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Abstract

We develop a method similar to variable elim-
ination for computing approximate marginals
in graphical models. An underlying notion in
this method is that it is not always necessary
to compute marginals over all the variables in
the graph, but focus on a few variables of in-
terest. The Focused Inference (FI) algorithm
introduced reduces the original distribution
to a simpler one over the variables of interest.
This is done in an iterative manner where in
each step the operations are guided by (local)
optimality properties. We exemplify various
properties of the focused inference algorithm
and compare it with other methods. Numer-
ical simulation indicates that FI outperform
competing methods.

1 INTRODUCTION AND
RELATED WORK

Probabilistic models are useful in a wide variety of
fields. An effective way to represent the structure
of a probability distribution is by means of a graph;
e.g., a graphical model, where variables and their de-
pendencies are associated to nodes and edges in the
graph. A crucial task in using such models is to com-
pute marginal distributions over single or groups of
random variables. This is referred to here as prob-
abilistic inference. However, the complexity of ex-
act inference scales exponentially with the tree-width
of the associated graphical model, and even finding
ε-approximations (i.e., within given error bounds) is
NP-hard [2]. Approximate methods can nevertheless
be indispensable in practice.

Approximate inference methods have relied on several
key ideas. For example, we can try to simplify the
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original model to the extent that it becomes tractable.
In some cases it is feasible to identify groups of nodes
that are nearly conditionally independent or config-
urations that are highly improbable, and then mod-
ify the original graph appropriately to represent this
finding before running an exact algorithm (e.g., [9]).
Variational methods, on the other hand, typically look
for the best approximation within a restricted class
of distributions, for example, by minimizing the KL-
divergence D(q||p) between the approximation q and
the original distribution p[7]. The quality of this ap-
proximation is tied to how expressive the restricted
class is. Other methods, such as Assumed Density
Filtering (ADF)[13](see also [14]), Expectation Prop-
agation (EP)[14] and sequential fitting[5] define the
quality of approximation in terms of D(p||q), preserv-
ing select statistics in the course of incorporating evi-
dence. Similarly, belief Propagation (BP)[16, 12] and
its generalizations[20, 19] seek locally (not globally)
consistent beliefs about the values of variables and
have been useful in various contexts.

Variational methods can generally provide a bound on
the likelihood but are typically symmetry breaking in
the sense that the optimized approximate marginals
are asymmetric in the absence of any evidence to this
effect (cf. mode selection). Propagation algorithms
such as BP or EP avoid symmetry breaking due to
the different optimization criterion. They are exact
for trees, or hyper-trees in the case of generalized BP,
but, with the singular exception of [18], do not pro-
vide bounds, nor are necessarily guaranteed to con-
verge without additional assumptions.

The structure of the approximating distribution (e.g.,
[6, 14, 15]), the message propagation scheme (e.g.,
[19]), or the clusters in generalized BP can lead to im-
portant variability in accuracy; finding a good struc-
ture or clusters is an essential and still unresolved
problem.

In this paper we pay closer attention to the essential
operation for computing a subset of desired marginals,



i.e., marginalizing out each of the remaining hidden
variables. The plain focused inference (FI) algorithm
is a simple iterative process that eliminates variables
step by step (or in parallel whenever possible) and
obtains an approximation of the select marginal dis-
tribution. We extend the the basic FI idea to a
distributed algorithm operating in a tree-like struc-
ture. Our method provides a formalism for performing
the necessary graph/distribution transformation oper-
ations to be exact on restricted graphs, and approx-
imate for others. While FI can be seen to generate
approximating distributions at each step, these distri-
butions do not have to be tractable.

2 DEFINITIONS - BACKGROUND

Let X = (X1, ..., XN) be a random vector with Xi

taking values denoted xi, where xi ∈ X . We let X
be the discrete space X = {0, 1, ..., M − 1}; thus, X
takes values in the Cartesian product space XN . In
this paper we consider probability distributions p(x)
whose structure is represented by the undirected bi-
partite graph G = ({V, F}; E), with variable nodes V
such that X = {Xi|i ∈ V }, factor nodes F , and edges
E ⊆ {(i,α)|i ∈ V,α ∈ F}. The factor graph [10] G
corresponds to the following family of distributions:

p(X = x) =
1
Zp

∏
α∈F

ψα(xα)
∏
i∈V

φi(xi), (1)

