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Abstract

We propose a game-theoretic approach to learn and pre-
dict coordinate binding of multiple DNA binding regu-
lators. The framework implements resource constrained
allocation of proteins to local neighborhoods as well as
to sites themselves, and explicates coordinate and com-
petitive binding relations among proteins with affinity to
the site or region. The focus of this paper is on mathe-
matical foundations of the new modeling approach. We
demonstrate the approach in the context of the λ-phage
switch, a well-known biological subsystem, and provide
simulation results that successfully illustrate the predic-
tions that can be derived from the model with known
structure and affinities. Subsequent work will elaborate
on methods for learning the affinities and game struc-
tures from available binding data.

1 Introduction

Effective transcriptional control relies in part on coordi-
nate operation of DNA binding regulators and their in-
teractions with various co-factors. Understanding such
processes is challenging, however, since the role of in-
teractions or binding sites associated with any specific
genes may not be transparent if considered in isolation.
The broader goal of our work here is to precisely cap-
ture the context provided by other mutually constrain-
ing processes.

We believe game theory and economic models pro-
vide an appropriate framework for understanding (and
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searching for) the context and constraints associated
with interacting regulatory processes. In particular, the
problem of understanding coordinate binding of regula-
tory proteins has many game theoretic properties. Re-
source constraints, for example, are critical to under-
standing who binds where. At low nuclear concentra-
tions, regulatory proteins may occupy only high affinity
sites, while filling weaker sites with increasing concen-
tration. Overlapping or close binding sites create ex-
plicit competition for the sites, the resolution of which is
guided by the available concentrations around the bind-
ing sites. Similarly, explicit coordination such as for-
mation of larger protein complexes may be required for
binding or, alternatively, binding may be facilitated by
the presence of another protein. The key advantage of
games as models of binding, however, is that they pro-
vide causally meaningful predictions, binding arrange-
ments, in response to various experimental perturba-
tions or disruptions.

Our approach deviates from an already substantial
body of computational methods used for resolving tran-
scriptional regulation. Much of the recent work has been
statistical in nature as in identifying regulatory modules
either by combining available binding data with mRNA
expression profiles [3] or by relating mRNA levels of can-
didate regulators directly to their potential targets [12].
Our work is closest in spirit to more detailed reaction
equation models [7, 1], while narrower in scope due to
our preliminary focus on binding alone. Our conceptual-
ization of the binding problem is nevertheless different,
and the mathematical modeling approach is clearly dis-
tinct from reaction equation models, even in terms of
the level of analysis.
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We begin by clarifying the structure of the binding
problem, followed by translating the problem into a
game theoretic form. The formal approach, analysis,
and associated algorithms for making predictions are
presented in subsequent sections. We also provide an
initial small-scale demonstration of our model in the con-
text of the λ-phage lysogeny switch.

2 Protein-DNA binding

Before formalizing the game, we decompose the binding
problem further into transport and local binding. By
transport, we refer to the mechanism that transports
proteins to the neighborhood of sites to which they have
affinity. The biological processes underlying the trans-
port are not well-understood although several hypothe-
ses exist[14, 4]. We abstract the process by assuming
separate affinities for proteins to explore neighborhoods
of specific sites, modulated by whether the sites are
available. This abstraction does not address the dy-
namics of the transport process and therefore does not
distinguish (nor stand in contradiction to) underlying
mechanisms that may or may not involve diffusion as a
major component. We simply aim to capture the differ-
entiated manner in which proteins may accumulate in
the neighborhoods of sites depending on the overall nu-
clear concentrations and regardless of the time involved.

Local binding, on the other hand, captures which pro-
teins bind to each site as a consequence of local accu-
mulations or concentrations around the site. We assume
that the neighborhood of each site constitutes a chem-
ically well-mixed and closed system. Thus, we model
the binding as being governed by chemical equilibria:
for a type of protein i around site j, {free protein i} +
{free site j} 
 {bound ij}, where concentrations involv-
ing the site should be thought of as time averages or
averages across a population of cells depending on the
type of predictions sought. The concentrations of vari-
ous molecular species around and bound to the sites as
well as the rate at which the sites are occupied are then
governed by the chemical equilibrium equation:

[bound ij]
[free protein i][free site j]

= Kij ,

where i ranges over proteins with affinity to site j and
Kij is a positive equilibrium constant characterizing pro-
tein i’s ability to bind to site j in the absence of other
proteins.

