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ABSTRACT

Engineered proteins offer the potential to solve many problems in biomedicine,
energy, and materials science, but creating designs that succeed is difficult in prac-
tice. A significant aspect of this challenge is the complex coupling between pro-
tein sequence and 3D structure, and the task of finding a viable design is often
referred to as the inverse protein folding problem. We develop generative mod-
els for protein sequences conditioned on a graph-structured specification of the
design target. Our approach efficiently captures the complex dependencies in pro-
teins by focusing on those that are long-range in sequence but local in 3D space.
Our framework significantly improves upon prior parametric models of protein se-
quences given structure, and takes a step toward rapid and targeted biomolecular
design with the aid of deep generative models.

1 INTRODUCTION

A central goal for computational protein design is to automate the invention of protein molecules
with defined structural and functional properties. This field has seen tremendous progess in the past
two decades (Huang et al., 2016), including the design of novel 3D folds (Kuhlman et al., 2003),
enzymes (Siegel et al., 2010), and complexes (Bale et al., 2016). However, the current practice often
requires multiple rounds of trial-and-error, with first designs frequently failing (Koga et al., 2012;
Rocklin et al., 2017). Several of the challenges stem from the bottom-up nature of contemporary
approaches that rely on both the accuracy of energy functions to describe protein physics as well as
on the efficiency of sampling algorithms to explore the protein sequence and structure space.

Here, we explore an alternative, top-down framework for protein design that directly learns a con-
ditional generative model for protein sequences given a specification of the target structure, which
is represented as a graph over the sequence elements. Specifically, we augment the autoregressive
self-attention of recent sequence models (Vaswani et al., 2017) with graph-based descriptions of the
3D structure. By composing multiple layers of structured self-attention, our model can effectively
capture higher-order, interaction-based dependencies between sequence and structure, in contrast to
previous parameteric approaches (O’Connell et al., 2018; Wang et al., 2018) that are limited to only
the first-order effects.

The graph-structured conditioning of a sequence model affords several benefits, including favorable
computational efficiency, inductive bias, and representational flexibility. We accomplish the first
two by leveraging a well-evidenced finding in protein science, namely that long-range dependen-
cies in sequence are generally short-range in 3D space (Marks et al., 2011; Morcos et al., 2011;
Balakrishnan et al., 2011). By making the graph and self-attention similarly sparse and localized in
3D space, we achieve computational scaling that is linear in sequence length. Additionally, graph
structured inputs offer representational flexibility, as they accomodate both coarse, ‘flexible back-
bone’ (connectivity and topology) as well as fine-grained (precise atom locations) descriptions of
structure.

We demonstrate the merits of our approach via a detailed empirical study. Specifically, we evaluate
our model at structural generalization to sequences of protein folds that were outside of the training
set. Our model achieves considerably improved generalization performance over the recent deep
models of protein sequence given structure as well as structure-naı̈ve language models.
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1.1 RELATED WORK

Generative models for proteins A number of works have explored the use of generative models
for protein engineering and design (Yang et al., 2018). Recently O’Connell et al. (2018) and Wang
et al. (2018) proposed neural models for sequences given 3D structure, where the amino acids at
different positions in the sequence are predicted independently of one another. Greener et al. (2018)
introduced a generative model for protein sequences conditioned on a 1D, context-free grammar
based specification of the fold topology. Boomsma & Frellsen (2017) and Weiler et al. (2018) used
deep neural networks to model the conditional distribution of letters in a specific position given the
structure and sequence of all surrounding residues. In contrast to these works, our model captures
the joint distribution of the full protein sequence while grounding these dependencies in terms of
long-range interactions arising from the structure.

In parallel to the development of structure-based models, there has been considerable work on deep
generative models for protein sequences in individual protein families with directed (Riesselman
et al., 2018; Sinai et al., 2017) and undirected (Tubiana et al., 2018) latent variable models. These
methods have proven useful for protein engineering, but presume the availability of a large number
of sequences from a particular family.