where ψ and φ are positive functions (potentials or fac-
tors), and Xα are all the random variables connected
to the factor node α; i.e., Xα = {Xi|(i,α) ∈ E}. For
later convenience, we denote single node factors by
φ. This graph representation is more explicit than
the standard undirected graphical model representa-
tion regarding the factorization of the probability dis-
tribution. In this paper we concentrate primarily on
the cases when p can be defined by factor nodes with
degree at most two1. The neighborhood set of the vari-
able node i is defined ν(i) = {j|(i,α) ∈ E, (j,α) ∈ E}
(this includes the node i itself), while the neighbors
of the variable node i is the set ν(i)− = ν(i) − {i}.
The factors associated to a variable node i are denoted
F (i), with F (i) = {α ∈ F |(i,α) ∈ E}. Throughout
this paper, the short-hand p(x) will denote p(X = x).

3 FOCUSED INFERENCE
APPROXIMATION

Consider the basic marginalization operation. When
marginalizing the joint distribution p(x) with respect
to a single variable Xe, the fundamental computational

1Note this need not be the case for joint marginals of p

issues, for discrete representations, are the time com-
plexity of combining the relevant random variable con-
figurations and the space complexity of representing
the result. In general we have that with ē = V − {e},∑

xe

p(x) ∝ h2(xē)
∑
xe

h1(xν(e)) = h2(xē)f(xē). (2)

Even if the graph corresponding to p is a tree, repre-
senting f(xē) without resorting to its functional form
may require O(M |ν(e)|−1) space. Further computa-
tions (like marginalizing with respect to another vari-
able), referring to this result may also have exponential
time complexity.

This exact operation can been seen as a step in a
bucket elimination algorithm [3]. This is also the basic
operation that data structures like the clique-tree or
junction tree are designed to handle in exact inference
methods like variable elimination [17], and illustrates
why some elimination and induced triangulations are
much more efficient than others, even though all per-
form exact calculations.

There are instances when f turns out to accept simple
(e.g., product) decompositions. In this case it is possi-
ble to improve upon the above complexity bounds on
inference. However, it is not clear how to induce such
decompositions given a distribution p. The essence
of the focused inference algorithm explained in this
section lies in variable elimination and in generating a
succession of non-exact decompositions to compute op-
timal marginal approximations in the context of Eq. 2.
We will discuss an extension of the basic algorithm
later in the paper.

3.1 BASIC FI ALGORITHM

Let p(x) be the distribution of interest, with associated
factor graph G = ({V, F}, E), focused inference (FI) is
based on a new graph decomposition together with an
approximation that reduces the original distribution p
(and graph G) to a simpler one in an iterative manner,
with certain optimality properties at each step. We
can think of the essential process as focusing only on
a few target node(s) at a time, whose marginal distri-
butions (e.g., pairwise) are to be approximated. Each
iteration eliminates variable and factors, includes new
factors, and modifies the distribution appropriately to
keep the focused approximation accurate.

We start by formalizing FI for a single iteration and
when the target variables consist of a specific pair of
nodes T , T ⊂ V , and later generalize it to multiple
pairwise marginals.

The first step of the iteration consists on choosing a
non-target node e ∈ V − T and rewriting the corre-



sponding probability distribution as:

p(x) = p̃1(xν(e))p̃2(xē), (3)

where the two new distributions are defined according
to the following decomposition:

p̃1(xν(e)) =
1

Zp̃1

∏
α∈F (e)

ψ(xα)
∏

i∈ν(e)

φi(xi) (4)

p̃2(xē) ∝
∏

α/∈F (e)

ψ(xα)
∏

i/∈ν(e)

φi(xi). (5)

Assuming each factor involves at most two variables,
p̃1(xν(e)) is always a tree-structured distribution and
thus computing exact marginals from p̃1 can be done
efficiently. p̃2(xē) remains generally intractable. The
decomposition is not unique (even up to constant)
since we are free to trade single node marginals be-
tween the components. Note that the decomposition
itself involves no approximations, only rewriting of the
original distribution.

The exact node/edge removal operation (marginaliz-
ing) consist on finding f(xν(e)−) =

∑
xe

p̃1(xν(e));
see Fig. 1(b). The above decomposition is helpful
since sensible approximations for the first portion of
the full distribution (Eq. 4) are readily available. In
particular, in this paper we employ the specific class
of approximations that optimize the KL-divergence
D(f(xν(e)−)||q(xν(e)− )) between f(xν(e)−) and the ap-
proximating distribution q(xν(e)−) constrained to be a
tree-distribution. We denote this class of approximat-
ing distributions by Q.