Broadly speaking, the combination of transport and
local binding results in an arrangement of proteins along
the possible DNA binding sites. This is what we aim to
predict with our game-theoretic models. We emphasize
that our predictions are indeed just binding arrange-
ments, not how such arrangements are reached. The pre-
dictions can nevertheless be viewed as functions of the
overall (nuclear) concentrations of proteins, the affinities
of proteins to explore neighborhoods of individual sites,
as well as the equilibrium constants characterizing the
ability of proteins to bind to specific sites when in close
proximity. Any perturbation of such parameters leads
to a potentially different arrangement that we can pre-
dict. The game that we will now begin to characterize
in detail provides the mechanisms for arriving at such
predictions.

3 Mapping to Game Theory

To formalize the binding problem as a game we need
to specify several key characteristics, discussed here in-
formally at first. These include who the players are,
available strategies to the players, and utilities specify-
ing preference orderings over possible strategies. There
are two types of players in our game, proteins and sites.
A protein-player refers to a type of protein, not an indi-
vidual protein, and chooses how its nuclear concentra-
tion should be allocated to the proximity of specific sites.
Note that the protein-player is a game-theoretic expres-
sion of the transport process. The protein-players are
assumed non-cooperative and rational. In other words,
their allocations are based on the transport affinities and
the availability of sites rather than through some nego-
tiation process involving multiple proteins. The non-
coopeative nature of the protein allocations does not,
however, preclude the formation of protein complexes or
binding facilitated by other proteins. Such extensions
can be incorporated at the sites and will be discussed
later on in the paper in the context of our empirical
work.

Each possible binding site is associated with a site-
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player. Site-players choose the fraction of time (or frac-
tion of cells in a population) a specific type of protein is
bound to the site. The site may also remain empty. The
strategies of the site-players are guided by local chem-
ical equilibria. Indeed, the site-players are introduced
merely to reproduce this physical understanding of the
binding process in a game theoretic context. The site-
players are non-cooperative and self-interested, always
aiming and succeeding at reproducing the local chemi-
cal equilibria.

The binding game has no global objective function
that serves to guide how the players choose their strate-
gies. The players choices are instead guided by their own
utilities that depend on the choices of other players. For
example, the protein-player allocates its nuclear concen-
tration to the proximity of the sites based on how occu-
pied the sites are, i.e., in a manner that depends on the
strategies of the site-players. Similarly, the site-players
reproduce the chemical equilibrium at the sites on the
basis of the available local protein concentrations, i.e.,
depending on the choices of the protein-players. We pro-
vide quantitative definitions of the utilities in the next
section.

The predictions we can make based on the game the-
oretic formulation are equilibria of the game (not to be
confused with the local chemical equilibria at the sites).
A game is at an equilibrium when each player, protein
or site, is content with their current choice of strategies
given the strategies of other players. Put another way, at
an equilibrium players have no incentive to unilaterally
deviate from their current strategy. Thus, at an equilib-
rium, no reallocation of proteins to sites is required and,
conversely, the sites have reproduced the local chemical
equilibria based on the current allocations of proteins.
While games need not have equilibria in pure strategies
(actions available to the players), our game will always
have one.

Table 1 summarizes our mapping from biological con-
cepts to game theory.

4 The binding game

We abstract the notion of proteins and DNA binding
sites by viewing them as rational agents or players com-
peting non-cooperatively in a game. This allows us to

Biology Game Theory
Type of protein ⇔ Protein-player
“transport mechanism” “allocation to sites”
Binding site ⇔ Site-player
“chemical equilibrium” “selection of who binds”

Binding arrangement ⇔ Equilibrium of the
Game

Table 1: Conceptual mapping

build our model on solid mathematical ground by ex-
ploiting previous work and well-studied models from
game theory and economics (see [8] and [2] for classi-
cal examples). We refer the reader to [5] for a more
thorough introduction to game theory.