More recently, several groups have obtained promising results using unconditional protein language
models (Bepler & Berger, 2019; Alley et al., 2019; Heinzinger et al., 2019; Rives et al., 2019) to
learn protein sequence representations that can transfer well to supervised tasks. While serving dif-
ferent purposes, we emphasize that one advantage of conditional generative modeling is to facilitate
adaptation to specific (and potentially novel) parts of structure space. Language models trained on
hundreds of millions of evolutionary sequences are unfortunately still ‘semantically’ bottlenecked
by the much smaller number of evolutionary 3D folds (perhaps thousands) that the sequences de-
sign. We propose evaluating protein language models with structure-based splitting of sequence
data (Section 3, albeit on much smaller sequence data), and begin to see how unconditional lan-
guage models may struggle to assign high likelihoods to sequences from out-of-training folds.

In a complementary line of research, deep models of protein structure (Anand & Huang, 2018;
Ingraham et al., 2019; AlQuraishi, 2018) have been proposed recently that could be used to craft 3D
structures for input to sequence design.

Protein design For classical approaches to computational protein design, which are based on joint
modeling of structure and sequence, we refer the reader to a review of both methods and accom-
plishments in Huang et al. (2016). More recently, Zhou et al. (2018) proposed a non-parametric
approach to protein design in which a target design is decomposed into substructural motifs that
are then queried against a protein database. In this work we will focus on comparisons with direct
parametric models of the sequence-structure relationship.

Self-Attention Our model extends the Transformer (Biswas et al., 2018) to additionally capture
sparse, pairwise relational information between sequence elements. The dense variation of this
problem was explored in Shaw et al. (2018) and Huang et al. (2018). As noted in those works,
incorporating general pairwise information incurs O(N2) memory (and computational) cost for se-
quences of length N , which can be highly limiting for training on GPUs. We circumvent this cost
by instead restricting the self-attention to the sparsity of the input graph. Given this graph-structured
self-attention, our model may also be reasonably cast in the framework of message-passing or graph
neural networks (Gilmer et al., 2017; Battaglia et al., 2018). Our approach is similar to Graph At-
tention Networks (Veličković et al., 2017), but augmented with edge features and an autoregressive
decoder.

2 METHODS

2.1 REPRESENTING STRUCTURE

We represent protein structure in terms of an attributed graph G = (V, E) with node features V =
{v1, . . . ,vN} and edge features E = {eij}i 6=j over the sequence residues (amino acids). This
formulation can accommodate different variations on the macromolecular design problem, including
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Figure 1: An autoregressive self-attention model for protein sequences given 3D structures.
(A) The encoder develops position-wise representations of structure using multi-head self-attention
(Vaswani et al., 2017) over nodes and edges of an input graph. The attention heads are structured by
the sparsity of the input graph, enabling efficient computation for large molecules with thousands
of atoms (See Figure 2 for examples). (B) For rigid-body protein design, the graph encodings of
atomic structure (left, top) are based on an encoding of relative positioning of Cα coordinates xi
(left, middle), which are endowed with local coordinate systems Oi based on backbone geometry.
The graph edge features (left, bottom) encode the 6DoF transformations between local coordinate
systems (xi,Oi) and (xj ,Oj). For sparsity, we derive a k-Nearest Neighbors graph from the Eu-
clidean distances (right, top) and restrict all subsequent computation such as orientation calculations
(right, bottom) to this graph.

both the ‘rigid backbone’ design where the precise coordinates of backbone atoms are fixed, as well
as the ‘flexible backbone’ design where looser constraints such as blueprints of hydrogen-bonding
connectivity (Koga et al., 2012) or 1D architectures (Greener et al., 2018) could define the structure
of interest.

3D considerations For a rigid-body design problem, the structure for conditioning is a fixed set
of backbone coordinates X = {xi ∈ R3 : 1 ≤ i ≤ N}, where N is the number of positions1. We
desire a graph representation of the coordinates G(X ) that has two properties:

• Invariance. The features are invariant to rotations and translations.

• Locally informative. The edge features incident to vi due to its neighbors N(i),
i.e. {eij}j∈N(i), contain sufficient information to reconstruct all adjacent coordinates
{xj}j∈N(i) up to rigid-body motion.