In the second step of the FI iteration we solve:

q(xν(e)− ) = arg min
q∈Q

D(
∑
xe

p̃1(xν(e))||q(xν(e)− ). (6)

This projection can be solved efficiently whenever Q
is restricted to trees.

This optimization is related to that used by ADF (and
thus EP); however in FI no fixed, predetermined refer-
ence(e.g., tree-structured) distribution is set, at each
step the structure of the best local approximating dis-
tribution can be obtained dynamically. The projection
operation may (automatically) introduce factors that
were not previously present. We clarify here that we
are not assuming a specific choice of ADF terms. Also,
recall than in ADF the structure of the approximat-
ing distribution is predetermined (not found by ADF
itself).

One way to represent the solution to Eq. 6 is by the
following tree-structured factorization:

q(xν(e)− ) =
∏

(i,j)∈ET

q(xi,xj)/
∏

i∈VT

q(xi)di−1, (7)

X1

X2 X3

X4

!12 !13

!24 !34

!14

X1

X2 X3

X4

!12 !13

!24 !34

!1234

X1

X2 Xe

!1e

!2e
X3

!e3

X4

!e4

!12 !13

!24 !34

(a) (b) (c)

Figure 1: One-step approximation by removal of Xe: (a)
original factor graph, (b) exact (marginalized) graph, and
(c) example FI approximation where appropriate factors
(in bold) have been created (ψ14) and updated (ψ12, ψ34)

where di denotes the degree of node i and GT =
(VT , ET ) is a tree (q is in the family of distributions
Q). The optimal tree GT can be found efficiently.

In the third step of the algorithm we combine the pro-
jected approximation with the remaining variables to
get the approximation to marginalized p(x):

p̂(xē) = q(xν(e)−)p̃2(xē). (8)

This node/edge elimination and approximation iter-
ation is repeated until all but the focus set T is left
in the graph 2. The new distribution p̂(xē) is again
defined in the form of Eq. 1. This involves redefining
the previous potentials and incorporating new ones.
The following provides the resulting factor/potential
update equations 3. For each pair (i, j) ∈ ET , poten-
tials can be modified or created:

ψα(xα) ← ψα(xα)
q(xi,xj)q(xi)−ρiq(xj)−ρj

φi(xi)φj(xj)
(modify) (9)

ψα(xα) ← q(xi,xj)q(xi)−ρiq(xj)−ρj

φi(xi)φj(xj)
(create), (10)

where ρi = (di − 1)/di and the potential is modified
whenever both (i,α) and (j,α) are in E (created other-
wise). The graphical operations for factor graph G are
variable node, factor, edge removal, and edge addition,
respectively:

(i) V ← V − {e}, (ii) F ← F − F (e),
(iii) E ← E − {(e,α)|α ∈ F (e)},
(iv) E ← E ∪ {(i,α), (j,α)|(i, j) ∈ ET }

One iteration applied to a simple five-variable factor
graph is shown in Fig. 1. The repetition of these steps
defines an elimination ordering E = (e1, ..., eK) and
a series of approximating distributions {Qk}k=1,...,K

which characterize one focusing operation. While
these basic steps are fixed, the global algorithm is more
flexible; for example, in the choice of approximating
distributions, in the elimination ordering, etc. These
and other aspects will be further discussed in the next
section.

2Alternatively until a tractable substructure containing
the set T has been reached

3This is one succinct way to state the update equations
for multinomials, other equivalent forms can be also used.
This form does not require updating the potentials φi



4 ALGORITHM ANALYSIS

Here we illustrate key properties of the algorithm and
provide additional details.

4.1 ALGORITHM COMPLEXITY AND
OPTIMALITY

Under the decomposition defined in Eqs. 4-5, the min-
imization problem in Eq. 6 for a fixed tree structure
has a known solution in O(M3). The problem reduces
to finding the pairwise marginals of p̃1 along the tree
edges ET . Since p̃1 is always a tree (a star graph
centered at Xe) and each potential ψ is a function of
at most two random variables, any of these marginals
can be found in O(M3). As for finding the best tree-
structured distribution family in Q, this result follows
directly from [1] applied to our decomposition.