We proceed here to define players’ strategies, their
utilities, and the notion of an equilibrium of the game
more formally. To this end, let f i represent the (nuclear)
concentration of protein i. This is the amount of protein
that can be allocated to the neighborhoods of sites. The
fraction of protein i allocated to site j is specified by pi

j ,
where

∑
j pi

j = 1. The numerical values of pi
j , where j

ranges over the possible sites, define a possible strategy
for the ith protein player. The choices of which strategies
to play are guided by parameters Eij , the affinity of
protein i to explore the neighborhood of site j (we will
generally index proteins with i and sites with j). The
utility for protein i, defined below, provides a numerical
ranking of possible strategy choices and is parameterized
by Eij . Each player aims to maximize its own utility
over the set of possible strategy choices.

The strategy for site-player j specifies the fraction of
time that each type of protein is actually bound to the
site. The strategy is denoted by sj

i , where i ranges over
proteins with affinity to the site. Note that the values
of sj

i are in principle observable from binding assays (cf.
[11]).

∑
i s

j
i ≤ 1 since there is only one site and it may

remain empty part of the time. The availability of site
j is 1 −

∑
i s

j
i ≤ 1, i.e., the fraction time that nothing

is bound. We will also use αj =
∑

i s
j
i to denote how

occupied the site is. The utilities of the site players will
depend on Kij , the chemical equilibrium constants char-
acterizing the local binding reaction between protein i
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and site j.

4.1 Utilities

The utility function for protein-player i is formally de-
fined as

ui(pi, s) ≡
∑

j

pi
jEij(1−

∑
i′

sj
i′) + βH(pi) (1)

where H(pi) = −
∑

j pi
j log pi

j is the Shannon entropy of
the strategy pi

j and j ranges over possible sites. The
utility of the protein-player essentially states that pro-
tein i “prefers” to be around sites that are unbound and
for which it has high affinity. The parameter β ≥ 0 bal-
ances how much protein allocations are guided by the
differentiated process, characterized by the exploration
affinities Eij , as opposed to allocated uniformly (maxi-
mizing the entropy function). Since the overall scaling
of the utilities is immaterial, only the ratios Eij/β are
relevant for guiding the protein-players. The strategies
available for the protein-player i are given by the set

P i ≡ {pi :
∑

j

pi
j = 1, pi

j ≥ 0, for all j}.

The protein-player will always find a strategy that max-
imizes its utility over the set of possible strategies P i.
Note, however, that since the utility depends on the
strategies of site-players through how available the sites
are (1−

∑
i′ s

j
i′), one cannot find the equilibrium strat-

egy for proteins by considering sj
i to be fixed; the sites

will respond to any pi
j chosen by the protein-player.

As discussed earlier, the site-players always reproduce
the chemical equilibrium between the site and the pro-
tein species allocated to the neighborhood of the site.
The utility for site-player i is defined such that the maxi-
mizing strategy corresponds to the chemical equilibrium:

sj
i

(pi
jf

i − sj
i )(1−

∑
i′ s

j
i′)

= Kij (2)

where sj
i specifies how much protein i is bound, the first

term in the denominator (pi
jf

i−sj
i ) specifies the amount

of free protein i, and the second term (1 −
∑

i′ s
j
i′), the

fraction of time the site is available. The equilibrium

equation holds for all protein species around the site and
for the same strategy {sj

i} of the site-player. The units
of each “concentration” in the above equation should
be interpreted as numbers of available molecules (e.g.,
there’s only one site). The utility function that repro-
duces this chemical equilibrium when maximized over
possible strategies is given by

vj(sj , p) ≡
∑

i

sj
i −Kij(pi

jf
i − sj

i )

(
1−

∑
i′

sj
i′

)
(3)

subject to the following constraints on the strategies

sj
i ≤ Kij(pi

jf
i − sj

i )

(
1−

∑
i′

sj
i′

)
sj
i ≤ pi

jf
i∑

i′

sj
i′ ≤ 1.

