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We present a general algorithm to detect genes differentially ex-
pressed between two nonhomogeneous time-series data sets. As
increasing amounts of high-throughput biological data become avail-
able, a major challenge in genomic and computational biology is to
develop methods for comparing data from different experimental
sources. Time-series whole-genome expression data are a particularly
valuable source of information because they can describe an unfold-
ing biological process such as the cell cycle or immune response.
However, comparisons of time-series expression data sets are hin-
dered by biological and experimental inconsistencies such as differ-
ences in sampling rate, variations in the timing of biological processes,
and the lack of repeats. Our algorithm overcomes these difficulties by
using a continuous representation for time-series data and combining
a noise model for individual samples with a global difference mea-
sure. We introduce a corresponding statistical method for computing
the significance of this differential expression measure. We used our
algorithm to compare cell-cycle-dependent gene expression in wild-
type and knockout yeast strains. Our algorithm identified a set of 56
differentially expressed genes, and these results were validated by
using independent protein–DNA-binding data. Unlike previous meth-
ods, our algorithm was also able to identify 22 non-cell-cycle-regu-
lated genes as differentially expressed. This set of genes is signifi-
cantly correlated in a set of independent expression experiments,
suggesting additional roles for the transcription factors Fkh1 and Fkh2
in controlling cellular activity in yeast.

DNA microarray � splines � cell cycle � yeast

Gene expression data can be divided into two classes: static and
time-series data. In static expression experiments, a snapshot

of gene expression levels is taken [for example, expression levels of
tumor cells from different cancer types (1)]. In time-series expres-
sion experiments, a temporal process is measured [for example,
infection (2), response to environmental conditions (3), or the cell
cycle (4–6)]. One of the key issues in time-series gene expression
analysis is the identification of genes with altered expression
between samples. For instance, one would like to identify genes that
have changed significantly after an experimental treatment or that
differ between normal and diseased cells. In clinical research, such
differentially expressed genes can serve as disease-specific markers
or as predictors of the clinical outcome of a treatment (2, 7–9). In
knockout experiments, differentially expressed genes represent
first- or second-order downstream effects of the knocked-out gene
(5, 6), and their identification allows the discovery of genetic
interaction networks.

Recently a number of algorithms for analyzing various features
of time-series expression data have been introduced, but none of
these algorithms are directly applicable to detecting genes that
are differentially expressed. Ramoni et al. (10) investigated the
clustering of time-series expression data based on dynamics.
Qian et al. (11) used local alignment algorithms to study time-
shifted and inverted gene expression profiles. Holter et al. (12)
used a time translational matrix to model the temporal relation-

ships between different modes of the singular value decompo-
sition. Although these algorithms are useful for identifying
patterns in a single expression experiment, they cannot be used
directly to compare two time-series experiments. Other re-
searchers have focused on interpolating time-series expression
data. Aach and Church (13) used linear interpolation to align
cell-cycle expression experiments. D’haeseleer et al. (14) used
spline interpolation on individual genes, and Zhao et al. (15)
used a custom-tailored model to interpolate cell-cycle experi-
ments. Although interpolation and alignment are important
preprocessing steps, it is not clear how they can be used to
identify differentially expressed genes. In this article we use an
interpolation method that we developed previously [Bar-Joseph
et al. (16)], which combines spline interpolation with clustering
(see Methods) as a preprocessing step.