Proposition 1 The focused inference algorithm of
Sec. 3 is exact for any decimatable distribution p (tree-
width two or, equivalently, when the maximal clique
size of the triangulated graph is three). Not all elimi-
nation orderings yield the exact result.

Proof The approximation is exact when all the steps
are exact. The steps are exact if each variable has at
most two neighbors when eliminated. Since the maxi-
mal clique size is three, this elimination constraint can
always be satisfied through some elimination ordering.

An analogous result may not hold for ADF (or EP)
with the same time complexity.

4.2 ELIMINATION ORDERING

For a graph G = ({V, F}, E) and for a set of nodes
F of interest, an elimination ordering is a sequence
of nodes E = (e1, ...., eK) with ei ∈ V − F . In case
we measure the approximation accuracy in terms of
the KL-divergence, the focused inference method sug-
gests a seemingly natural elimination ordering E : at
each step, eliminate the (non-target) node that gives
the lowest KL divergence D(f(xν(e)−)||q(xν(e)− )) be-
tween marginalized and approximating distribution at
each step. However, note that this gives a locally best
and, in general, not a globally best ordering. Finding
approximations to the best overall elimination order-
ing is a much harder problem due that the complexity
of the problem representation increases rapidly with
the number of elimination steps.

The focused inference algorithm is designed to con-
centrate on specific marginals and thus, a particular
ordering is used to reduce the graph to those nodes
of interest. In the most general setting, the algorithm
has to be run again if other marginals are needed (or

partially run since common calculations or partial re-
sults could be handily stored). A reasonable question
is whether these marginals are consistent. The an-
swer is negative, in general. Specifically, for a distri-
bution p(x) and two sets of focus (target) variables
{Xa, Xb} and {Xb, Xc}, the corresponding pairwise
and single marginals produced by the focused infer-
ence algorithm under different elimination orderings
E1 = (e11, ..., e1K1) and E2 = (e21, ..., e2K2) are con-
sistent (1)if p(x) is a decimatable distribution; since
the algorithm is exact, and (2)if the elimination or-
derings are the same except for the final node: K1 =
K2 = N − 2 and e1i = e2i for i < K; since after elim-
inating N − 3 nodes, the remaining variables will be
Xa, Xb, Xc, and their joint distribution is decimatable.

If we do not require that the approximation be optimal
(at each step), the graph can be reduced to a tree very
quickly. Moreover, this can be done so that the pair-
wise distributions are tree consistent. However, clearly
this involves non-optimal (local) approximations.

4.3 CONSISTENCY OF SINGLE AND
PAIRWISE MARGINALS

Let us instead consider how to start from the poten-
tially inconsistent set of marginals found using the FI
algorithm and reach a consistent set of marginals. We
consider the following problem: given a set of pairwise
marginals found under different elimination orderings,
how can we obtain a set of consistent marginals with
respect to a tree graph GT ′ = (VT , ET ′).

Our approach consist on using a maximum likelihood
criterion; specifically, let M be the set of ordered pairs
(i, j) of marginals {q(xi,xj)}. Under this criterion, we
wish to solve the following optimization problem:

arg max
r∈R

−
∑

(i,j)∈M
q(xi,xj) log r(xi,xj), (11)

for the set of distributions R with model structure
GT ′ . This problem is equivalent to the minimization
of Eq. 6, and thus can be solved in closed-form.

4.4 INCLUDING SINGLE NODE
POTENTIALS

The decomposition given by Eqs. 4- 5 is an instance
of a more general decomposition which generalizes the
way single node potentials are included as follows:

p̃1(xν(e)) ∝ φe(xe)
∏

α∈F (e)

ψ(xα)
∏

i∈ν(e)−
φi(xi)

ηi (12)

p̃2(xē) ∝
∏

α/∈F (e)

ψ(xα)
∏

i/∈ν(e)

φi(xi)
∏

i∈ν(e)−
φi(xi)

(1−ηi),(13)

which subsumes the original one.