These constraints guarantee that the utility is always
non-positive and zero exactly when the chemical equi-
librium holds. sj

i ≤ pi
jf

i ensures that we cannot have
more protein bound than is allocated to the proximity
of the site. These constraints define the set of strategies
available for site-player j or Sj(p). Note that the avail-
able strategies for the site-player depend on the current
strategies for protein-players. The set of strategies Sj(p)
is not convex.

4.2 The game and equilibria

The protein-DNA binding game is now fully specified by
the set of parameters {Eij/β}, {Kij} and {f i}, along
with the utility functions {ui} and {vj} and the alloca-
tion constraints {P i} and {Sj}.

We assume that the biological system being modeled
reaches a steady state, at least momentarily, preserving
the average allocations. In terms of our game theoretic
model, this corresponds to what we call an equilibrium
of the game. Informally, an equilibrium of a game is
a strategy for each player such that no individual has
any incentive to unilaterally deviate from their strategy.
Formally, if the allocations (p̄, s̄) are such that for each
protein i and each site j,

p̄i ∈ arg max
pi∈Pi

ui(pi, s̄), and s̄j ∈ arg max
sj∈Sj(p̄j)

vj(sj , p̄j),

(4)
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then we call (p̄, s̄) an equilibrium of the protein-DNA
binding game. Put another way, at an equilibrium,
the current strategies of the players must be among
the strategies that maximize their utilities assuming the
strategies of other players are held fixed.

Does the protein-DNA binding game always have an
equilibrium? While we have already stated this in the
affirmative, we emphasize that there is no reason a priori
to believe that there exists an equilibrium in the pure
strategies, especially since the sets of possible strategies
for the site-players are non-convex (cf. [2]). The exis-
tence is guaranteed by the following theorem:

Theorem 1. Every protein-DNA binding game has an
equilibrium.

The proof can be obtained either through Brower’s
fixed point theorem or, alternatively, on the basis of the
algorithm we develop in the next section for finding equi-
libria of the game. In the interest of brevity, we will defer
to the constructive proof provided by the algorithm.

The theorem guarantees that at least one equilibrium
exists but there may be more than one. At any such
equilibrium of the game, all the protein species around
each site are at a chemical equilibrium; that is, if (p̄, s̄)
is an equilibrium of the game, then for all sites j and
proteins i, s̄j and p̄i

j satisfy (2). Consequently, the site
utilities vj(s̄j , p̄j) are all zero for the equilibrium strate-
gies.

5 Computing equilibria

The equilibria of the binding game represent predicted
binding arrangements. It is therefore critical to be able
to find equilibria on a genome-wide scale. While find-
ing Nash equilibria of multi-person games is known to
be hard, our game has special structure and properties
that permit us to find an equilibrium efficiently through
a simple iterative algorithm. The algorithm monotoni-
cally fills the sites up to the equilibrium levels, starting
with all sites empty.

We begin by first expressing any joint equilibrium
strategy of the game as a function of how filled the sites
are, and reduce the problem of finding equilibria to find-
ing fixed points of a monotone function. To this end, let

αj =
∑

i′ s
j
i′ denote site j occupancy, the fraction of

time it is bound by any protein. αj ’s are real numbers
in the interval [0, 1]. If we fix α = (α1, . . . , αm), i.e.,
the occupancies for all the m sites, then we can readily
obtain the maximizing strategies for proteins expressed
as a function of site occupancies:

pi
j(α) =

exp(Eij(1− αj)/β)∑
j′ exp(Eij′(1− αj′)/β)

, (5)

where we view the maximizing strategies as functions
of α. Similarly, at the equilibrium, each site-player
achieves a local chemical equilibrium specified in (2).
By replacing αj =

