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Abstract

We characterize a family of regularized loss min-
imization problems that satisfy three properties:
scaled uniform convergence, super-norm regular-
ization, and norm-loss monotonicity. We show
several theoretical guarantees within this frame-
work, including loss consistency, norm consis-
tency, sparsistency (i.e. support recovery) as well
as sign consistency. A number of regularization
problems can be shown to fall within our frame-
work and we provide several examples. Our re-
sults can be seen as a concise summary of exist-
ing guarantees but we also extend them to new
settings. Our formulation enables us to assume
very little about the hypothesis class, data distri-
bution, the loss, or the regularization. In particu-
lar, many of our results do not require a bounded
hypothesis class, or identically distributed sam-
ples. Similarly, we do not assume boundedness,
convexity or smoothness of the loss nor the regu-
larizer. We only assume approximate optimality
of the empirical minimizer. In terms of recov-
ery, in contrast to existing results, our sparsis-
tency and sign consistency results do not require
knowledge of the sub-differential of the objective
function.

1. Introduction
Several problems in machine learning can be modeled as
the minimization of an empirical loss, which is computed
from some available training data. Assuming that data sam-
ples come from some unknown arbitrary distribution, we
can define the expected loss as the expected value of the
empirical loss. The minimizers of the empirical and ex-
pected loss are called the empirical minimizer and the true
hypothesis, respectively.
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One of the goals in machine learning is to infer properties
of the true hypothesis by having access to a limited amount
of training data. One largely used property in the context of
classification and regression is loss consistency which mea-
sures the generalization ability of the learning algorithm.
Loss consistency guarantees are usually stated as an upper
bound on the difference between the expected loss of the
empirical minimizer and that of the true hypothesis. An-
other set of properties relates to the ability to recover the
true hypothesis. Norm consistency measures the distance
between the empirical minimizer and the true hypothesis.
Sparsistency refers to the recovery of the sparsity pattern
(i.e. support recovery) of the true hypothesis, while sign
consistency refers to the recovery of the signs of the true
hypothesis. We expect these guarantees to become stronger
as we have access to more data samples.

In many settings, these guarantees are made possible by
the use of a regularizer in the learning process. Consis-
tency guarantees are now available for several specific reg-
ularized loss minimization problems. We can hardly do
justice to the body of prior work, and we provide a few
references here. The work on linear regression includes
the analysis of: the sparsity promoting `1-norm (Wain-
wright, 2009b), the multitask `1,2 and `1,∞-norms (Ne-
gahban & Wainwright, 2011; Obozinski et al., 2011), the
multitask `1,2-norm for overlapping groups (Jacob et al.,
2009), the dirty multitask regularizer (Jalali et al., 2010),
the Tikhonov regularizer (Hsu et al., 2012), and the trace
norm (Bach, 2008). The analysis of `1-regularization has
also been performed for: the estimation of exponential fam-
ily distributions (Kakade et al., 2010; Ravikumar et al.,
2008; Wainwright et al., 2006), generalized linear mod-
els (Kakade et al., 2010; van de Geer, 2008; Yang et al.,
2013), and SVMs and logistic regression (Rocha et al.,
2009; van de Geer, 2008). These works have focused on
norm consistency and sparsistency, with the exception of
(Jalali et al., 2010; Obozinski et al., 2011; Ravikumar et al.,
2008; Rocha et al., 2009; Wainwright, 2009b; Wainwright
et al., 2006) which also analyzed sign consistency, and
(Hsu et al., 2012; Kakade et al., 2010) which also analyzed
loss consistency. We refer the interested reader to the arti-
cle of (Negahban et al., 2012) for additional references.
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There has been some notable contributions which char-
acterize general frameworks with theoretical guarantees.
Loss consistency for bounded losses and different no-
tions of stability of the learning algorithm was analyzed
in (Bousquet & Elisseeff, 2002; Mukherjee et al., 2006;
Rakhlin et al., 2005; Shalev-Shwartz et al., 2010). Sta-
bility follows from the use of regularization for many dif-
ferent problems (Bousquet & Elisseeff, 2002). A two-
level framework for loss consistency of bounded losses
was provided by (van de Geer, 2005): a regularized outer-
minimization is performed with respect to a set of model
classes, while an unregularized inner-minimization is done
with respect to functions on each class. Norm consistency
for restricted strongly convex (i.e. strongly convex with
respect to a subset of directions) losses and certain type
of regularizers was analyzed in (Lee et al., 2013; Loh &
Wainwright, 2013; Negahban et al., 2009; 2012; Yang &
Ravikumar, 2013). In (Lee et al., 2013; Negahban et al.,
2009; 2012; Yang & Ravikumar, 2013) the loss is differen-
tiable and convex, and the regularizer is a mixture of de-
composable norms; while in (Loh & Wainwright, 2013)
the loss is differentiable and nonconvex, and the regular-
izer is coordinate-separable, symmetric and nondecreasing,
among other technical requirements. The work of (Bous-
quet & Elisseeff, 2002; Mukherjee et al., 2006; Rakhlin
et al., 2005; Shalev-Shwartz et al., 2010; van de Geer,
2005) focus on loss consistency and requires an everywhere
bounded loss. On the other hand, the work of (Lee et al.,
2013; Loh & Wainwright, 2013; Negahban et al., 2009;
2012; Yang & Ravikumar, 2013) focus on norm consis-
tency and requires a differentiable loss. The framework
of (van de Geer, 2005) requires a measure of complexity
for each model class as well as over all classes (which are
infinity for the problems that we analyze here). Finally, the
availability of independent and identically distributed sam-
ples is a requirement for all these previous works.