The extra degrees of freedom are given by the vari-
ables η = {ηi}, i ∈ ν(e)−, ηi ∈ ( (note that φe(xe)
must be fully included during e’s elimination). This
extra flexibility could be used to our advantage in
finding a better distribution when minimizing Eq. 6.
This is because single node potentials could be in-
cluded such as to obtain an approximating q distri-
bution giving smaller KL-divergence. However, one
must be cautious, since we can almost always define
η to obtain an approximating distribution for which
the KL-divergence is almost zero. This can be done
by allowing almost all of p’s probability mass to fall in
appropriate variable states easily represented by dis-
tributions in Q. Yet, despite this momentary success,
the overall gain is not guaranteed to be larger since the
resulting p̂ distribution might be difficult to approx-
imate in future steps. This may allow us to provide
more accurate overall approximations by appropriately
including the effect of single node potentials. Taking
advantage of this generalization is an interesting prob-
lem that remain to be exploited.

4.5 FURTHER CONNECTIONS WITH
OTHER METHODS

As a way to further understand FI, we now discuss
other connections with related methods. Consider
a single inclusion of a pairwise term in ADF. The
marginals obtained by ADF for any (tractable) ap-
proximating distribution could also obtained by FI.
This can be seen by noticing that FI can perform exact
marginalization in a cycle (like ADF) and the inclusion
of a pairwise term in ADF will at most generate a cy-
cle. It is significant that for this equivalence to hold,
FI needs to make locally suboptimal decisions and ig-
nore those edges not in the cycle, even if they can be
easily approximated during elimination. For simulta-
neous inclusion of multiple terms, ADF’s complexity
in general increases exponentially, FI’s complexity re-
mains as before, of course using an approximation.

Unlike ADF and EP, in FI there is no reference struc-
ture for the approximation made. Interestingly, inter-
mediate (joint) approximations built by FI may not be
tractable. Their structure can be chosen with locally
optimal guarantees. FI builds these approximations
dynamically, thus there are less choices to be made
by hand regarding the structure of the approximating
distribution. This is related to [5], in the sense that
different approximating structures are found at each
step; however, in [5] a (tractable) tree-structured joint
distribution is maintained at all times.

There exist certain resemblance between the FI algo-
rithm in Sec. 3.1 and the mini-buckets scheme [4] in
the sense that both methods repeatedly approximate
complex functions of multiple variables with products

of simpler functions. In mini-buckets, the local ap-
proximations employ a non explicitly guided partition-
ing of variables to functions (a partitioning, to some
extent corresponds to the structure of a local approxi-
mating distribution in the FI method). In FI, contrary
to mini-buckets, the approximating distributions q, in-
cluding their structure, can be solved for, and are opti-
mal with respect to a definite criterion, the appropriate
KL-divergence.

In mini-buckets the approximation relies on arithmetic
bounds on product of positive functions. In a criterion
derived from mini-buckets [11], this approximation is
given by the solution of a linear optimization problem
(thus more like FI). However, still the structure of the
approximating distribution is not part of the formula-
tion and also the optimization problem entails using
an exponential number of constraints.

5 DISTRIBUTED FOCUSED
INFERENCE

Let us say we are interested in the marginal distri-
bution for all of the variables Xi. In the worst case,
the basic FI algorithm needs to be re-run on the or-
der of N times to obtain all marginals of interest. Is
there a more efficient way to perform the necessary
computations? In this section we address the question
whether there exist a distributed (asynchronous) al-
gorithm equivalent or based on the same fundamental
ideas. There is a parallel extension for exact meth-
ods, where this is of course the case in inference (e.g.,
[17, 16, 12]). Asynchronous algorithms also exist for
fixed structure approximations (e.g., [13, 7, 14]). How-
ever, note that in the FI approximation, the result of
eliminating one variable is not propagated symmetri-
cally through the graph (neighbors), it depends on the
factorization chosen; the underlying factor graph is dy-
namically modified, based on previous approximations
to other parts of the graph; and different elimination
orderings (optimal in some sense for a particular fo-
cusing variable) are used for computing the different
marginals. Thus, it is not clear for example, what data
structure fits the underlying algorithm, what informa-
tion or quantities a node should transfer to another,
and if the overall algorithm allows for quantities to be
stored efficiently, e.g., locally.