Many algorithms have already been introduced for identifying
genes differentially expressed between two experiments in the static
expression case (1). However, due to differences in sampling rates
and variations in the timing of biological processes (see Table 1),
such methods cannot be applied directly to time-series expression
data. Previously reported algorithms for identifying differentially
expressed genes in time series data essentially applied static analysis
methods, used ad hoc methods that are not generally applicable, or
were highly tailored for a specific data set. Previously reported
methods include cluster analysis (5), generalized singular value
decomposition (17), pointwise comparison (2, 9), and custom-
tailored models (8). Although these methods have achieved some
success, they suffer from many problems. As we demonstrate in
Results and Discussion, cluster analysis fails to detect differentially
expressed genes that belong to clusters for which most genes do not
change. Generalized singular value decomposition [presented by
Alter et al. (17)] can be used to detect differences between sets of
genes but is not appropriate for comparing individual genes.
Further, this method requires that the data sets being compared
contain the same number of experiments (or time points), which is
clearly not the case in general (see Table 1). Direct pointwise
comparison of samples, essentially a static analysis method, is
problematic because it does not take into account the dynamic
nature of the experiments and is unable to distinguish between
systematic changes and random noise. Further, due to the incon-
sistencies in time-series data obtained from the different sources
mentioned above, in many cases direct pointwise comparison is not
possible. Finally, custom-tailored models clearly do not present a
general solution, because they require significant assumptions
about the shape of the expression profiles being compared (e.g.,
linear or quadratic models). In most cases, a priori knowledge that
would justify using highly specific models is unavailable. Even in
cases in which some genes are known to change in a certain way over
time (e.g., a sinusoidal model for the cell cycle), using a highly
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specific model for the shape of expression profiles will result in
missing changes in many genes that are not behaving according to
the assumed model.

Here we present a general algorithm that fully exploits informa-
tion in time-series gene expression data to detect differentially
expressed genes. Our algorithm represents the two expression
profiles to be compared with aligned continuous curves and com-
putes a global difference measure between these two curves. This
collapses the information about differential expression into a single
number, which allows for a statistically principled comparison that
requires a minimum of unwarranted assumptions about the under-
lying form of the data. To determine the significance of this global
difference, we combine a noise model for individual samples (which
is easy to compute) with a global error measurement that captures
the temporal difference between two expression profiles. Thus, it
can assign significance to temporal expression differences while
requiring only a minimum number of expression measurement
repeats. This latter point is important, because repeating time-series
experiments can be prohibitively expensive, and in most publicly
available data sets there are no or very few repeats for all the time
points measured (2, 4, 5).

Methods
Data Preprocessing: Continuous Representation and Alignment. In
previous work we described a method for representing expression
profiles with aligned continuous curves (16). In this article we use
our continuous representation and alignment algorithms as a
preprocessing step so that we can make time-series experiments
comparable when these experiments have different sampling rates
and variations in the timing of the underlying biological process.
Here we briefly outline this preprocessing step. To obtain a
continuous time formulation, we use cubic splines to represent gene
expression curves. Cubic splines are a set of piecewise cubic
polynomials and are frequently used for fitting time series and other
noisy data. In this work we use B-splines, a type of spline that is
mathematically convenient for data approximation (18). B-splines
are described as a linear combination of a set of basis polynomials.
By knowing the value of these splines at a set of control points, one
can generate the entire set of polynomials from these basis func-
tions. We assume that a gene can be represented by a spline curve
and additional noise using the following equation

Yi � SFi � �i. [1]

Here Yi is the expression profile for gene i, Fi is a vector of spline
control points for gene i, and S is a matrix of spline basis
functions evaluated at the sampling points of the experiment. �i
is a vector of the noise terms, which is assumed to be normally
distributed with mean 0. Due to noise and missing values,
determining the parameters of Eq. 1 (Fi and �i) for each gene
separately may lead to overfitting. Instead, when estimating
these splines from expression data, we constrain the control
point values of genes in the same class (coexpressed genes) to

co-vary, and thus we use other coexpressed genes to overcome
noise and missing values in a single gene. In previous work (16)
we showed that this method provides a superior fit for time-series
expression data when compared to all other previous methods.

Because the rate at which similar underlying biological processes
unfold differs across genetic variants and environmental conditions
(13), prior to comparing two time series-experiments we align them
temporally. Our alignment algorithm warps the time scale of a
reference realization of a biological process to align it with that of
a second data set measuring the same process under different
conditions. Using splines, we can use a linear warping function to
obtain an optimal alignment by adjusting shift and stretch param-
eters to minimize a global error function. In previous work (16) we
showed that this method obtains both significant and biologically
meaningful results.

