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Abstract

Bayesian inference has become increasingly important in statistical machine
learning. Exact Bayesian calculations are often not feasible in practice, however.
A number of approximate Bayesian methods have been proposed to make such
calculations practical, among them the variational Bayesian (VB) approach. The
VB approach, while useful, can nevertheless suffer from slow convergence to the
approximate solution. To address this problem, we propose Parameter-eXpanded
Variational Bayesian (PX-VB) methods to speed up VB. The new algorithm is in-
spired by parameter-expanded expectation maximization (PX-EM) and parameter-
expanded data augmentation (PX-DA). Similar to PX-EM and -DA, PX-VB ex-
pands a model with auxiliary variables to reduce the coupling between variables
in the original model. We analyze the convergence rates of VB and PX-VB and
demonstrate the superior convergence rates of PX-VB in variational probit regres-
sion and automatic relevance determination.

1 Introduction

A number of approximate Bayesian methods have been proposed to offset the high computational
cost of exact Bayesian calculations. Variational Bayes (VB) is one popular method of approxima-
tion. Given a target probability distribution, variational Bayesian methods approximate the target
distribution with a factored distribution. While factoring omits dependencies present in the target
distribution, the parameters of the factored approximation can be adjusted to improve the match.
Specifically, the approximation is optimized by minimizing the KL-divergence between the factored
distribution and the target. This minimization can be often carried out iteratively, one component
update at a time, despite the fact that the target distribution may not lend itself to exact Bayesian
calculations. Variational Bayesian approximations have been widely used in Bayesian learning (e.g.,
(Jordan et al., 1998; Beal, 2003; Bishop & Tipping, 2000)).

Variational Bayesian methods nevertheless suffer from slow convergence when the variables in the
factored approximation are actually strongly coupled in the original model. The same problem arises
in popular Gibbs sampling algorithm. The sampling process converges slowly in cases where the
variables are strongly correlated. The slow convergence can be alleviated by data augmentation (van
Dyk & Meng, 2001; Liu & Wu, 1999), where the idea is to identify an optimal reparameterization
(within a family of possible reparameterizations) so as to remove coupling. Similarly, in a deter-
ministic context, Liu et al. (1998) proposed over-parameterization of the model to speed up EM
convergence. Our work here is inspired by DA sampling and PX-EM. Our approach uses auxiliary
parameters to speed up the deterministic approximation of the target distribution.

Specifically, we propose Parameter-eXpanded Variational Bayesian (PX-VB) method. The original
model is modified by auxiliary parameters that are optimized in conjunction with the variational
approximation. The optimization of the auxiliary parameters corresponds to a parameterized joint



optimization of the variational components; the role of the new updates is to precisely remove oth-
erwise strong functional couplings between the components thereby facilitating fast convergence.

2 An illustrative example

Consider a toy Bayesian model, which has been considered by Liu and Wu (1999) for sampling.

p(y|w, z) = N (y | w + z, 1), p(z) = N (z | 0, D) (1)

whereD is a know hyperparameter andp(w) ∝ 1. The task is to compute the posterior dis-
tribution of w. Suppose we use a VB method to approximatep(w|y), p(z|y) and p(w, z|y) by
q(w), q(z) andq(w, z) = q(w)q(z), respectively. The approximation is optimized by minimizing
KL(q(w)q(z)‖p(y|w, z)p(z)) (the second argument need not be normalized). The general forms of
the component updates are given by

q(w) ∝ exp(〈ln p(y|w, z)p(z)〉q(z)) (2)

q(z) ∝ exp(〈ln p(y|w, z)p(z)〉q(w)) (3)

It is easy to derive the updates in this case:

q(w) = N (w|y − 〈z〉, 1) q(z) = N (z| y − 〈w〉
1 + D−1

,
1

1 + D−1
) (4)

Now let us analyze the convergence of the mean parameter ofq(w), 〈w〉 = y − 〈z〉. Iteratively,

〈w〉 =
D−1

1 + D−1
y +

〈w〉
1 + D−1

= D−1
(
(1 + D−1)−1y + (1 + D−1)−2y + · · ·

)
= y.