In this paper, we characterize a family of regularized loss
minimization problems that fulfill three properties: scaled
uniform convergence, super-scale regularization and norm-
loss monotonicity. We show loss consistency, norm con-
sistency, sparsistency and sign consistency. We show that
several problems in the literature fall in our framework,
such as the estimation of exponential family distributions,
generalized linear models, matrix factorization problems,
nonparametric models and PAC-Bayes learning. Similarly,
several regularizers fulfill our assumptions, such as sparsity
promoting priors, multitask priors, low-rank regularizers,
elastic net, total variation, dirty models, quasiconvex reg-
ularizers, among others. Note that our theoretical results
imply that loss consistency, norm consistency, sparsistency
and sign consistency hold for any combination of losses
and regularizers that we discuss here. Many of these com-
binations have not been previously explored.

2. Preliminaries
We first characterize a general regularized loss minimiza-
tion problem. To this end, we define a problem as a tuple
Π = (H,D, L̂n,R) for a hypothesis class H, a data dis-
tribution D, an empirical loss L̂n and a regularizer R. For
clarity of presentation, we assume that H is a normed vec-
tor space.

Let θ be a hypothesis belonging to a possibly unbounded
hypothesis class H. Let L̂n(θ) be the empirical loss of n
samples drawn from a distributionD. We do not assume ei-
ther independence or identical distribution of the samples.
Let R(θ) be a regularizer and λn > 0 be a penalty param-
eter. The empirical minimizer is given by:

θ̂
∗
n = arg min

θ∈H
L̂n(θ) + λnR(θ) (1)

We relax this optimality assumption by defining an ξ-
approximate empirical minimizer θ̂n with the following
property for ξ ≥ 0:

L̂n(θ̂n) + λnR(θ̂n) ≤ ξ + min
θ∈H
L̂n(θ) + λnR(θ) (2)

Let L(θ) = ED[L̂n(θ)] be the expected loss. The true
hypothesis is given by:

θ∗ = arg min
θ∈H

L(θ) (3)

In this paper, we do not assume boundedness, convexity or
smoothness of L̂n, R or L, although convexity is a very
useful property from an optimization viewpoint.

In order to illustrate the previous setting, consider for in-
stance a function `(x|θ) to be the loss of a data sample
x given θ. We can define L̂n(θ) = 1

n

∑
i `(x

(i)|θ) to be
the empirical loss of n i.i.d. samples x(1), . . . ,x(n) drawn
from a distribution D. Then, L(θ) = Ex∼D[`(x|θ)] is
the expected loss of x drawn from a distribution D. Our
framework is far more general than this specific example.
We do not require identically distributed samples.