Hypothesis Testing for Differentially Expressed Genes. Following
spline assignment and alignment, each gene is represented by two
continuous curves (one for each experiment). Denote the first
(reference) curve as C1 and the second (test) curve as C2 (for
example, C1 could be the WT expression profile, and C2 is a
knockout profile). Given C1 and C2, we would like to answer the
following question: Is the difference between the two expression
profiles for a certain gene significant? This problem can be formu-
lated as a hypothesis-testing problem, with two hypotheses:

H0: C2 is a noisy realization of C1.
H1: The two curves are independent.

Under the null hypothesis, we assume that C2 can be represented
by the same spline curve as C1 and that any difference between the
two profiles is a result of noise in the measurement of the test
experiment. Under the alternative hypothesis we assume that both
C1 and C2 can be represented by a spline curve, although we do not
assume anything about the relationship between the two curves.

The hypothesis test can be performed by looking at the ability of
each hypothesis to explain the difference between the two curves.
By using log a likelihood ratio test this could be written as

2 log
p�C2�C1, H1�

p�C2�C1, H0�
. [2]

Straightforward comparison of the two curves will not work well
in our case. Unlike regular curves, the expression profile curves
were derived from very few sample points, and this fact should
be taken into account when computing the significance of the
difference between the curves. In addition, most comparison
methods require additional information about the curves (such
as a noise model for the entire curve), which is not available in
our case because of the small number of full repeats. Thus we
present a method that allows us to compute these conditional
probabilities even when only a few repeats exist.

Table 1. Time-series expression experiments

Cells (ref.) Method of arrest
Duration,

min
Cell-cycle

length, min Sampling rate

WT alpha (4) Alpha mating factor 0–119 64 Every 7 min

WT cdc15 (4) Temperature-sensitive cdc15 mutant 10–290 112 Every 20 min for 1 hr, every 10 min for 3 hr, every

20 min for the final hr

WT cdc28 (23) Temperature-sensitive cdc28 mutant 0–160 85 Every 10 min

fkh1�fkh2 knockout (5) Alpha mating factor 0–210 105 Every 15 min until 165 min, then after 45 min

yox1�yhp1 knockout (6) Alpha mating factor 0–120 60 Every 10 min

A summary of five different time-series expression experiments that were performed to study the cell cycle in yeast is shown. Note that the sampling rates
are not always uniform and vary among the different experiments. Even under identical arrest methods, the sampling rates differed significantly (ranging from
7 to 10 to 15 min in the three alpha experiments). In addition, the cell-cycle duration differs depending on the experimental conditions.
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Noise Model for Individual Samples. Here we assume that noise in
individual measurements is normally distributed with mean 0
and variance � 2 (we relax this assumption later). Because noise
in individual expression measurements is assumed to be inde-
pendently varying, � 2 can be computed even if few repeats exist.
Denote by Y1 and Y2 the actual expression values measured in the
reference and test experiments, respectively. Let Y 1

t be the
expression value at time t in the reference experiment. Then
p(x�Y 1

t , � 2) is the probability of obtaining expression measure-
ment x at time t. Comparing Y1 and Y2 directly is not possible
because of their different sampling rates and temporal expres-
sion variations. However, we can sample C2 at the same time
points as the actual reference experiment to obtain a set of values
that are comparable to Y1. Let t1 . . . tm be the set of time points
that were measured in the reference experiment. For a curve C,
denote by C(t) the value of C at time t . Set Y �2 �
{C2(t1) . . . C2(tm)}, i.e., Y �2 is the vector of points sampled from
C2 at the reference experiment points. To compute the condi-
tional probability under the alternative hypothesis (p(C2�C1,
H1)), we use Y �2, and recall that under H1, C1 and C2 are
independent. Thus, we can set

p�C2�C1, H1� � p�Y�2��2, H1� �
1

�2��2�m/2
,

where we set the means at the sampled points.
Although a sample-based method works well for the alternative

hypothesis, under the null hypothesis this method suffers from a
number of drawbacks. First, it ignores systematic differences be-
tween the curves (for example, if one were always higher or lower).
Second, in many cases sampling rates for time-series data are
nonuniform. Using a sampling-based method, we assign an equal
weighting to each sampled point, which does not reflect the actual
time each point represents.