The variational estimate〈w〉 converges toy, which actually is the true posterior mean (For this toy
problem,p(w|y) = N (w|y, 1+D)). Furthermore, ifD is large,〈w〉 converges slowly. Note that the
variance parameter ofq(w) converges to1 in one iteration, though underestimates the true posterior
variance1 + D.

Intuitively, the convergence speed of〈w〉 andq(w) suffers from strong coupling between the updates
of w andz. In other words, the update information has to go through a feedback loopw → z →
w · · · . To alleviate the coupling, we expand the original model with an additional parameterα:

p(y|w, z) = N (y | w + z, 1) p(z|α) = N (z | α, D) (5)

The expanded model reduces to the original one whenα equals the null valueα0 = 0.

Now having computedq(z) givenα = 0, we minimizeKL(q(w)q(z)‖p(y|w, z)p(z|α)) overα and
obtain the minimizerα = 〈z〉. Then, we reduce the expanded model to the original one by applying
the reduction rule

znew = z − α, wnew = w + α.

Correspondingly, we change the measures ofq(w) andq(z):

q(wnew)← q(w + α) = N (w|y, 1) q(znew)← q(z − α) = N (z|0,
1

1 + D−1
) (6)

Thus, the PX-VB method converges. Hereα breaks the update loop betweenq(w) andq(z) and
plays the role of a correction force; it corrects the update trajectories ofq(w) andq(z) and makes
them point directly to the convergence point.

3 The PX-VB Algorithm

In the general PX-VB formulation, we over-parameterize the modelp(x̂, D) to getpα(x, D), where
the original model is recovered for some default values of the auxiliary parametersα = α0. The
algorithm consists of the typical VB updates relative topα(x, D), the optimization of auxiliary
parametersα, as well as a reduction step to turn the model back to the original form whereα = α0.
This last reduction step has the effect of jointly modifying the components of the factored variational
approximation. Put another way, we push the change inpα(x, D), due to the optimization ofα,
into the variational approximation instead. Changing the variational approximation in this manner
permits us to return the model into its original form and setα = α0.

Specifically, we first expandp(x̂, D) to obtainpα(x, D). Then at the tth iteration,



1. q(xs) are updated sequentially. Note that the approximate distributionq(x) =
∏

s q(xs).
2. We minimizeKL(q(x)‖pα(x, D)) over the auxiliary parametersα. This optimization can

be done jointly with some components of the variational distribution, if feasible.

3. The expanded model is reduced to the original model through reparameterization. Accord-
ingly, we changeq(t+1)(x) to q(t+1)(x̂) such that

KL(q(t+1)(x̂)‖pα0(x̂, D)) = KL(q(x)‖pα(t+1)(x, D)) (7)

whereq(t+1)(x̂) are the modified components of the variational approximation.

4. Setα = α0.

Since each update of PX-VB decreases or maintains the KL divergenceKL(q(x)‖p(x, D)), which
is lower bounded, PX-VB reaches a stationary point forKL(q(x)‖p(x, D)). Empirically, PX-VB
often achieves solution similar to what VB achieves, with faster convergence.

A simple strategy to implement PX-VB is to use a mappingSα, parameterized byα, over the vari-
ablesx̂. After sequentially optimizing over the components{q(xs)}, we maximize〈ln pα(x)〉q(x)

overα. Then, we reducepα(x, D) to p(x̂, D) andq(x) to q(x̂) through the inverse mapping ofSα,
Mα ≡ S−1

α . Since we optimizeα after optimizing{q(x̂s}, the mappingS should change at least
two components ofx. Otherwise, the optimization overα will do nothing since we have already
optimized over eachq(x̂s). If we jointly optimizeα and one componentq(xs), it suffices (albeit
need not be optimal) for the mappingSα to change onlyq(xs).

Algorithmically, PX-VB bears a strong similarity to PX-EM (Liu et al., 1998). They both expand the
original model and both are based on lower bounding KL-divergence. However, the key difference
is that the reduction step in PX-VB changes the lower-bounding distributions{q(xs)}, while in
PX-EM the reduction step is performed only for the parameters inp(x, D). We also note that the
PX-VB reduction step viaMα leaves the KL-divergence (lower bound on the likelihood) invariant,
while in PX-EM the likelihood of the observed data remains the same after the reduction. Due to
these differences, general EM acceleration methods (e.g., (Salakhutdinov et al., 2003)) may not be
directly applied to speed up VB convergence.