It turns out that for a type of FI approximations, we
can build a distributed algorithm and answer these
questions. In order to define the algorithm, a tree
structure similar to the clique-tree [12, 17] can be used
for the underlying computations. However, unlike the
above, in our case it is not necessary to find the maxi-
mal cliques or use the concept of triangulation explic-
itly. This is important because finding maximal cliques
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Figure 2: Example factor graph and the tree induced by
the ordering E = (1, 3, 7, 9, 2, 4, 5, 6, 8)

is in NP-complete [8]. The following algorithm defines
the necessary tree structure whose nodes, denoted Aj ,
are subsets of the random variables in p:

Algorithm for building Order-induced Tree

Denote elimination ordering E = (e1, ..., en)

1. Assign a single variable to the initial tree nodes:
Aj = {Xej} (j = 1, ..., N − 1)

2. Iterate i = 1...N

(a) Create new node C =
⋃

j Aj for j s.t. Aj

does not have a parent and Xei ∈ Aj

(b) For each j found in (a)
Let B = C −Aj = {Xbl} and chain nodes:
(C) → (C\{Xb1}) → ... → (C\B) → (Aj)

(c) For all the (not eliminated) variables Xk

sharing a factor with Xei

i. Create new node C′ = C∪Xk and make
C′ a parent of C

ii. Redefine C ← C′

(d) Create new node C′ = C−{Xei} and make
C′ a parent of C

(e) Eliminate Xei

Since we do not need the concept of cliques, we simply
call it an Order-induced Tree (OT). Note that when
traversed bottom-up (to the root), this tree gives a
marginalization ordering that properly tracks the re-
sulting function arguments at the nodes in the order
given. As in the basic FI, the above steps resemble
bucket elimination [3]. In fact, at the graph level,
the OT algorithm performs the variable inclusion and
elimination operations in the same order as FI. An ex-
ample OT tree for a simple 3×3 grid is shown in Fig. 2.
The distributed algorithm (shown next) uses the OT
as basic data structure for message passing.

Distributed Focused Inference Algorithm

1. Form OT and for each node A assign function:

ψ̃A(xA) =
∏

α∈F (A)

ψα(xα)
∏
i∈A

φi(xi), (14)

F (A) : set of factors whose variables are in A
2. Pick any node in the tree as root node

3. Perform a bottom-up and top-down pass, send-
ing the following message between neighbor
nodes (random variable sets) A and B:

mB→A(xA) = ℘xB\A [
∏

C∈ν(B)

mC→B(xB)

ψ̃C∩B(xC∩B)
ψ̃B(xB)], (15)

where ν denotes neighborhood in the OT

4. Compute marginals for the nodes of interest:

p(xA) ∝
∏

B∈ν(A)

mB→A(xA)
ψ̃B∩A(xB∩A)

ψ̃A(xA) (16)

(e.g., use the nodes A containing the single
variables of interest; some joint marginals can
be computed directly as well)

In the algorithm, the operator ℘, has a similar role
than the minimization in Eq. 6. In the case of FI we
have:

℘xB\A [g] '= arg min
q∈Q

D(
1
Zg

∑
xB\A

g(xB)||q(xA)), (17)

which is the known projection operation in informa-
tion geometry (as before Q is the set of tree structure-
distributions). Since D is defined on distributions, Zg

is the necessary normalization constant. We defer a
detailed analysis of the above algorithm and present
the basic results in the remaining of this section.

Theorem 2 The distributed algorithm computes the
exact marginals when the minimization operation is
replaced by exact summation, i.e., when ℘xB\A[g] '=
1

Zg

∑
xB\A g(xB)

Proof sketch It suffices to show that the new defini-
tion of ℘ is equivalent to solving for f in Eq. 2, and that
sequential application of step 3 with any root node is
equivalent to sequential application of Eq. 2 in a par-
ticular ordering.

From the above result, step 3 using Eq. 17 can be
seen as passing (approximate) distributions over vari-
ables in the target nodes. Interestingly these distri-
butions may be intractable themselves. The basic FI
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Figure 3: Numerical test results for grid networks with random single and pairwise potentials with various levels of
entropy bounds (Hα,Iβ). Note x-axis scale is given in terms of Iβ and networks with maximally attractive and repulsive
potentials are at β = 0 and β = 1 respectively. Performance of: (a) FI, (b) ADF, and (c) MF (y-axis scale varies)
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Figure 4: Absolute error differences (see Fig. 3 for legend)

algorithm, focusing on a single marginal, is equiva-
lent to (1)choosing an OT with same ordering E and
(2)performing just one pass (to the root). However,
the marginals computed by running the basic FI algo-
rithm for multiple focusing sets are not necessarily the
same as those computed by the distributed algorithm.
This can be easily seen by observing that different ap-
proximations are made in each case. The distributed
algorithm is equivalent to multiple runs of FI where
every run respects the approximations induced by the
OT by means of its variable subsets and tree arrange-
ment. The approximation over the target variables
can vary in structure (i.e., we can still choose optimal
tree-structure distributions for message passing).

