 Assume MPLP converges to beliéféz;) such that for alli the functionb;(z;) has
a unique maximizer;. Thenz* is the solution to the MAP problem and the LP relaxation isoéxa

Since the dual objective is always greater than or equalddAP value, it suffices to show that
there exists a dual feasible point whose objective valyi$). Denote bys*, A* the value of the



corresponding dual parameters at the fixed point of MPLPnThe dual objective satisfies

Zmax Z A (24) Z Z Inauxﬁ;ﬂ T, x)) Z Z Bri(xy, x7) = f(x*)

" kEN() i keN(i) i kEN(i)
The to see why the second equality holds, note that

bila?) = max A () + Bilay, )+ by(a) = max A (ay) + By (o 1)

By the equallzat|0n property in Eq. 9 the arguments of the max operations are equal. From
the unique maximum assumption it follows thqf, x; are the unique maximizers of the above. It
follows thatg;;, 8;; are also maximized by}, x

In the general case, the MPLP fixed point may not correspoadptamal optimum because of the
local optima problem with coordinate descent. However,mthe variables are binary, fixed points
do correspond to primal solutions, as the following proposistates.

Proposition 3 When allz; are binary variables, MPLP will converge to the dual optimum

The claim can be shown by constructing a primal optimal simhw For tiedb;, sety; (z;)t00.5
and for untiedh;, sety; (z7) to 1. If b;, b; are not tied we set;; (z;, z}) = 1. If b; is not tied bub;

is, we setu;; (xf,z;) = 0.5. If b;, b; are tied therB;;, 3;; can be shown to be maximized at elther
zj,2; = (0,0),(1,1)ora;,a} = (0 1), (1,0). We then set.;; to be0.5 at one of these assignment
pairs. The resulting* is clearly primal feasible. Settinff = b; we obtain that the dual variables
(6%, A*, *) and primalp* satisfy complementary slackness for the LP in Eq. 7 and therg* is
primal optimal. The binary optimality result implies paitdecodability, since [5] shows that the
LP is partially decodable for binary variables.

6 Beyond pairwise potentials: Generalized MPLP

In the previous sections we considered maximizing funstighich factor according to the edges of
the graph. A more general setting considers clustgrs ., ¢, C {1,...,n} (the set of clusters is
denoted by’), and a functiof f(z; 8) = >__ 0.(z.) defined via potentials over clustéfgz.). The
MAP problem in this case also has an LP relaxation (see eQj). [Io define the LP we introduce
the following definitions:S = {cNé: ¢,é € C, cNé # B} is the set of intersection between clusters
andS(c) = {s € §: s C c} is the set of overlap sets for clustewe now consider marginals over
the variables it € C and their intersection and require that cluster margiagiseon their overlap.
Denote this set byM,(C). The LP relaxation is then to maximize- 8 subject top € M (C).

As in the Sec. 4, we can derive message passing updatesshihimenonotone decrease of the dual
LP of the above relaxation. The derivation is similar and wétdhe details. The key observation
is that one needs to introdu¢&(c)| copies of each marginal.(z.) (instead of the two copies
in the pairwise case). Next, as in the EMPLP derivation weirassall 3 are fixed except those
corresponding to some cluster The resulting messages axg.,;(x;) from a clusterc to all of its
intersection sets € S(c¢). The update on these messages turns out to be:

L Yz ! max T T
o)== (1= g e+ g | 2 e+

where for a givere € C all A._., messages should be updated simultaneously ferS(c). We
refer to this algorithm as Generalized EMPLP (GEMPLP). Hl& possible to derive an algorithm
that like NMPLP updates several clusters simultaneoudiytbstructure is more involved and we
do not address it here.

7 Related Work

Weiss et al. [10] recently studied the fixed points of a cldssax-product likealgorithms. Their
analysis focused on properties of fixed points rather thanexgence guarantees. Specifically, they

2The clusters are sometimes required to correspond to elique graph. We do not pose that requirement
here, and the analysis does not require an underlying graph.



showed that if the counting numbers used in a generalizedprnaduct algorithm satisfy certain
properties, then its fixed points will be the exact MAP if thaibfs have unique maxima, and for
binary variables the solution can be partially decodablethBhese properties are obtained for the
MPLP fixed points, and in fact we can show that MPLP satisfiescbnditions in [10], so that
we obtain these properties as corollaries of [10]. We sthesgever, that [10] does not address
convergence of algorithms, but rather properties of theddfipoints, if they converge.