In the following sections, we present PX-VB methods for two popular Bayesian models: Probit re-
gression for data classification and Automatic Relevance Determination (ARD) for feature selection
and sparse learner.

3.1 Bayesian Probit regression

Probit regression is a standard classification technique (see, e.g., (Liu et al., 1998) for the maximum
likelihood estimation). Here we demonstrate the use of variational Bayesian methods to train Probit
models.

The data likelihood for Probit regression is

p(t|X,w) =
∏
n

σ(tnwTxn),

whereX = [x1, . . . ,xN ] andσ is the standard normal cumulative distribution function. We can
rewrite the likelihood in an equivalent form

p(tn|zn) = sign(tnzn) p(zn|w,xn) = N (zn|wTxn, 1) (8)

Given a Gaussian prior over the parameter,p(w) = N (w|0, v0I), we wish to approx-
imate the posterior distributionp(w, z|X, t) by q(w, z) = q(w)

∏
n q(zn). Minimizing

KL(q(w)
∏

n q(zn)‖p(w, z, t|X)), we obtain the following VB updates:

q(zn) = T N (zn|〈w〉Txn, 1, tnzn) (9)

q(w) = N (w|(XXT + v−1
0 I)−1X〈z〉, (XXT + v−1

0 I)−1) (10)

where T N (zn|〈w〉Txn, 1, tnzn) stands for a truncated Gaussian such that
T N (zn|〈w〉Txn, 1, tnzn) = N (zn|〈w〉Txn, 1) whentnzn > 0, and it equals 0 otherwise.



To speed up the convergence of the above iterative updates, we apply the PX-VB method. First, we
expand the orginal modelp(ŵ, ẑ, t|X) to pc(w, z, t|X) with the mapping

w = ŵc z = ẑc (11)
such that

pc(zn|w,xn) = N (zn|wTxn, c2) p(w) = N (w|0, c2v0I) (12)
Settingc = c0 = 1 in the expanded model, we updateq(zn) andq(w) as before, via (9) and (10).
Then, we minimizeKL

(
q(z)q(w)‖pc(w, z, t|X)

)
overc, yielding

c2 =
1

N + M

( ∑
n

(〈z2
n〉 − 2〈zn〉〈w〉Txn + xT

n 〈wwT〉xn) + v−1
0 〈wwT〉

)
(13)

whereM is the dimension ofw. In the degenerate case wherev0 = ∞, the denominator of the
above equation becomesN instead ofN + M . Since this equation can be efficiently calculated, the
extra computational cost induced by the auxiliary variable is therefore small. We omit the details.

The transformation back topc0 can be made via the inverse map
ŵ = w/c ẑ = z/c. (14)

Accordingly, we changeq(w) to obtain a new posterior approximationqc(ŵ):
qc(ŵ) = N (ŵ|(XXT + v−1

0 I)−1X〈z〉/c, (XXT + v−1
0 I)−1/c2) (15)

We do not actually need to computeqc(zn) if this component will be optimized next.

By changing variablesw to ŵ through (14), the KL divergence between the approximate and exact
posteriors remains the same. After obtaining new approximationsqc(ŵ) andq(ẑn), we resetc =
c0 = 1 for the next iteration.

Though similar to the PX-EM updates for the Probit regression problem (Liu et al., 1998), the PX-
VB updates are geared towards providing an approximate posterior distribution.

We use both synthetic data and a kidney biopsy data (van Dyk & Meng, 2001) as numerical examples
for probit regression. We setv0 =∞ in the experiment. The comparison of convergence speeds for
VB and PXVB is illustrated in figure 1.
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Figure 1: Comparison between VB and PX-VB for probit regression on synthetic (a) and kidney-
biospy data sets (b). PX-VB converges significantly faster than VB. Note that the Y axis shows the
difference between two consecutive estimates of the posterior mean of the parameterw.