∑
i′ s

j
i′ , and solving for sj

i in (2), we
get

sj
i (α) =

Kij(1− αj)
1 + Kij(1− αj)

pi
j(α) f i (6)

So, for example, the fraction of time the site is bound by
a specific protein is proportional to the amount of that
protein in the neighborhood of the site, modulated by
the equilibrium constant. Note that sj

i (α) depends not
only on how filled site j is but also on how occupied the
other sites are through pi

j(α).
The equilibrium condition can be now expressed solely

in terms of α and reduces to a simple consistency con-
straint: overall occupancy should equal the fraction of
time any protein is bound or

αj =
∑

i

sj
i (α) =

∑
i

Kij(1− αj)
1 + Kij(1− αj)

pi
j(α) f i (7)

We have therefore reduced the problem of finding equi-
libria of the game to finding fixed points of the mapping
Gj(α) =

∑
i s

j
i (α). This mapping, written explicitly as

Gj(α) =
∑

i

Kij(1− αj)
1 + Kij(1− αj)

exp(Eij(1− αj)/β)∑
j′ exp(Eij′(1− αj′)/β)

f i

(8)
has a simple but powerful monotonicity property that
forms the basis for our iterative algorithm. Specifically,

Lemma 2. Let α−j denote all components αk except
αj. Then for each j, Gj(α) ≡ Gj(αj , α−j) is a strictly
decreasing function of αj for any fixed α−j.
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We omit the proof as it is straightforward. This
lemma, together with the fact that Gj(1, α−j) = 0, im-
mediately guarantees that there is a unique solution to

αj = Gj(αj , α−j) (9)

for any fixed and valid α−j . The solution αj also lies in
the interval [0, 1] and can be found efficiently via binary
search.

5.1 The algorithm

We are now ready to define the algorithm. Let α(t)
denote the site occupancies at the tth iteration of the
algorithm. αj(t) specifies the jth component of this vec-
tor, while α−j(t) contains all but the jth component.
The algorithm proceeds as follows:

• Set αj(0) = 0 for all j = 1, . . . ,m.

• Find each new component αj(t + 1), j = 1, . . . ,m,
on the basis of the corresponding α−j(t) such that
αj(t + 1) = Gj(αj(t + 1), α−j(t))

• Stop when αj(t + 1) ≈ αj(t) for all j = 1, . . . ,m.

Note that the inner loop of the algorithm, i.e., finding
αj(t+1) on the basis of α−j(t) reduces to a simple binary
search as discussed earlier. The algorithm generates a
monotonically increasing sequence of α’s that converge
to a fixed point (equilibrium) solution.

5.1.1 The algorithm: analysis.

We provide here a formal convergence analysis of the
algorithm. To this end, we begin with the following
critical lemma.

Lemma 3. Let α1 and α2 be two possible assignments
to α. If for all k 6= j, αk

1 ≤ αk
2, then Gj(αj , α−j

1 ) ≤
Gj(αj , α−j

2 ) for all αj.

The proof is straightforward and essentially based on
the fact that α−j

1 and α−j
2 appear only in the normaliza-

tion terms for the protein allocations and in these terms∑
k 6=j

exp(Eik(1− αk
1)/β) ≥

∑
k 6=j

exp(Eik(1− αk
2)/β)

as αk
1 ≤ αk

2 for all k 6= j. We omit further details for
brevity.

On the basis of this lemma, we can show that the
algorithm indeed generates a monotonically increasing
sequence of α’s

Theorem 4. αj(t + 1) ≥ αj(t) for all j and t.

Proof. By induction. Since αj(0) = 0 and the range of
Gj(αj , α−j(0)) lies in [0, 1], clearly αj(1) ≥ αj(0) for all
j. Assume then that αj(t) ≥ αj(t − 1) for all j. We
extend the induction step by contradiction. Suppose
αj(t + 1) < αj(t) for some j. Then

αj(t + 1) < αj(t) = Gj(αj(t), α−j(t− 1))
≤ Gj(αj(t), α−j(t))
< Gj(αj(t + 1), α−j(t))
= αj(t + 1)

which is a contradiction. The second line follows from
the induction hypothesis and lemma 3, and the third
line derives from lemma 2 and αj(t + 1) < αj(t).