While invariance is motivated by standard symmetry considerations, the second property is mo-
tivated by limitations of current graph neural networks (Gilmer et al., 2017). In these networks,
updates to node features vi depend only on the edge and node features adjacent to vi. However, typ-
ically, these features are insufficient to reconstruct the relative neighborhood positions {xj}j∈N(i),
so individual updates cannot fully depend on the ‘local environment’. For example, pairwise dis-
tances Dij and Dil are insufficient to determine if xj and xl are on the same or opposite sides of
xi.

Structural encodings We develop invariant and locally informative features by first augmenting
the points xi with ‘orientations’ Oi that define a local coordinate system at each point. We define

1Here we consider a single representative coordinate per position when deriving edge features but may
revisit multiple atom types per position for features such as backbone angles or hydrogen bonds.
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these in terms of the backbone geometry as

Oi = [bi ni bi × ni] ,

where bi is the negative bisector of angle between the rays (xi−1 − xi) and (xi+1 − xi), and ni is
a unit vector normal to that plane. Formally, we have

ui =
xi − xi−1
||xi − xi−1||

, bi =
ui − ui+1

||ui − ui+1||
, ni =

ui × ui+1

||ui × ui+1||
.

Finally, we derive the spatial edge features e
(s)
ij from the rigid body transformation that relates

reference frame (xi,Oi) to reference frame (xj ,Oj). While this transformation has 6 degrees of
freedom, we decompose it into features for distance, direction, and orientation as

e
(s)
ij = Concat

(
r (||xj − xi||) , OT

i

xj − xi
||xj − xi||

, q
(
OT
i Oj

))
.

Here r(·) is a function that lifts the distances into a radial basis2, the term in the middle corresponds
to the relative direction of xj in the reference frame of (xi,Oi), and q(·) converts the 3 × 3 rela-
tive rotation matrix to a quaternion representation. Quaternions represent rotations as four-element
vectors that can be efficiently and reasonably compared by inner products Huynh (2009).3

Positional encodings Taking a cue from the original Transformer model, we obtain positional
embeddings e

(p)
ij that encode the role of local structure around node i. Specifically, we need to

model the positioning of each neighbor j relative to the node under consideration i. Therefore, we
obtain the position embedding as a sinusoidal function of the gap i− j. Note that this is in contrast
to the absolute positional encodings of the original Transformer, and instead matches the relative
encodings in Shaw et al. (2018).

Node and edge features Finally, we obtain an aggregate edge encoding vector eij by concatenat-
ing the structural encodings e

(s)
ij and the positional encodings e

(p)
ij and then linearly transforming

them to have the same dimension as the model. We only include edges in the k-nearest neighbors
graph of X , with k = 30 for all experiments.

For node features, we compute the three dihedral angles of the protein backbone (φi, ψi, ωi) and
embed these on the 3-torus as {sin, cos} × (φi, ψi, ωi).

Flexible backbone features We also consider ’flexible backbone’ descriptions of 3D structure
based solely on topological binary edge features. We combine the relative positional encodings with
two binary edge features: contacts that indicate when the distance between Cα residues at i and j are
less than 8 Angstroms and hydrogen bonds which are directed and defined by the electrostatic model
of DSSP (Kabsch & Sander, 1983). These features implicitly integrate over different 3D backbone
configurations that are compatible with the specified topology.

2.2 STRUCTURED TRANSFORMER

In this work, we introduce a Structured Transformer model that draws inspiration from the self-
attention based Transformer model (Vaswani et al., 2017) and is augmented for scalable incorpo-
ration of relational information. While general relational attention incurs quadratic memory and
computation costs, we avert these by restricting the attention for each node i to the set N(i, k) of
its k-nearest neighbors in 3D space. Since our architecture is multilayered, iterated local attention
can derive progressively more global estimates of context for each node i. Second, unlike the stan-
dard Transformer, we also include edge features to embed the spatial and positional dependencies in
deriving the attention. Thus, our model generalizes Transformer to spatially structured settings.

2We used 16 Gaussian RBFs isotropically spaced from 0 to 20 Angstroms.
3We represent quaternions in terms of their vector of real coefficients.
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Autoregressive decomposition We decompose the joint distribution of the sequence given struc-
ture p(s|x) autoregressively as

p(s|x) =
∏
i

p(si|x, s<i),

where the conditional probability p(si|x, s<i) of amino acid si at position i is conditioned on both
the input structure x and the preceding amino acids s<i = {s1, . . . si−1} 4. These conditionals are
parameterized in terms of two sub-networks: an encoder that computes refined node embeddings
from structure-based node features V(x) and edge features E(x) and a decoder that autoregressively
predicts letter si given the preceding sequence and structural embeddings from the encoder.