Combining a Sample Noise Model with Global Difference. Instead of
directly using samples from C2 to compute p(C2�C1, H0), we use the
global difference between the two expression curves C1 and C2,
which is defined as

D�C2, C1� �

�
vs

ve

�C2�t� � C1�t��2dt

V
.

Here, vs and ve are the start and end of the interval in which the
two curves can be compared (the alignment interval), and V �
ve � vs. Note that D(C2, C1) is proportional to the averaged
squared distance between the two curves. This is a suitable
difference measure for the following reasons. First, D(C2, C1)
depends on the actual duration over which the curves can be
compared and thus is less sensitive to sampling rates. In addition,
D(C2, C1) can distinguish between consistent differences and
random oscillations around the reference samples and thus is
sensitive to actual systematic differences.

We now discover a new curve, C, that best explains the difference
between C1 and C2. Let e2 � D(C1, C2). Setting p(C2�C1, H0) �
p(e2�Y1, �2, H0) leads to a framework that combines the individual
error model (�2) with a global difference measurement (e2) that, as
discussed above, correctly captures the differences between the two
curves. For a curve C, set YC � {C(t1) . . . C(tm)}. To find the
maximum-likelihood assignment of p(e2�Y1, �2, H0), we need to find
a curve C with the same global distance (e2) from C1 that maximizes
the probability that C is a noisy realization of C1. Formally, this
could be stated as the following maximization problem:

maxYC
� p�YC�Y1, � 2�� such that D�C, C1� � e2 . [3]

That is, we are looking for a curve C that satisfies the global error
constraint (D(C, C1) � D(C1, C2)) such that, when sampling
from C at time points that were used in the reference experiment
(YC), we get values that are as close as possible to the values
measured in the reference experiment. Using the maximum-
likelihood assignment instead of simply the original C2 guaran-
tees that the computations of the significance of differential
expression will err on the conservative side. That is, only a global
error value e2 that cannot be adequately explained by the ‘‘best’’
(maximum-likelihood) curve C will be considered significant.
The above maximization problem can be solved by working on
the spline representation for each curve and rewriting Eq. 3 in
terms of the spline control points (see Appendix I, which is
published as supporting information on the PNAS web site, www.
pnas.org).

The Complete Algorithm. Fig. 1 presents the complete algorithm
we use for identifying differentially expressed genes in time-
series data. The input to the algorithm is the set of genes G, the
two expression datasets E1 and E2, and a significance threshold
�. Following spline assignment and alignment, we solve Eq. 3 for
each gene and use the solution (denoted Y�) to compute the
log-likelihood ratio for that gene (see Appendix I). Finally, to
perform a significance test, we use the �2 distribution with q
degrees of freedom (where q is the number of spline control
points used by the curves).

The computational complexity of this algorithm is linear in the
number of genes we are testing. Our algorithm is asymmetric and
relies on the use of a reference curve. It is also possible to present
a symmetric version of this algorithm as we show in Appendix II,
which is published as supporting information on the PNAS web site.
In addition, the algorithm discussed above can be modified such
that it can use variances that depend on expression value magni-
tudes. Such a method reduces the effect of experimental artifacts
and associated high variance, allowing us to accurately detect
significant changes and ignore changes that are a result of noise (see
Appendix III, which is published as supporting information on the
PNAS web site).