Since αj(t) for any t will always lie in the interval [0, 1],
and because of the continuity of Gj(αj , α−j) in the two
arguments, the algorithm is guaranteed to converge to a
fixed point solution.

Theorem 5. The algorithm converges to a fixed point
ᾱ such that ᾱj = Gj(ᾱj , ᾱ−j) for all j.

Proof. The result is a direct consequence of the Mono-
tone Convergence Theorem for sequences and the conti-
nuity of Gj ’s.

6 The λ-phage game

We use the well-known λ-phage infection [6, 13, 1] to il-
lustrate the game theoretic approach. Viral infection
by λ−phage is governed by a genetic two-state con-
trol switch that specifies whether the infection remains
dormant (lysogeny) or whether the viral DNA is ag-
gressively replicated (lysis). The components of the
λ−switch are 1) two adjacent genes cI and Cro that en-
code cI2 and Cro proteins, respectively; 2) the promoter
regions PRM and PR of these genes, and 3) an opera-
tor (OR) with three binding sites OR1, OR2, and OR3.
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OR3 OR2 OR12 OR1OR3 O

PRM
PR

cI
OR

Cro

Figure 1: Representation of cI and Cro genes, promoters
and operator sites as they appear in the λ chromosome.
Arrows indicate direction of transcription. OR1 overlaps
with the Cro promoter PR, and OR3 overlaps with PRM .

Figure 1 illustrates schematically the geometry of the
switch. We focus on the lysogeny phase where cI2 dom-
inates over Cro. There are two relevant protein-players,
RNA-polymerase and cI2, and three sites, OR1, OR2,
and OR3. Since the presence of cI2 in either OR1 or
OR3 blocks the access of RNA-polymerase to the pro-
moter region PR, or PRM respectively, we can safely
restrict ourselves to operator sites as the site-players.

To fully specify the game we have to set the explo-
ration affinities as well as the chemical equilibrium con-
stants. The difficulty of this step arises from the am-
biguity of affinities reported in the literature; affinities
may refer to the activation energy of binding, energy of
binding, or both. We begin by outlining the key consid-
erations. RNA-polymerase can bind either promoter but
does not bind OR2. The affinity of cI2 protein to bind
the operator sites can be summarized as OR1 > OR2 '
OR3. There are three phases of operation depending on
the concentration of cI2:

1. cI2 binds to OR1 first and blocks the Cro promoter
PR

2. Slightly higher concentrations of cI2 lead to binding
at OR2 which in turn facilitates RNA-polymerase to
initiate transcription at PRM

3. At sufficiently high levels cI2 also binds to OR3 and
inhibits its own transcription

The first two phases appear to contradict known affini-
ties: cI2 binds almost immediately at both OR1 and
OR2 (in this order), and the presence of cI2 in OR2
results in increased transcription of cI2. These effects

Affinity for each site
Protein P-P Inter.? OR3 OR2 OR1
RNA-p No Low none High

Yes High none High
cI2 No OR1’s

/
10 OR1’s

/
10 High

Yes OR1’s
/
10 =OR1’s High

Table 2: Qualitative affinities (lysogeny).

are attributed to protein-protein interactions between
cI2 dimers at OR1 and OR2, and between cI2 and RNA-
polymerase. Such protein-protein interactions could be
encoded in our game theoretic model via additional
structural constraints on the utilities and strategies of
the site players. We specifically avoid such encoding,
however, and instead attempt to explain the observed
effects simply through competition and resource con-
straints. For example, in our model, the order in which
cI2 binds to the three operator sites is a byproduct of cI2
being transported differently to these sites, and the com-
petition between cI2 and RNA-polymerase to bind OR1
and OR3. Note that the spatial proximity of the sites
places physical constraints on binding and that such con-
straints may be implicit in the affinities.

Table 2 summarizes the qualitative affinities with and
without protein-protein interactions.