In order to gain some theoretical understanding of the
general problem defined above, we make some rea-
sonable assumptions. Therefore, we extend the prob-
lem tuple with additional terms related to these assump-
tions. That is, we define a problem as a tuple Π′ =
(H,D, L̂n,R, εn,δ, c, r, b) for a hypothesis class H, a data
distributionD, an empirical loss L̂n, a regularizerR, a uni-
form convergence rate εn,δ and scale function c, a regular-
izer lower bound r and norm-loss function b. In what fol-
lows, we explain in detail the use of these additional terms.
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2.1. Scaled Uniform Convergence

First, we present our definition of scaled uniform conver-
gence, which differs from regular uniform convergence.
In both uniform convergence schemes, the goal is to find
a bound on the difference between the empirical and ex-
pected loss for all θ. In regular uniform convergence such
bound is the same for all θ, while in scaled uniform con-
vergence the bound depends on the “scale” of θ. For finite
and infinite dimensional vector spaces as well as for func-
tion spaces, we can choose the scale to be the norm of θ.
For the space of probability distributions, we can choose
the scale to be the Kullback-Leibler divergence from the
distribution θ to a prior θ(0). Next, we formally state our
definition.

Assumption A (Scaled uniform convergence). Let c :
H → [0; +∞) be the scale function. The empirical loss
L̂n is close to its expected value L, such that their abso-
lute difference is proportional to the scale of the hypothesis
θ. That is, with probability at least 1 − δ over draws of n
samples:

(∀θ ∈ H) |L̂n(θ)− L(θ)| ≤ εn,δc(θ) (4)

where the rate εn,δ is nonincreasing with respect to n and
δ. Furthermore, assume limn→+∞ εn,δ = 0 for δ ∈ (0; 1).

In settings with a bounded complexity measure (e.g. em-
pirical risk minimization with finite hypothesis class, VC
dimension, Rademacher complexity), the regular uniform
convergence statement is as follows (∀θ ∈ H) |L̂n(θ) −
L(θ)| ≤ εn,δ . This condition is sufficient for loss consis-
tency and regularization is unnecessary. This also occurs
with a bounded hypothesis class H, since in that case we
can relax Assumption A to (∀θ ∈ H) |L̂n(θ) − L(θ)| ≤
εn,δ maxθ∈H c(θ).

2.2. Super-Scale Regularizers

Next, we define super-scale regularizers. That is, regular-
izers that are lower-bounded by a scale function.

Assumption B (Super-scale regularization). Let c : H →
[0; +∞) be the scale function. Let r : [0; +∞)→ [0; +∞)
be a function such that:

(∀z ≥ 0) z ≤ r(z) (5)

The regularizerR is bounded as follows:

(∀θ ∈ H) r(c(θ)) ≤ R(θ) < +∞ (6)

Note that the above assumption implies that c(θ) ≤ R(θ).
We opted to introduce the r function for clarity of presen-
tation.

2.3. Norm-Loss Monotonicity

Finally, we state our last assumption of norm-loss mono-
tonicity. For clarity of presentation, we use the `∞-norm
in the following assumption. (The use of other norm that
upper-bounds the `∞-norm, modifies the norm consistency
result in Theorem 2 with respect to the new norm, and
leaves the sparsistency and sign consistency result in The-
orem 3 unchanged.)

Assumption C (Norm-Loss monotonicity). Let b :
[0; +∞)→ [0; +∞) be a nondecreasing function such that
b(0) = 0. The expected loss L around the true hypothesis
θ∗ is lower-bounded as follows:

(∀θ ∈ H) b(‖θ − θ∗‖∞) ≤ L(θ)− L(θ∗) (7)

Furthermore, we define the inverse of function b as:

b†(z) = max
b(z′)=z

z′ (8)

As we discuss later, nonsmooth strongly convex functions,
“minimax bounded” functions (which includes some con-
vex functions and all strictly convex functions) and some
family of nonconvex functions fulfill this assumption.

Note that Assumption C is with respect to the expected loss
and therefore it holds in high dimensional spaces (e.g. for
domains with nonzero Lebesgue measure). On the other
hand, it is trivial to provide instances where strong convex-
ity with respect to the empirical loss does not hold in high
dimensions, as shown by (Negahban et al., 2009; 2012;
Bickel et al., 2009) in the context of linear regression.

3. Theoretical Results
3.1. Loss Consistency

First, we provide a worst-case guarantee of the difference
between the expected loss of the ξ-approximate empirical
minimizer θ̂n and that of the true hypothesis θ∗.

Theorem 1 (Loss consistency). Under Assumptions A and
B, regularized loss minimization is loss-consistent. That is,
for α ≥ 1 and λn = αεn,δ , with probability at least 1− δ:

L(θ̂n)− L(θ∗) ≤ εn,δ(αR(θ∗) + c(θ∗)) + ξ (9)

(See Appendix A for detailed proofs.)