Results and Discussion
We have tested our algorithm using synthetic data and cell-cycle
expression data. As we show below, our algorithm generated
biologically meaningful results that improved on prior methods
for comparing time-series expression data sets.

Synthetic Data. To test our algorithm and determine significance
thresholds under a variety of expression profiles and noise models,
we first tested our algorithm on synthetic data. We generated a
reference curve and two other curves. Next we sampled the
reference curve and added random noise to these samples. We then
used our algorithm to compare a curve generated by using splines
from the sampled points with the reference curve and the other
generated curves. We repeated this process with a number of
different noise models. In all cases, using a 0.005 P-value cutoff our

Fig. 1. Complete algorithm for identifying differentially expressed genes in
time-series data.

10148 � www.pnas.org�cgi�doi�10.1073�pnas.1732547100 Bar-Joseph et al.



algorithm correctly identified the tested curve as similar to the
reference curve and significantly different from the two other
curves (see Fig. 4 and Appendix IV, which are published as
supporting information on the PNAS web site).

Yeast Cell-Cycle and Knockout Data. To test our algorithm on
biological data sets and compare our algorithm with algorithms
that have been used in the past, we used a data set from Zhu et
al. (5). These authors performed an experiment in which two
yeast transcriptional factors (Fkh1 and Fkh2) involved in regu-
lating the cell cycle were knocked-out and a time series of gene
expression levels was measured in synchronized cells. Focusing
on 800 previously identified cell-cycle-regulated genes [from
Spellman et al. (4)], the authors used hierarchical clustering to
compare their results with a time-series WT data set from ref.
4. Using this method Zhu et al. identified two clusters (Clb2 and
Sic1) that contain genes affected by the knockout. They were
able to demonstrate direct binding of Fkh2 only to promoters of
genes from the Clb2 cluster, and therefore they suggest that the
forkhead proteins affect the Sic1 cluster genes indirectly through
Swi5 and Ace2. Note that because the two experiments used
different sampling rates, direct pointwise comparison of the
samples is not possible. Independently, Simon et al. (19) used
DNA-binding experiments to identify genes that are regulated by
nine cell-cycle transcription factors including Fkh1, Fkh2, Swi5,
and Ace2. We applied our algorithm to the two time-series data
sets (WT and mutant) and have used the binding data to verify
our results.

Identifying Differentially Expressed Genes Controlled by Fkh1 and
Fkh2. We used our algorithm to identify genes that are differ-
entially expressed in the Fkh1�Fkh2 knockout experiment when
compared to the WT experiment. Of the 800 cell-cycle-regulated
genes, our algorithm identified 56 genes as differentially ex-
pressed with P � 0.005 (see www.psrg.lcs.mit.edu�DiffExp�
DiffExp.html for a discussion about the value-specific variance
used). In Table 2 we present the top 30 genes (in decreasing
significance) identified by our algorithm. As can be seen, many
of the genes identified by our algorithm are confirmed by
independent binding experiments. Although many of the genes
come from the two primary phases that are either directly
controlled by Fkh1�Fkh2 (G2�M) or indirectly controlled (M�
G1), there are a number of genes from other cell-cycle phases,
suggesting a role for the forkhead transcription factors in G1 and
S phases. These results are supported by the genome-wide
binding data that describes association of Fkh1 and Fkh2 with
genes expressed in G1 and S (19). To verify our results on a global
scale, we computed the percentage of genes in our list that are
bound by each of the nine cell-cycle factors (using a binding
P-value cutoff of 0.005) and compared this result to the per-
centage obtained using the entire set of 800 cell-cycle-regulated
genes. We then computed a P value for the enrichment of each
factor for differentially expressed genes using the hypergeomet-
ric distribution. We expected to find enrichment for three types
of factors:

1. Fkh1 and Fkh2, which should bind directly to regulated genes;
2. Swi5 and Ace2, which should bind the promoters of the indirectly

regulated genes; and
3. Mcm1 and Ndd1, which are cofactors of Fkh2 in the regulation

of G2�M genes (20) and therefore should bind at least a subset
of the Fkh2 target genes.