6.1 Game parameters

The game requires three sets of parameters: chemical
equilibrium constants, affinities, and quantities of dif-
ferent protein species. We set the chemical equilibrium
constants in accordance with the Gibbs’ Free energies
∆G tabulated by [13],

∆G (kCal) OR3 OR2 OR1
cI2 −10.1 −10.1 −11.7
RNA-p −11.5 0 −12.5

To incorporate these energies into our simulation, we
have to analyze the units of the equilibrium equation
carefully. Recall the chemical equilibrium equation (2),

Kij =
sj
i

(pi
jf

i − sj
i )(1−

∑
i′ s

j
i′)

.
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To ensure the consistency of units, we have to define f i

as the total number of proteins i available, and arrange
the units of Kij accordingly:

f i ≡f̃ i VT NA, (10)

Kij ≡K̃ij
1

NAVS
, (11)

where VT and VS are the volumes of cell and site neigh-
borhood, respectively, NA is the Avogadro number, f̃ i is
the concentration of protein i in the cell, and K̃ij is the
equilibrium constant in units of `/mol. The equilibrium
equation can then be rewritten as

sj
i

(pi
j f̃

iVT NA − sj
i )(1−

∑
i′ s

j
i′)

=K̃ij
1

NAVS

and rearranging the terms, the relationship with the
Gibbs’ free energies unfolds

sj
i

(pi
j f̃

i VT NA
VSNA

− sj
i

1
VSNA

)(1−
∑

i′ s
j
i′)

=K̃ij

=e−∆G/RT , (12)

where R is the universal gas constant and T is tem-
perature. For a typical Escherichia coli (2µm length),
we obtain the following chemical equilibrium constants
from the tabulated free energies

Kij OR3 OR2 OR1
cI2 .0020 .0020 .0296
RNA-p .0212 0 .1134

Note that when such parameters are learned from data
any dependence on the volumes will be implicit.

Similarly, we set the transport affinities in accordance
with the qualitative description in [9, 10], summarized
in Table 2:

Eij OR3 OR2 OR1
cI2 .1 .1 1
RNA-p .2 .01 1

Note that the overall scaling of these values is imma-
terial; only the relative affinities will guide the protein-
players. Note also that there is a ten-fold difference in

pi
j fcI2/fRNA−p OR3 OR2 OR1

cI2 1
100

0 1 0
RNA-p 0.46 0 0.54
cI2 2

0 .88 0.12
RNA-p 0.49 0 0.51
cI2 10

0 .55 0.45
RNA-p 1 0 0
cI2 100

0.32 .39 0.28
RNA-p 1 0 0

Table 3: Distribution of proteins near the sites. The
numbers represent the fraction of proteins allocated to
the sites.

cI2 transport affinity to OR2 and OR1 since we have cho-
sen not to incorporate any protein-protein interactions.
The affinity of RNA-polymerase for OR3 is similarly re-
duced. Whether RNA-p affinity to OR2 is very small or
exactly zero has no impact on the results.

We set f̃RNA−p = 30nM (cf. [13]) which for a typical
E. coli is equivalent to setting fRNA−p ' 340 copies.
And then varied fcI2 from 1 to 10, 000 copies to study the
dynamical behavior of the lysogeny cycle. The results
are reported as a function of the ratio fcI2/fRNA−p. We
set β = 10−5.

6.2 Simulation Results

The predictions from the game theoretic model exactly
mirror the known behavior. We emphasize that our
model does not encode protein-protein interactions, yet
is able to account for the experimental observations.

We present the results as a function of varying concen-
trations of fcI2 . Table 3 shows the distribution of protein
expected near the sites at specific concentrations of cI2.
The amount of RNA-p is assumed to remain constant.
Table 4 give the predicted fraction of time specific pro-
teins are bound at the sites.

Tables 3 and 4, taken together, show that the simula-
tion mirrors the behavior of the lysogeny cycle discussed
earlier.