For the synthetic data, we randomly sample a classifier and use it to define the data labels for sampled
inputs. We have 100 training and 500 test data points, each of which is 20 features. The kidney
data set has 55 data points, each of which is a 3 dimensional vector. On the synthetic data, PX-
VB converges immediately while VB updates are slow to converge. Both PX-VB and VB trained
classifiers achieve zero test error. On the kidney biopsy data set, PX-VB converges in 507 iterations,
while VB converges in 7518 iterations. In other words, PX-VB requires 15 times fewer iterations
than VB. In terms of CPU time, which reflects the extra computational cost induced by the auxiliary
variables, PX-VB is 14 times more efficient. Among all these runs, PX-VB and VB achieve very
similar estimates of the model parameters and the same prediction results. In sum, with a simple
modification of VB updates, we significantly improve the convergence speed of variational Bayesian
estimation for probit model.



3.2 Automatic Relevance Determination

Automatic relevance determination (ARD) is a powerful Bayesian sparse learning technique
(MacKay, 1992; Tipping, 2000; Bishop & Tipping, 2000). Here, we focus on variational ARD
proposed by Bishop and Tipping (2000) for sparse Bayesian regression and classification.

The likelihood for ARD regression is

p(t|X,w, τ) =
∏
n

N (tn|wTφn, τ−1)

whereφn is a feature vector based onxn, such as[k(x1,xn), . . . , [k(xN ,xn)]T wherek(xi,xj)
is a nonlinear basis function. For example, we can choose a radial basis functionk(xi,xj) =
exp(−‖xi − xj‖/(2λ2), whereλ is the kernel width.

In ARD, we assign a Gaussian prior on the model parametersw: p(w|α) =
∏M

m=0N (wm|0, α−1
m ),

where the inverse variancediag(α) follows a factorized Gamma distribution:

p(α) =
∏
m

Gamma(αm|a, b) =
∏
m

baαa−1
m e−bαm/Γ(a) (16)

wherea andb are hyperparameters of the model. The posterior does not have a closed form. Let
us approximatep(w,α, τ |X, t) by a factorized distributionq(w,α, τ) = q(w)q(α)q(τ). The
sequential VB updates onq(τ), q(w) andq(α) are described by Bishop and Tipping (2000).

The variational RVM achieves good generalization performance as demonstrated by Bishop and
Tipping (2000). However, its training based on the VB updates can be quite slow. We apply PX-VB
to address this issue.

First, we expand the original modelp(ŵ, α̂, τ̂ |X, t) via

w = ŵ/r (17)

while maintainingα̂ andτ̂ unchanged. Consequently, the data likelihood and the prior onw become

pr(t|w,X, τ) =
∏
n

N (tn|rwTφn, τ−1) pr(w|α) =
M∏

m=0

N (wm|0, r−2α−1
m ) (18)

Settingr = r0 = 1, we updateq(τ) andq(α) as in the regular VB. Then, we want to joint optimize
overq(w) andr. Instead of performing a fully joint optimization, we optimizeq(w) andr separately
at the same time. This gives

r =
g +

√
g2 + 16Mf

4f
(19)

wheref = 〈τ〉
∑

n xT
n 〈wwT〉xn +

∑
m〈w2

m〉〈αm〉 andg = 2〈τ〉
∑

m〈wT〉xntn. where〈wT〉 and
〈wwT〉 are the first and second order moments of the previousq(w). Since bothf andXT〈w〉 has
been computed previously in VB updates, the added computational cost forr is negligible overall.
The separate optimization overq(w) andr often decreases the KL divergence. But it cannot guar-
antee to achieve a smaller KL divergence than what optimization only overq(w) would achieves. If
the regular update overq(w) achieves a smaller KL divergence, we resetr = 1.

Given r and q(w), we useŵ = rw to reduce the expanded model to the original one. Cor-
respondingly, we changeq(w) = N (w|µw,Σw) via this reduction rule to obtainqr(ŵ) =
N (ŵ|rµw, r2Σw).

We can also introduce another auxiliary variables such thatα = α̂/s. Similar to the above proce-
dure, we optimize overs the expected log joint probability of the expanded model, and at the same
time updateq(α). Then we changeq(α) back toqs(α̂) using the inverse mappinĝα = sα. Due to
the space limitation, we skip the details here.