MPLP is similar in some aspects to Kolmogorov's TRW-S altion [4]. TRW-S is also monotone
coordinate descent method in a certain dual of the LP rataxand its fixed points also have similar
guarantees to those of MPLP [5]. Furthermore, convergeneédcal optimum may occur, as it does
for MPLP. One advantage of MPLP lies in the simplicity of ifmdates and the fact that it is parame-
ter free . The other is its simple generalization to poténtiger clusters of nodes (Sec. 6). Although
TRW-S may be extended to such a setting (e.g., by considpaimgise interaction between nodes
that correspond to cluster, and using spanning trees omgtagh) this seems less straightforward
than the MPLP extension.

Vontobel and Koetter [8] recently introduced a coordinateadnt algorithm for decoding LDPC

codes. There are several key differences between MPLP airdhtlethod. First, we consider the
general MAP problem and not only the LDPC model. Second, MBéferalizes to non pairwise

interactions. Third, NMPLP optimizes a set of edges sinmadtaisly, whereas in [8] one edge is
optimized at a time (as in the EMPLP updates), resultingawst convergence. Finally, coordinate
descent was also recently considered in the context of mergstimation. In [3] the authors present
a coordinate descent algorithm for a variational bound enpirtition function. Their approach

uses similar ideas to the MPLP dual , but importantly doesoidin a closed for solution for the

coordinates. Instead,gradient likestep is taken at every iteration to decrease the dual obgecti

8 Experiments

We compared NMPLP to three other message passing algoritiiree-Reweighted max-product
(TRMP), standard max-product (MP), and GEMPLP. For MP and/PRwe used the standard
approach of damping messages using a facter ef0.5. We ran all algorithms for a maximum of
2000 iterations, and used two measures to compare their convedienes: lhit-time- At every
iteration the belief$;(z;) can be used to obtain an assignmentith value f (x). We consider the
first iteration at which the maximum value ¢tz) is achieved. 2) belief-change we calculated
eb(#:) at every iteration, and normalize it to one. We then find thet fberation for which the
maximum change in these normalized beliefsK(indistance) is smaller tharp—*.5

We first experimented with &0 x 10 grid graph, with5 values per state. The functigi{x) was

a Potts modelif (z) = 3, p 05 Z(zi = ;) + >_;cy i(2:). The values fop;; andf;(z;) were
randomly drawn fromi—cy, ¢;] and[—cr, cr] respectively, and we used valuescpfandcy in the
range rang€0.1, 2.1] (with intervals 0f0.25). The clusters for GEMPLP were the faces of the graph
[12]. To see if NMPLP converges to the LP solution we also wmed.P solver to solve the LP
relaxation. We found that the the normalized differenceveen NMPLP and LP objective was at
most10~2 (median10~7), suggesting that NMPLP typically converged to the LP sotut Fig. 2
(top row) shows the results for the three algorithms. It carsdéen that while all algorithms obtain
similar f(x) values, NMPLP has bettdnit-time than TRMP and comparableelief-changesee
median), and MP does not converge in many cases (see caBBMPLP is comparable to MPLP
in hit-time, although each iteration is more costly. The values for GEMBre considerably better
than NMPLP. In fact, ir95% of the cases the normalized difference between the GEMP|de ke
and thef (x) value was less tharh—?, suggesting that the exact MAP solution was found.

We next applied the algorithms to the real world problems moftgin design. In [11], Yanover
et al. show how these problems can be formalized in terms dinfina MAP in an appropriately
constructed graphical mod&lWe used all algorithms except GNMPLP (since there is no aatur

3As expected, NMPLP was faster than EMPLP so only NMPLP resul given.

“This is clearly a post-hoc measure since it can only be obdsafter the algorithm has exceeded its maxi-
mum number of iterations. However, it is a reasonable algorindependent measure of convergence.

®Beliefs for all algorithms were scaled such that they agrea graph with one edge.

®Data available from http://jmir.csail.mit.edu/papem$ime7/yanover06a/RosetBesign Dataset.tgz
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Figure 2:Evaluation of message passing algorithms on a Potts magtetdtv) and protein design problems
(bottom row). Left column: box-plot (horiz. red line indtes median) of the difference between ttietime
for the other algorithms and NMPLP. Middle: box-plot of thifatence between thbelief-changdime for
the other algorithms and NMPLP . Right: box-plot of normetizdifference between the value ffx) for
NMPLP and the other algorithms. Thus, figures are such thtadddPLP performance yields positive values
on theY axis. Max-product converged d¢it% of the cases for the Potts model, and1d¥ for the protein
problems. Only convergent max-product runs are shown ibéxeplots.

choice for clusters in this case) to approximate the MAPtgmion thed7 models used in [11]. The
graph structure in these models is irregular with numbetaiés per variabl2—81. Fig. 2 (bottom)
shows results for all the design problems. In this case thenhaof MP runs did not converge, and
NMPLP was better than TRMP in termslat-timeand comparable ibelief changend value.