Given the above result, one would be tempted to make
R(θ) = c(θ) in order to minimize the upper bound. In
practice, the function c(·) is chosen in order to get a good
rate εn,δ in Assumption A. The regularizer is chosen in or-
der to obtain some desired structure in the empirical mini-
mizer θ̂n.
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3.2. Norm Consistency

Here, we provide a worst-case guarantee of the distance
between the ξ-approximate empirical minimizer θ̂n and the
true hypothesis θ∗.

Theorem 2 (Norm consistency). Under Assumptions A, B
and C, regularized loss minimization is norm-consistent.
That is, for α ≥ 1 and λn = αεn,δ , with probability at
least 1− δ:

‖θ̂n − θ∗‖∞ ≤ b†(εn,δ(αR(θ∗) + c(θ∗)) + ξ) (10)

As mentioned before, we use the `∞-norm for clarity of
presentation. (The use of other norm that upper-bounds
the `∞-norm in Assumption C, modifies Theorem 2 with
respect to the new norm.)

3.3. Sparsistency and Sign Consistency

Next, we analyze the exact recovery of the sparsity pattern
(i.e. support recovery or sparsistency) as well as the signs
(i.e. sign consistency) of the true hypothesis θ∗, by using
the ξ-approximate empirical minimizer θ̂n in order to infer
these properties. A related problem is the estimation of
the sparsity level of the empirical minimizer as analyzed
in (Bickel et al., 2009; Kakade et al., 2010). Here, we are
interested in the stronger guarantee of perfect recovery of
the support and signs.

Our approach is to perform thresholding of the empiri-
cal minimizer. In the context of `1-regularized linear re-
gression, thresholding has been previously used for obtain-
ing sparsistency and sign consistency (Meinshausen & Yu,
2009; Zhou, 2009). (See Appendix B for additional discus-
sion.)

Next, we formally define the support of a hypothesis and a
thresholding operator. The support S of a hypothesis θ is
the set of its nonzero elements, i.e.:

S(θ) = {i | θi 6= 0} (11)

A hard-thresholding operator h : H × R → H converts
to zero the elements of the hypothesis θ that have absolute
value smaller than a threshold τ . That is, for each i we
have:

hi(θ, τ) = θi1[|θi| > τ ] (12)

In what follows, we state our sparsistency and sign consis-
tency guarantees. The minimum absolute value of the en-
tries in the support has been previously used in (Ravikumar
et al., 2008; Tibshirani, 2011; Wainwright, 2009a;b; Zhou,
2009).

Theorem 3 (Sparsistency and sign consistency). Under
Assumptions A, B and C, regularized loss minimization

followed by hard-thresholding is sparsistent and sign-
consistent. More formally, for α ≥ 1, λn = αεn,δ and τ =

b†(εn,δ(αR(θ∗) + c(θ∗)) + ξ), the solution θ̃ = h(θ̂n, τ)
has the same support and signs as the true hypothesis θ∗

provided that mini∈S(θ∗) |θ∗i | > 2τ . That is, with proba-
bility at least 1− δ:

S(θ̃)=S(θ∗) , (∀i ∈ S(θ∗)) sgn(θ̃i) = sgn(θ∗i ) (13)

Our result also holds for the “approximately sparse” setting
by constructing a thresholded version of the true hypothe-
sis. That is, we guarantee correct sign recovery for all i
such that |θ∗i | > 2τ .

4. Examples
4.1. Losses with Scaled Uniform Convergence

First, we show that several problems in the literature have
losses that fulfill Assumption A.

Maximum Likelihood Estimation for Exponential Fam-
ily Distributions. First, we focus on the problem of
learning exponential family distributions (Kakade et al.,
2010). This includes for instance, the problem of learn-
ing the parameters (and possibly structure) of Gaussian and
discrete MRFs. While the results in (Kakade et al., 2010;
Ravikumar et al., 2008) concentrate on `1-norm regulariza-
tion, here we analyze arbitrary norms.