Encoder Our encoder module is designed as follows. A transformation Wh : Rdv 7→ Rd produces
initial embeddings hi = Wh(vi) from the node features vi pertaining to position i ∈ [N ] ,
{1, 2, . . . , N}.
Each layer of the encoder implements a multi-head self-attention component, where head ` ∈ [L] can
attend to a separate subspace of the embeddings via learned query, key and value transformations
(Vaswani et al., 2017). The queries are derived from the current embedding at node i while the
keys and values from the relational information rij = (hj , eij) at adjacent nodes j ∈ N(i, k).
Specifically, W (`)

q maps hi to query embeddings q(`)
i , W (`)

z maps pairs rij to key embeddings z(`)
ij

for j ∈ N(i, k), and W
(`)
v maps the same pairs rij to value embeddings v(`)

ij for each i ∈ [N ], ` ∈
[L]. Decoupling the mappings for keys and values allows each to depend on different subspaces of
the representation.

We compute the attention a(`)ij between query q
(`)
i and key z

(`)
ij as a function of their scaled inner

product:

a
(`)
ij =

exp(m
(`)
ij )∑

j′∈N(i,k)

exp(m
(`)
ij′ )

, where m
(`)
ij =

q
(`)
i

>
z
(`)
ij√

d
.

The results of each attention head l are collected as the weighted sum h
(`)
i =

∑
j∈N(i,k)

a
(`)
ij v

(`)
ij and

then concatenated and transformed to give the update ∆hi = Wo Concat
(
h
(1)
i , . . . ,h

(L)
i

)
.

We update the embeddings with this residual and alternate between these self-attention layers and
position-wise feedforward layers as in the original Transformer (Vaswani et al., 2017). We stack
multiple layers atop each other, and thereby obtain continually refined embeddings as we traverse
the layers bottom up. The encoder yields the embeddings produced by the topmost layer as its
output.

Decoder Our decoder module has the same structure as the encoder but with augmented relational
information rij that allows access to the preceding sequence elements s<i in a causally consistent
manner. Whereas the keys and values of the encoder are based on the relational information rij =
(hj , eij), the decoder can additionally access sequence elements sj as

r
(dec)
ij =

{
(h

(dec)
j , eij ,g(sj)) i > j

(h
(enc)
j , eij ,0) i ≤ j

.

Here h
(dec)
j is the embedding of node j in the current layer of the decoder, h(enc)

j is the embedding
of node j in the final layer of the encoder, and g(sj) is a sequence embedding of amino acid sj
at node j. This concatenation and masking structure ensures that sequence information only flows
to position i from positions j < i, but still allows position i to attend to subsequent structural
information.

4We anticipate that alternative orderings for decoding the sequence may be favorable but leave this to future
work
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Table 1: Null perplexities

Null model Perplexity Conditioned on
Uniform 20.00 -
Natural frequencies 17.83 Random position in a natural protein
Pfam HMM profiles 11.64 Specific position in a specific protein family

Table 2: Per-residue perplexities for test sets (lower is better). The test protein structures are cluster-
split by CATH topology assignments such that there is no topology (fold) overlap between test, train,
and validation.

Test set Short Single chain All
Structure-conditioned models
Structured Transformer (ours) 8.67 9.15 6.56
SPIN2 (O’Connell et al., 2018) 12.11 12.86 -
Language models
Structured Transformer, no encoder 16.03 16.36 16.98
RNN (h = 128) 16.08 16.34 16.93
RNN (h = 256) 16.09 16.32 16.93
RNN (h = 512) 16.01 16.34 16.94
Test set size 94 107 1911

We stack three layers of self-attention and position-wise feedforward modules for the encoder and
decoder with a hidden dimension of 128 throughout the experiments5.