9 Conclusion

We presented a convergent algorithm for MAP approximatia is based on block coordinate de-
scent of the MAP-LP relaxation dual. The algorithm can als@xtended to cluster based functions,
which result empirically in improved MAP estimates. Thidgridine with the observations in [12]
that generalized belief propagation algorithms can résugdignificant performance improvements.
However generalized max-product algorithms [12] are natrgateed to converge whereas GMPLP
is. Furthermore, the GMPLP algorithm does not require aoregraph and only involves intersec-
tion between pairs of clusters. In conclusion, MPLP has thvaatage of resolving the convergence
problems of max-product while retaining its simplicity,caaffering the theoretical guarantees of
LP relaxations. We thus believe it should be useful in a widayeof applications.

A Derivation of the dual

Before deriving the dual, we first express the constrainf\det( &) is a slightly different way. The
definition of M (G) in Sec. 2 uses a single distributien; (z;, ;) for everyij € E. In what
follows, we usdwo copies of this pairwise distribution for every edge, whioh denotei; ; (z;, ;)
andf;j; (z;, z;), and we add the constraint that these two copies both eqatitinal 1;;(x;, ;).

For this extended set of pairwise marginals, we consideifdewing set of constraints which
is clearly equivalent toM,(G). On the rightmost column we give the dual variables that will
correspond to each constraint.

Hig (i, 5) = pig (i, 5) Vij € B, x;, %, Bij (i, ;)
Bji(f,m5) = pig (T, 5) Vij € B, x;, x; Bji(x;, i)

Zii ﬁu(i"l,x]) = ,ui(xj) VZ] S E,jl € EﬂL‘j )\ij(tfj) (6)
Do, bilzi) =1 VieV 8

ﬂij(l'i,l'j) >0, ui(xi) >0 VieV,Vije E,ji € E,xi,:vj

We denote the set dfu, fz) satisfying these constraints byt (G). We can now state an LP that
is equivalent to MAPLPR, only with an extended set of vagabdnd constraints. The equivalent



problem is to maximize: - @ subject to( i, 1) € My (G) (note that the objective uses theginal
e copy). LP duality transformation of the extended problerids the following LP

min ). 0;

st Nij(xy) = Bij(wi, ;) > 0 Vij,ij € B, x;, x; @
Bij (i, x5) + Bji(wj, x;) = 055 (wi, x5) Vij € B, x4,
= 2 ken() i) +0; =20 VieV,x;

We next simplify the above LP by eliminating some of its coaisits and variables. Since each
variable §; appears in only one constraint, and the objective minimizeis follows that §; =
max,, ZkeN(i) Aki(z;) and the constraints with; can be discarded. Similarly, sineg;(z;) ap-
pears in a single constraint, we have that foi gk E, ji € E, x;, x; A\ij(2z;) = maxy, Bi;(xq, ;)
and the constraints with;; (), A;: (z;) can also be discarded. Using the eliminadednd; (x;)
variables, we obtain that the LP in Eq. 7 is equivalent to th&q. 3. Note that the objective in
Eq. 3 is convex since it consists of point-wise maxima of @xfunctions.

B Proof of Proposition 1

We wish to minimizef in Eq. 4 subject to the constraint that + 3;; = 6,;. Rewritef as

f(Bijs Bji) = max A (i) + Byilzy, xi)} + max (A () + Bij (2, ;)] (8)

The sum of the two arguments in the max i 7(z;) + )\;i(l'j) + 0i5(x, ;)
(because of the constraints o). Thus the minimum must be greater than
1 max,, 4, [/\i_j(:ci) +/\;i(xj) +9ij(xi,xj)}. One assignment t@ that achieves this mini-

mum is obtained by requiring an equalization conditfon:

NN @s) + Big (i, ) = N () + By, mi) = % (t%j(xi,xj) + A () + /\j_i(%)) 9)

whichimpliesg;;(z;, ;) = 3 (91-.,- (24, 25) + A (7)) — )\j‘i(xj)) and a similar expression fa;.

The resulting\;; (z,;) = max,, 8;;(x;, z;) are then the ones in Prop. 1.
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