Claim i (MLE for exponential family). Let t(x) be the suf-
ficient statistics and Z(θ) =

∫
x
e〈t(x),θ〉 be the partition

function. Given n i.i.d. samples, let T̂n = 1
n

∑
i t(x

(i))
and T = Ex∼D[t(x)] be the empirical and expected suf-
ficient statistics, respectively. Let L̂n(θ) = −〈T̂n,θ〉 +
logZ(θ) and L(θ) = −〈T,θ〉 + logZ(θ) be the empiri-
cal and expected negative log-likelihood, respectively. As-
sumption A holds with probability at least 1−δ, scale func-
tion c(θ) = ‖θ‖ and rate εn,δ , provided that the dual norm
fulfills ‖T̂n −T‖∗ ≤ εn,δ .

For sub-Gaussian t(x), we can obtain a rate εn,δ ∈
O(
√

1/n log 1/δ) for n independent samples. While for fi-
nite variance, we can obtain a rate εn,δ ∈ O(

√
1/(nδ)). (See

Appendix D.)

Generalized Linear Models. We focus on generalized
linear models, which generalizes linear regression when
Gaussian noise is assumed. This also includes for in-
stance, logistic regression and compressed sensing with
exponential-family noise (Rish & Grabarnik, 2009). For
simplicity, we chose to analyze the fixed design model.
That is, we analyze the case in which y is a random variable
and x is a constant.
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Claim ii (GLM with fixed design). Let t(y) be the suf-
ficient statistics and Z(ν) =

∫
y
et(y)ν be the partition

function. Given n independent samples, let L̂n(θ) =
1
n

∑
i−t(y(i))〈x(i),θ〉+ logZ(〈x(i),θ〉) be the empirical

negative log-likelihood of y(i) given their linear predic-
tors 〈x(i),θ〉. Let L(θ) = E(∀i) y(i)∼Di [L̂n(θ)]. Assump-
tion A holds with probability at least 1 − δ, scale function
c(θ) = ‖θ‖ and rate εn,δ , provided that the dual norm
fulfills ‖ 1n

∑
i (t(y(i))− Ey∼Di [t(y)])x(i)‖∗ ≤ εn,δ .

For sub-Gaussian t(y), we can obtain a rate εn,δ ∈
O(
√

1/n log 1/δ) for n independent samples. While for fi-
nite variance, we can obtain a rate εn,δ ∈ O(

√
1/(nδ)).

Both cases hold for bounded ‖x‖∗. (See Appendix D.)

Matrix Factorization. We focus on two problems:
exponential-family PCA and max-margin matrix factoriza-
tion. We assume that the hypothesis θ is a matrix. That is,
θ ∈ H = Rn1×n2 . We assume that each entry in the ran-
dom matrix X ∈ Rn1×n2 is independent, and might follow
a different distribution. Additionally, we assume that the
matrix size grows with n. That is, we let n = n1n2.

First, we analyze exponential-family PCA, which was in-
troduced by (Collins et al., 2001) as a generalization of the
more common Gaussian PCA.
Claim iii (Exponential-family PCA). Let t(y) be the suf-
ficient statistics and Z(ν) =

∫
y
et(y)ν be the parti-

tion function. Assume the entries of the random matrix
X ∈ Rn1×n2 are independent. Let n = n1n2 and let
L̂n(θ) = 1

n

∑
ij −t(xij)θij + logZ(θij) be the empiri-

cal negative log-likelihood of xij given θij . Let L(θ) =

E(∀ij) xij∼Dij [L̂n(θ)]. Assumption A holds with proba-
bility at least 1 − δ, scale function c(θ) = ‖θ‖ and
rate εn,δ , provided that the dual norm fulfills ‖ 1n (t(x11) −
Ex∼D11 [t(x)], . . . , t(xn1n2)− Ex∼Dn1n2

[t(x)])‖∗ ≤ εn,δ .

For sub-Gaussian t(xij), we can obtain a rate εn,δ ∈
O(
√
logn/n

√
log 1/δ) for n independent entries. While for

finite variance, we can obtain a rate εn,δ ∈ O(
√

1/(nδ)).
(See Appendix D.)

Next, we focus on max-margin matrix factorization. This
problem was introduced by (Srebro et al., 2004) which used
a hinge loss. We analyze the more general case of Lipschitz
continuous functions, which also includes for instance, the
logistic loss. Note however that the following claim also
applies to nonconvex Lipschitz losses.
Claim iv (Max-margin factorization with Lipschitz loss).
Let f : R → R be a Lipschitz continuous loss func-
tion. Assume the entries of the random matrix X ∈
{−1,+1}n1×n2 are independent. Let n = n1n2 and let
L̂n(θ) = 1

n

∑
ij f(xijθij) be the empirical risk of predict-

ing the binary values xij ∈ {−1,+1} by using sgn(θij).