As can be seen in Fig. 2, the set of genes identified by our
algorithm agrees very well with the binding data. Factors 1–3
were significantly enriched for genes in the identified set; on the
other hand, there was no significant enrichment for binding of
Swi4, Mbp1, and Swi6. Overall, the expression changes of 37 of

the 56 genes (66%) can be explained by the binding of the six
factors listed above (P � 4 	 10�11). A number of other genes
can be explained by using prior knowledge.

To examine the different ways in which these 56 genes were
affected, we clustered their expression profiles in the knockout
experiment (using the K-means algorithm) into three different
groups. Most of the genes (45 of 56) belonged to cluster 1. As can
be seen in Fig. 2, this cluster had a flat profile, indicating that
genes in this cluster lost their cycling ability in the knockout
experiment. The second and third clusters contained fewer genes
(eight and three) and represent either loss of cycling early on
(cluster 2) or seeming participation in only one cycle instead of
the two that are covered by the experiment duration. Interest-
ingly, 8 of the 11 genes in the second and third clusters (
70%)
were bound by Swi5 or Ace2 (compared with only 10% in the
entire set of 800 cycling genes), suggesting that these clusters are
composed of genes with expression changes caused by second-
order downstream effects of the knockout of Fkh1�2. In con-
trast, genes in the first cluster were more likely to be bound by
Fkh1�2 or one of their two cofactors (44% versus 20% in the
entire set of 800 cycling genes).

Table 2. Differentially expressed cycling genes

Gene
name P value Phase

Previously
identified? Comments

Cwp1 1 	 10�16 S�G2 No Bound by Fkh2 and Ace2
Cts1 1.4 	 10�15 G1 Yes Bound by Fkh1 and Fkh2
Ole1 3.5 	 10�14 M�G1 No Bound by Swi5
Egt2 1.7 	 10�10 M�G1 Yes Bound by Ace2 and Swi5
Scw11 1.8 	 10�10 G1 Yes Bound by Fkh1, Fkh2,

Ace2, and Swi5
YER124C 8 	 10 	 �9 G1 Yes Bound by Fkh1, Fkh2,

and Ace2
Ald6 1.2 	 10�8 S�G2 No
YHR143W 2.7 	 10�8 G1 Yes Bound by Fkh1, Fkh2,

and Ace2
Pho5 3.4 	 10�8 G2�M No
YLR194C 3.5 	 10�8 M�G1 No Bound by Swi5
YBR158W 5.5 	 10�8 M�G1 Yes Bound by Fkh1, Fkh2,

Ndd1, Ace2, and Swi5
YNL058C 9.7 	 10�8 G2�M Yes Bound by Ndd1 and Mcm1
Clb2 4.4 	 10�7 G2�M Yes Bound by Fkh1, Fkh2,

Ndd1, and Mcm1
Dip5 5.1 	 10�7 G2�M No
YPL158W 5.3 	 10�7 M�G1 No Bound by Swi5
YNL078W 8.5 	 10�7 M�G1 No Bound by Ace2 and Swi5
Pry3 9.1 	 10�7 G1 Yes Bound by Fkh1, Fkh2,

Ace2, and Swi5
Utr2 1.34 	 10�6 M�G1 No Bound by Fkh1, Fkh2,

and Mcm1
YDR055W 1.36 	 10�6 M�G1 No Bound by Swi5
YGL184C 1.5 	 10�6 S No
Clb1 1.8 	 10�6 G2�M Yes
Pbi2 2.6 	 10�6 S No
Sic1 7.5 	 10�6 M�G1 No Bound by Swi5
Pho11 1.53 	 10�5 G2�M No Bound by Fkh1
Pho12 1.77 	 10�5 G2�M No
Mnn1 2.1 	 10�5 G1 No
Bud9 2.4 	 10�5 G1 Yes Bound by Fkh1, Fkh2, Mcm1,