The auxiliary variablesr ands change the individual approximate posteriorsq(w) andq(α) sep-
arately. We can combine these two variables into one and use it to adjustq(w) andq(α) jointly.
Specifically, we introduce the variablec:

w = ŵ/c α = c2α̂.
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Figure 2: Convergence comparison between VB and PX-VB for ARD regression on synthetic data
(a,b) and gene expression data (c). The PX-VB results in (a) and (c) are based on independent aux-
iliar variables onw andα. The PX-VB result in (b) is based on the auxiliar variable that correlates
bothw andα.

Settingc = c0 = 1, we perform the regular updates overq(τ), q(w) andq(α). Then we optimize
overc the expected log joint probablity of the expanded model. We cannot find a closed-form solu-
tion for the maximization. But we can efficiently compute its gradient and Hessian. Therefore, we
perform a few steps of Newton updates to partially optimizec. Again, the additional computational
cost for calculatingc is small. Then using the inverse mapping, we reduce the expanded model to
the original one and adjust bothq(w) andq(α) accordingly. Empirically, this approach can achieve
faster convergence than using auxiliary variables onq(w) andq(α) separately. This is demonstrated
in figure 2(a) and (b).

We compare the convergence speed of VB and PX-VB for the ARD model on both synthetic data
and gene expression data. The synthetic data are sampled from the function sinc(x) = (sinx)/x for
x ∈ (−10, 10) with added Gaussian noise. We use RBF kernels for the feature expansionφn with
kernel width 3. VB and PX-VB provide basically identical predictions. For gene expression data,
we apply ARD to analyze the relationship between binding motifs and the expression of their target
genes. For this task, we use 3 order polynomial kernels.

The results of convergence comparison are shown in figure 2. With a little modification of VB
updates, we increase the convergence speed significantly. Though we demonstrate PX-VB improve-
ment only for ARD regression, the same technique can be used to speed up ARD classification.

4 Convergence properties of VB and PX-VB

In this section, we analyze convergence of VB and PX-VB, and their convergence rates.

Define the mappingq(t+1) = M(q(t)) as one VB update of all the approximate distributions.

Define an objective function as the unnormalized KL divergence:

Q(q) =
∫ ∏

qi(x) log
∏

qi(x)
p(x)

) + (
∫

p(x)dx−
∫ ∏

qi(x)dx). (20)

It is easy to check that minimizingQ(q) gives the same updates as VB which minimizes KL diver-
gence.

Based on theorem 2.1 by Luo and Tseng (1992), an iterative application of this mapping to minimize
Q(q) results in at least linear convergence to an elementq? in the solution set.

Define the mappingq(t+1) = Mx(q(t)) as one PX-VB update of all the approximate distribu-
tions. The convergence of PX-VB follows from similar arguments. i.e.,β = [qTαT]T converges to
[q?TαT

0 ]T, whereα ∈ Λ are the expanded model parameters,α0 are the null value in the original
model.

4.1 Convergence rate of VB and PX-VB

The matrix rate of convergenceDM(q):

q(t+1) − q? = DM(q)T(q(t) − q?) (21)



whereDM(q) =
(

∂Mj(q)
∂qi

)
.

Define the global rate of convergence forq: r = limt→∞
‖q(t+1)−q?‖
‖q(t)−q?‖ .

Under certain regularity conditions,r = the largest eigenvalue ofDM(q). The smallerr is,
the faster the algorithm converges.

Define the constraint setgs as the constraints for thesth update. Then the following theorem holds:

Theorem 4.1 The matrix convergence rate for VB is:

DM(q?) =
S∏

s=1

Ps (22)

wherePs = Bs[BT
s

(
D2Q(q?)

)−1
Bs]−1BT

s

(
D2Q(q?)

)−1
andBs = ∇gs(q?).

Proof: Defineξ as the current approximationq. Let Gs(ξ) be qs that maximizes the objective
functionQ(q) under the constraintgs(q) = gs(ξ) = [ξ\s].

Let M0(q) = q and

Ms(q) = Gs(Ms−1(q)) for all 1 ≤ s ≤ S. (23)

Then by construction of VB, we haveq(t+s/S) = Ms(q(t)), s = 1, . . . , S andDM(q?) =
DMS(q?). At the stationary points,q? = DMs(q?) for all s.