Let L(θ) = E(∀ij) xij∼Dij [L̂n(θ)]. Assumption A holds
with probability 1 (i.e. δ = 0), scale function c(θ) = ‖θ‖1
and rate εn,0 ∈ O(1/n).

By using norm inequalities, Assumption A holds with
probability 1 for other matrix norms besides `1.

Nonparametric Generalized Regression. Next, we an-
alyze nonparametric regression with exponential-family
noise. The goal is to learn a function, thus the hypothesis
classH is a function space. Each function is represented in
an infinite dimensional orthonormal basis. One instance of
this problem is the Gaussian case, with orthonormal basis
functions that depend on single coordinates, and a `1-norm
prior as in (Ravikumar et al., 2005). In our nonparametric
model, we allow for the number of basis functions to grow
with more samples. For simplicity, we chose to analyze the
fixed design model. That is, we analyze the case in which
y is a random variable and x is a constant.

Claim v (Nonparametric regression). Let X be the do-
main of x. Let θ : X → R be a predictor. Let
t(y) be the sufficient statistics and Z(ν) =

∫
y
et(y)ν be

the partition function. Given n independent samples, let
L̂n(θ) = 1

n

∑
i−t(y(i))θ(x(i)) + logZ(θ(x(i))) be the

empirical negative log-likelihood of y(i) given their pre-
dictors θ(x(i)). Let L(θ) = E(∀i) y(i)∼Di [L̂n(θ)]. Let
ψ1, . . . , ψ∞ : X → R be an infinitely dimensional or-
thonormal basis, and let ψ(x) = (ψ1(x), . . . , ψ∞(x)).
Assumption A holds with probability at least 1 − δ, scale
function c(θ) = ‖θ‖ and rate εn,δ , provided that the dual
norm fulfills ‖ 1n

∑
i (t(y(i))− Ey∼Di [t(y)])ψ(x(i))‖∗ ≤

εn,δ .

Let γ ∈ (0; 1/2). For sub-Gaussian t(y), we can obtain a
rate εn,δ ∈ O((1/n1/2−γ)

√
log 1/δ) for n independent sam-

ples andO(en
2γ

) basis functions. While for finite variance,
we can obtain a rate εn,δ ∈ O((1/n1/2−γ)

√
1/δ) for O(n2γ)

basis functions. Both cases hold for bounded ‖ψ(x)‖∗.
(See Appendix D.)

Nonparametric Clustering with Exponential Families.
We consider a version of the clustering problem, where the
number of clusters is not fixed (and possibly infinite), and
where the goal is to estimate the exponential-family pa-
rameters of each cluster. Thus, the hypothesis class H is
an infinite dimensional vector space. An analysis for the
Gaussian case, with fixed covariances and number of clus-
ters (i.e. k-means) was given by (Sun et al., 2012). In our
nonparametric model, we allow for the number of clusters
to grow with more samples. For simplicity, we chose to an-
alyze the case of “balanced” clusters. That is, each cluster
contains the same number of training samples.

Claim vi (Nonparametric clustering). Let θ(j) be the pa-
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rameters of cluster j. Let θ = (θ(1), . . . ,θ(∞)) be the
concatenation of an infinite set of clusters. Let t(x) be
the sufficient statistics and Z(ν) =

∫
x
e〈t(x),ν〉 be the

partition function. Given n i.i.d. samples, let L̂n(θ) =
1
n

∑
i minj −〈t(x(i)),θ(j)〉+ logZ(θ(j)) be the empiri-

cal negative log-likelihood of x(i) on its assigned clus-
ter. Let L(θ) = Ex∼D[L̂n(θ)]. Let X be the do-
main of x. Assumption A holds with probability at least
1 − δ, scale function c(θ) =

∑∞
j=1 ‖θ

(j)‖ and rate
εn,δ , provided that for all partitions X (1), . . . ,X (∞) of X ,
the dual norm fulfills (∀j) ‖ 1n

∑
i 1[x(i) ∈ X (j)]t(x(i)) −

Ex∼D[1[x ∈ X (j)]t(x)]‖∗ ≤ εn,δ .