Ace2, and Swi5
Pry1 4.6 	 10�5 G2�M No Bound by Fkh2 Ndd1, Mcm1,

and Ace2
Pir1 4.7 	 10�5 M�G1 Yes Bound by Mcm1 and Swi5
Ash1 5.3 	 10�5 M�G1 Yes Bound by Swi5

Top 30 differentially expressed cell-cycle genes identified, ordered by
significance P value. Phase is based on assignment by Spellman et al. (4). The
previously identified column is based on a list of genes extracted from Zhu et
al. (5). Binding information is taken from Simon et al. (19) by using a P-value
cutoff of 0.005. Note that many of the genes in this list that are bound by one
of the effected factors were not identified by using the cluster-based method.
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Comparison with Clustering-Based Methods. As mentioned above,
due to the differences in sampling rates and the different
cell-cycle durations (see Table 1) in the two time-series exper-
iments, all previously reported methods for identifying differ-
entially expressed genes other than clustering-based analysis
cannot be applied to these data sets. Thus we compared our
results with the list of 42 genes identified in the original paper
by Zhu et al. (5) using cluster analysis. The two lists overlapped
in 21 genes. As can be seen in Table 2, many of the genes
identified by our algorithm and not detected by hierarchical
clustering seem to be controlled by one of the factors affected by
the knockout, indicating that they were identified correctly by
our method. In addition, many of them seem to be losing their
cycling ability (see Fig. 3 Upper). It is likely that these genes are
missed when using cluster analysis, because most of the other
genes in their clusters did not change significantly. In contrast,
following alignment, many of the 21 genes identified by Zhu et
al. that were not detected by our algorithm do not seem to be
changing in expression between the two experiments.

Analysis of Non-Cell-Cycle-Regulated Genes. Although the main
function of the Fkh1�2 transcription factors is in regulating the

cell cycle, they are also involved in other functions including
mating type switching and cell morphology. We used our algo-
rithm to identify differentially expressed genes in the set of 5,000
genes that are not cell-cycle-regulated. Due to the size of this set,
we used a more stringent P value of 0.001 (thus, in random data
we would expect only five genes to be identified as significantly
differentially expressed). Our algorithm identified 22 genes as
significantly changing in the knockout data. We note that Zhu
et al. (5) did not identify any noncycling genes as differentially
expressed, perhaps because of the limitation of the cluster
analysis method.

In sharp contrast with the cycling genes, all except one of the
promoters of the affected non-cycling genes are not bound by any
of the cell-cycle transcription factors (see Table 3), suggesting that
these genes are not controlled directly by the forkhead proteins or
by their direct targets (Swi5 and Ace2). Fkh1�2 double-null mu-
tation has global affects on cell growth; the cells show pseudohyphal
and invasive growth phenotypes, unusual cell morphology, and slow
growth rates (5, 21). Thus, some of the changes in gene expression
in the mutant cells may be due to the overall changes in the cell
rather than the direct effects of Fkh1�2.

Fig. 2. Differentially expressed cell cycle genes. ( A) Percentage of genes bound by the nine factors in the entire set of 800 cell-cycle-regulated genes and the set
identified by our algorithm. As can be seen, all the relevant factors are significantly enriched for genes in the selected set (P values are in parentheses after the factor
name). (B) Results of clustering the 56 selected genes. Cluster 1 is composed of genes that are affected directly and clusters 2 and 3 contain genes with second-order
effects. See Results and Discussion.