6 NUMERICAL EVALUATION

In order to test how FI performs for diverse types
of distributions, we constructed a number of bi-
nary 9 × 9 grid networks by choosing its factors
ψij(xi,xj) = θxixj according to different uniform pri-
ors. Specifically, we use a hyper parameter β to de-
fine the random variable b ∼ U(1

2 , 1 − β) and set
θ = (θ00, θ01; θ10, θ11) = ( b

2 , 1−b
2 ; 1−b

2 , b
2 ). When letting

0 < β < 1
2 , attractive potentials with varying strength

are constructed. Similarly, by letting 1
2 < β < 1 and

b ∼ U(1 − β, 1
2 ) we define repulsive potentials. By

varying β we control the (maximum allowed) mutual

information Iβ describing how dependent the states
of node pairs are: maximum dependency is achieved
at β = 0 (attractive) and β = 1 (repulsive), and full
independency at β = 1

2 .

A second hyper parameter α controls the distribution
of single node potentials. Let φi(xi) = θxi , we de-
fine a ∼ U(1

2 − α, 1
2 + α), for 0 < α < 1

2 and let
(θ0, θ1) = (a, 1 − a). Thus, α controls the entropy in
the prior state of a single variable (associated to its
single node potential); when α = 1

2 the minimum en-
tropy allowed, denoted Hα, is 1 bit (full uncertainty),
and when α = 0 it is 0 bits. In our experiments we
varied β and α to obtain probability distributions with
different properties regarding strength of dependences
and strength of value preference.

In all of the experiments, we used the basic FI algo-
rithm (no consistency was enforced). We chose the
node to be eliminated at each step simply by look-
ing at the number of neighbors of each node in the
intermediate graphs and picking those with less neigh-
bors first, randomly when tied. For ADF, we chose the
structure of the approximating distribution by keeping
the most informative edges (maximizing the pairwise
mutual information) forming a spanning tree. This cri-
terion performed better than random edge selection.

Fig. 3(a) shows the accuracy of FI for probability
distributions sampled under different settings of the
hyper-parameters β and α. Performance is measured
in terms of the average absolute difference between ex-
act and approximate (single node) marginals. As ex-
pected the performance improves as the coupling be-
tween the nodes become weaker (β → 1

2 ) for all values
of α. We performed the same tests using ADF and the
variational Mean Field method. Fig. 3(b)(c) shows the
performance results from these methods. Like FI, ac-
curacy is higher at β ≈ 1

2 for any α.

FI clearly outperforms ADF under all conditions
(Fig. 4-left). The ADF terms were the pairwise factors;



FI and ADF had equivalent computational complexity.
Notably, the difference in performance increased with
the strength of the dependences in the network and
also with the strength of the field given by the single
node potentials. Focused inference also outperformed
Mean Field (MF) under all conditions (Fig. 4-right),
even in the case when the basic Mean Field assumption
is almost fully valid (when variables are almost inde-
pendent). As variable dependencies grew stronger, the
performance gap between FI and the competing meth-
ods became larger at increasing rates.

7 CONCLUSIONS

We introduced an approximate inference algorithm,
similar to variable elimination, that is based on tai-
loring the approximation to the subset of variables
of interest. We also developed a distributed message-
passing version of the algorithm, constructed around
a particular elimination ordering.

The basic decomposition step, followed by the projec-
tion, can be guaranteed to be optimal for decimatable
graphs and properly chosen elimination ordering. We
are not aware of similar results for ADF. In a more
general context, the advantage of the focused inference
algorithm lies primarily in the inclusion of dependen-
cies induced by marginalization but not represented in
the original graph. FI does not require setting a fixed
reference distribution (e.g., a class of tractable approx-
imating distributions) for defining the approximation.
The selection of dependencies to introduce is based
on optimizing the projection of each local marginal-
ization result down to a tree. The ability to maintain
such dependencies through approximate marginaliza-
tions may underlie the superior empirical results.
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