1. When no cI2 is present, RNA-polymerase is only
slightly more likely to bind to OR1 than OR3. The
natural tendency towards lysogeny observed exper-
imentally can only be explained by factors external
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Figure 2: Predicted protein binding to sites OR3, OR2, and OR1 for increasing amounts of cI2.

sj
i fcI2/fRNA−p OR3 OR2 OR1

cI2 1
100

0 .001 0
RNA-p 0.77 0 0.95
cI2 2

0 0.56 0.11
RNA-p 0.78 0 0.85
cI2 10

0 0.83 0.98
RNA-p 0.88 0 0
cI2 100

.78 0.97 0.99
RNA-p 0.19 0 0

Table 4: Probability of binding at each site.

to this analysis such as transcription time, or pres-
ence of additional proteins.

2. As more cI2 becomes available, it accumulates near
OR1, OR2, increasing the probability of finding cI2
at either sites to nearly one.

3. Further increase of cI2 leads to almost exclusive
binding of RNA-polymerase to OR3.

4. Finally, at high concentrations cI2 blocks its own
promoter and reduces RNA-p binding at OR3. Fig-
ure 2(a) shows how increased cI2 concentration
sharply reduces RNA-polymerase binding at OR3.

Figure 2 illustrates how the binding at different sites
changes as a function of increasing fcI2 . Although our
model does not capture dynamics, and the figure does
not involve time, it is nevertheless useful for assessing
quantitative changes and the order of events as a func-
tion of increasing fcI2 . Note, for example, that the lev-
els at which cI2 occupies OR1 and OR2 rise much faster

than at OR3. While the result is expected, the behavior
is attributed to protein-protein interactions which are
not encoded in our model. Similarly, RNA-polymerase
occupation at OR3 bumps up as the probability that
OR2 is bound by cI2 increases.

6.2.1 Simultaneous occupancy of OR1 and OR2.

OR1 knockout experiments have shown that protein-
protein interactions between cI2 dimers are largely re-
sponsible for simultaneous occupancy of sites OR2 and
OR1. While agreeing with that observation, Figure 2
suggests that the cooperative binding can also be ob-
tained as a by-product of competition involving RNA-
polymerase, cI2, OR1, and OR2. To assess the validity of
this hypothesis we simulated OR1 knockout experiments
by substantially reducing the equilibrium constants at
this site.

Eij OR3 OR2 OR1
cI2 .1 .1 01
RNA-p .2 .01 .1

Kij OR3 OR2 OR1
cI2 .0020 .0020 .003
RNA-p .0212 0 .0113

With OR1 knocked out, our model predicts that cI2
will bind OR3 and OR2 similarly, with minor initial
differences due to competition between cI2 and RNA-
polymerase at OR3. Figure 3 reproduces the qualita-
tive behavior observed in knockout experiments. RNA-
polymerase binds OR3 at first but cI2 takes over at the
same rate as it binds to OR2. Only if concentration of cI2
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Figure 3: Predicted protein binding to sites OR3, OR2, and mutated OR1 for increasing amounts of cI2.

became sufficiently high do we find cI2 at the mutated
OR1 as well. Note, however, that cI2 inhibits transcrip-
tion at OR3 prior to occupying OR1. Thus the binding
at the mutated OR1 could not be observed without in-
terventions.

7 Discussion

We believe the game theoretic approach provides a com-
pelling causal abstraction of biological systems with re-
source constraints. The model is complete with prov-
ably convergent algorithms for finding equilibria on a
genome-wide scale.

The results from the small scale application are en-
couraging. Our model successfully reproduces known
behavior of the λ−switch on the basis of molecular
level competition and resource constraints, without the
need to assume protein-protein interactions between cI2
dimers and cI2 and RNA-polymerase. Even in the con-
text of this well-known sub-system, however, few quan-
titative experimental results are available about bind-
ing. Proper validation and use of our model therefore
relies on estimating the game parameters from available
protein-DNA binding data (in progress). Once the game
parameters are known, the model provides valid pre-
dictions for a number of possible perturbations to the
system, including changing nuclear concentrations and
knock-outs.
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