Fig. 3. Genes identified by our algorithm that were missed by the clustering method used in ref. 5. (Upper) Five of the cell-cycle-regulated genes. WT expression is
represented by the solid line, and knockout by the dashed line. A P value appears to the right of the gene name. As can be seen, all these genes displayed significant
reduction in their cycling ability. In addition, all the above genes are bound by Fkh1�2, Ace2, or Swi5, indicating that our algorithm identified a relevant set of genes.
(Lower) Five of the noncycling genes. Note that some of these genes seem to be cycling in the knockout experiment, whereas they are not cycling in the WT experiment
(see Results and Discussion).
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To investigate the set of genes identified by our algorithm further,
we looked at a large collection of gene expression experiments (see
www.psrg.lcs.mit.edu�DiffExp�DiffExp.html). Following Hughes
et al. (22), we looked for experiments in which these genes were
significantly correlated in the following way. For each expression
experiment we performed a hypergeometric test to compute the
significance for the up- (or down-) regulation of the genes in the set
detected by our algorithm in that experiment. We include an
experiment in the selected set if

Y The P value for either up- or down-regulation is �0.0001, and
Y At least 25% of the genes in our set are up- or down-regulated

in that experiment.

Based on these criteria, 20 expression experiments were selected
(see Table 4, which is published as supporting information on the

PNAS web site). These experiments come from six different data
sets, indicating that our results are not an artifact of a specific
hybridization method. We also carried out a randomization
analysis to test the significance of these results and concluded
that, if random sets of genes of equal size are used, no experi-
ments are selected. This indicates that the set of genes identified
by our algorithm is significantly associated with the experiments
selected by this method.

The experiments that were selected fall mainly into the categories
red�ox stress, response to 	 factor, response to zinc depletion, and
starvation. These finding suggests that

1. our algorithm finds relevant sets of differentially expressed
genes,

2. Fkh1�2 may be involved in cellular pathways that are associated
with the conditions under which these experiments were carried
out,

3. because some of the noncycling genes are cycling in the knock-
out experiment, whereas they are flat under WT conditions (see
Fig. 3), the effects of the identified conditions may vary along the
cell cycle.

Our ability to raise such hypotheses indicates the importance of
algorithms that are specifically designed to analyze time-series
gene expression data.

Extensions to Other Data Sets. We used transcription factor knock-
out data to test our algorithm and to show that it correctly detects
differentially expressed genes that were not detected by using
prior methods. In addition, we have shown that by focusing on
the set of genes detected by our algorithm, we can correctly
detect first- and second-order effects of the experimental con-
dition. Our algorithm can be used to analyze many biological
systems, including infectious and other diseases, and cell behav-
ior under different treatments that have been studied by using
time-series expression data. For such systems, there is usually no
independent high-throughput data source that can be used to
validate sets of differentially expressed genes. Thus, when ana-
lyzing such systems, it is important to use computational meth-
ods that have been shown to produce correct results such as the
algorithm described here.
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Table 3. Differentially expressed noncycling genes

Gene name P value

YDR098C 1.9 	 10�10

YER037W 4.7 	 10�8

Ura1 6.4 	 10�8

YCR007C 2 	 10�7

Gdh2 3.6 	 10�7

Cit1 1.8 	 10�6

YOL164W 1.4 	 10�5

YFR026C 1.4 	 10�5

Ade5,7 4 	 10�5

Mdh2 7.5 	 10�5

Ura3 1.5 	 10�4

Ctr1 1.8 	 10�4

Cit2 1.9 	 10�4

YNL279W 2.2 	 10�4

YLR162W 4.3 	 10�4

Fig1 5.1 	 10�4

Hxt6 5.2 	 10�4

Fre7 5.4 	 10�4

Pot1 5.5 	 10�4

Acb1 6.2 	 10�4

YMR040W 9.1 	 10�4

Ade1 9.9 	 10�4

Shown are the 22 noncycling genes identified by our algorithm as differ-
entially expressed, ordered according to their significance P value. Of these 22
genes, only Fig1 is bound by one of the cell-cycle activators (Swi5) that were
profiled by Simon et al. (19). As discussed in Results and Discussion, most of
these genes are significantly correlated with yeast response to stress in a set a
stress-related expression experiments.
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