2.3 TRAINING

Dataset To evaluate the ability of the models to generalize across different protein folds, we col-
lected a dataset based on the CATH hierarchical classification of protein structure (Orengo et al.,
1997). For all domains in the CATH 4.2 40% non-redundant set of proteins, we obtained full chains
up to length 500 (which may contain more than one domain) and then cluster-split these at the
CATH topology level (i.e. fold level) into training, validation, and test sets at an 80/10/10 split.
Chains containing multiple CATH tpologies were purged with precedence for test over validation
over train. Our splitting procedure ensured that no two domains from different sets would share the
same topologies (folds). The final splits contained 18025 chains in the training set, 1637 chains in
the validation set, and 1911 chains in the test set.

Optimization We trained models using the learning rate schedule and initialization of (Vaswani
et al., 2017), a dropout (Srivastava et al., 2014) rate of 10%, and early stopping based on validation
perplexity.

5except for the decoder-only language model experiment which used a hidden dimension of 256

Table 3: Test perplexity for different graph features (lower is better).

Node features Edge features Short Single chain All
Rigid backbone
Dihedrals Distances, Orientations 8.67 9.15 6.56
Dihedrals Distances 9.33 9.93 7.75
Flexible backbone
- Contacts, Hydrogen bonds 11.77 12.12 11.13
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3 RESULTS

Many protein sequences may reasonably design the same 3D structure (Li et al., 1996), and so we
focus on likelihood-based evaluations of model performance. Specifically, we evaluate the perplex-
ity per letter of test protein folds (topologies) that were held out from the training and validation
sets.

Protein perplexities What kind of perplexities might be useful? To provide context, we first
present perplexities for some simple models of protein sequences in Table 1. The amino acid al-
phabet and its natural frequencies upper-bound perplexity at 20 and ∼17.8, respectively. Random
protein sequences under these null models are unlikely to be functional without further selection
(Keefe & Szostak, 2001). First order profiles of protein sequences such as those from the Pfam
database (El-Gebali et al., 2018), however, are widely used for protein engineering. We found the
average perplexity per letter of profiles in Pfam 32 (ignoring alignment uncertainty) to be ∼11.6.
This suggests that even models with high perplexities of this order have the potential to be useful
models for the space of functional protein sequences.

The importance of structure We found that there was a significant gap between unconditional
language models of protein sequences and models conditioned on structure. Remarkably, for a
range of structure-independent language models, the typical test perplexities turned out to be ∼16-
17 (Table 2), which were barely better than null letter frequencies (Table 1). We emphasize that the
RNNs were not broken and could still learn the training set in these capacity ranges. It would seem
that protein language models trained on one subset of 3D folds (in our cluster-splitting procedure)
generalize poorly to predict the sequences of unseen folds, which is important to consider when
training protein language models for protein engineering and design.

All structure-based models had (unsurprisingly) considerably lower perplexities. In particular, our
Structured Transformer model attained a perplexity of ∼7 on the full test set. When we compared
different graph features of protein structure (Table 3), we indeed found that using local orientation
information was important.

Improvement over profile-based methods We also compared to a recent method SPIN2 that
predicts, using deep neural networks, protein sequence profiles given protein structures (O’Connell
et al., 2018). Since SPIN2 is computationally intensive (minutes per protein for small proteins) and
was trained on complete proteins rather than chains, we evaluated it on two subsets of the full test
set: a ‘Small’ subset of the test set containing chains up to length 100 and a ‘Single chain’ subset
containing only those models where the single chain accounted for the entire protein record in the
Protein Data Bank. Both subsets discarded any chains with structural gaps. We found that our
Structured Transformer model considerably improved upon the perplexities of SPIN2 (Table 2).

4 CONCLUSION

We presented a new deep generative model to ‘design’ protein sequences given a graph specification
of their structure. Our model augments the traditional sequence-level self-attention of Transformers
(Vaswani et al., 2017) with relational 3D structural encodings and is able to leverage the spatial lo-
cality of dependencies in molecular structures for efficient computation. When evaluated on unseen
folds, the model achieves significantly improved perplexities over the state-of-the-art parametric
generative models. Our framework suggests the possibility of being able to efficiently design and
engineer protein sequences with structurally-guided deep generative models, and underscores the
central role of modeling sparse long-range dependencies in biological sequences.
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5 APPENDIX

Figure 2: Example structures from the dataset.
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