We differentiate both sides of equation (23) and evaluate them atq = q?:

DMs(q) = DMs−1(q)DGS(Ms−1(q?)) = DMs−1(q?)DGS(q?) (24)

It follows thatDM(q?) =
∏S

s=1 DGS(q?).

To calculateDGS(q?), we differentiate the constraintgs(Gs(ξ)) = gs(ξ) and evaluate both sides
atξ = q?, such that

DGs(q?)Bs = Bs. (25)

Similarly, we differentiate the Lagrange equationDQs(G(ξ))−∇gs(G(ξ))λs(ξ) = 0 and evaluate
both sides atξ = q?. This yields

DGs(q?)D2Qs(q?)−Dλs(q?)BT
s = 0 (26)

Equation (26) holds because∂
2gs

∂qi∂qj
= 0.

Combining (25) and (26) yields

DGs(q?) = Bs[BT
s

(
D2Qs(q?)

)−1
Bs]−1BT

s

(
D2Qs(q?)

)−1
.2 (27)

In thes update we fixq\s, i.e.,gs(q) = q\s. Therefore,Bs is an identity matrix with itssth column
removedBs = I:,s, whereI is the identity matrix ands, : means without thesth column.

DenoteCs =
(
D2Qs(q?)

)−1
. Without the loss of generality, we sets = S. It is easy to obtain

BT
SCBS = C\S,\S (28)

where\S, \S means without rowS and columnS.

Inserting (28) into (27) yields

PS = DGS(q?) =
(

Id−1 C−1
\S,\SC\S,S

0 0

)
=

(
Id−1 −D2Q\S,S(D2QS,S)−1

0 0

)
(29)

whereId−1 is a(d− 1) by (d− 1) identity matrix, andD2Q\S,S = ∂2Q(qq(x)‖p(x))
∂q\S

T∂qS
andD2QS,S =

∂2Q(qq(x)‖p(x))
∂qS

T∂qS
. Notice that we use Schur complements to obtain (29). Similar to the calculation of

PS via (29), we can derivePs for s = 1, . . . , S − 1 with structures similar toPS .



The above results help us understand the convergence speed of VB. For example, we have

q(t+1) − q? = PT
S · · ·PT

1 (q(t) − q?). (30)

ForqS , q(t+1)
S − q?

S =
(
− (D2QS,S)−1D2QS,\S 0

)
(q(t) − q?).

Clearly, if we viewD2QS,\S as the correlation betweenqS andq\S , then the smaller “correlation”,
the faster the convergence. In the extreme case, if there is no correlation betweenqS andq\S , then

q(t+1)
S − q?

S = 0 after the first iteration. Since the global convergence rate is bounded by the
maximal component convergence rate and generally there are many components with convergence
rate same as the global rate. Therefore, the instant convergence ofqS could help increase the global
convergence rate.

For PX-VB, we can compute the matrix rate of convergence similarly. In the toy example in
Section 2, PX-VB introduces an auxiliary variableα which has zero correlation withw, lead-
ing an instant convergence of the algorithm. This suggests that PX-VB improves the conver-
gence by reducing the correlation among{qs}. Rigorously speaking, the reduction step in PX-
VB implictly defines a mapping betweenq to qα0 through the auxiliary variablesα: (q, pα0) →
(q, pα) → (qα, pα0). Denote this mapping asMα such asqα = Mα(q). Then we have
DMx(q?) = DG1(q?) · · ·DGα(q?) · · ·DGS(q?)

It is known that the spectral norm has the following submultiplicative property‖EF‖ <= ‖E‖‖F‖,
whereE andF are two matrices. Thus, as long as the largest eigenvalue ofMα is smaller than 1,
PX-VB converges faster than VB. The choice ofα affects the convergence rate by controlling the
eigenvalue of this mapping. The smaller the largest eigenvalue ofMα, the faster PX-VB converges.
In practice, we can check this eigenvalue to make sure the constructed PX-VB algorithm enjoys a
fast convergence rate.

5 Discussion

We have provided a general approach to speeding up convergence of variational Bayesian learning.
Faster convergence is guaranteed theoretically provided that the Jacobian of the transformation from
auxiliary parameters to variational components has spectral norm bounded by one. This property
can be verified in each case separately. Our empirical results show that the performance gain due to
the auxiliary method is substantial.
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