For sub-Gaussian t(x), we can obtain a rate εn,δ ∈
O(
√

logn/n log 1/δ) for n independent samples andO(
√
n)

clusters. For finite variance, we were not able to obtain a
decreasing rate εn,δ with respect to n. (See Appendix D.)

PAC-Bayes Learning. In the PAC-Bayes framework, θ
is a probability distribution of predictors f in a hypothe-
sis class F . Thus, the hypothesis class H is the space of
probability distributions of support F . After observing a
training set, the task is to choose a posterior distribution
θ̂n. PAC-Bayes guarantees are then given with respect to
a prior distribution θ(0). Next, we show a connection be-
tween PAC-Bayes learning and Kullback-Leibler regular-
ization (Bousquet & Elisseeff, 2002; Germain et al., 2009).
The following theorem applies to tasks such as classifica-
tion as well as structured prediction.

Claim vii (PAC-Bayes learning). Let X and Y be the do-
main of x and y respectively. Let f : X → Y be a predic-
tor and d : Y × Y → [0, 1] be a distortion function. Let
θ be a probability distribution of predictors. Given n i.i.d.
samples, let L̂n(θ) = 1

n

∑
i Ef∼θ[d(y(i), f(x(i)))] be the

empirical risk of predicting y(i) by using the Gibbs predic-
tor f(x(i)). Let L(θ) = E(y,x)∼D[L̂n(θ)]. Let θ(0) be a
prior distribution. Assumption A holds with probability at
least 1−δ, scale function c(θ) = KL(θ||θ(0))+1 and rate
εn,δ ∈ O(

√
logn/n log 1/δ).

4.2. Super-Scale Regularizers

In what follows, we show that several regularizers com-
monly used in the literature fulfill Assumption B. We also
provide yet unexplored priors with guarantees.

Norms. Norms regularizers (i.e. R(θ) = ‖θ‖) fulfill As-
sumption B for c(θ) = ‖θ‖ and r(z) = z. These regular-
izers include: the sparsity promoting regularizers, such as
the `1-norm (e.g. Ravikumar et al. 2008) and the k-support
norm (Argyriou et al., 2012), the multitask `1,2 and `1,∞-
norms for overlapping groups (Jacob et al., 2009; Mairal
et al., 2010) as well as for non-overlapping groups (Negah-

ban & Wainwright, 2011; Obozinski et al., 2011), and the
trace norm for low-rank regularization (Bach, 2008; Srebro
et al., 2004).

Functions of Norms. The Tikhonov regularizer (i.e.
R(θ) = ‖θ‖22+1/4) fulfills Assumption B for c(θ) = ‖θ‖2
and r(z) = z2 + 1/4. We can define some instances
that have not been explored yet, but that have theoretical
guarantees. Consider, for instance a polynomial bound
r(z) = zγ − γ−

γ/(γ − 1) + γ−
1/(γ − 1) for γ > 1, a γ-

insensitive bound r(z) = max(0, z − γ) + γ, a logistic
bound r(z) = log (1 + ez), an exponential bound r(z) =
ez − 1, as well as an entropy bound r(z) = z log z + 1.

Mixture of Norms. The sparse and low-rank prior
(Richard et al., 2012) of the form R(θ) = ‖θ‖1 + ‖θ‖tr,
fulfills Assumption B by making either c(θ) = ‖θ‖1 or
c(θ) = ‖θ‖tr, and r(z) = z. The elastic net (Zou &
Hastie, 2005) of the formR(θ) = ‖θ‖1 + ‖θ‖22 + 1/4, ful-
fills Assumption B by making c(θ) = ‖θ‖1 and r(z) = z;
or c(θ) = ‖θ‖2, r(z) = z2 + 1/4.

Dirty Models. The dirty multitask prior (Jalali et al.,
2010) of the form R(θ) = ‖θ(1)‖1 + ‖θ(2)‖1,∞ where
θ = θ(1)+θ(2), fulfills Assumption B with c(θ) = ‖θ‖1,∞
and r(z) = z. (See Appendix C.)

Other Priors. The Kullback-Leibler regularizer (Bous-
quet & Elisseeff, 2002; Germain et al., 2009) fulfills As-
sumption B for c(θ) = KL(θ||θ(0)) and r(z) = z, where
θ(0) is a prior distribution. Any regularizer of the form
R(θ) = ‖θ‖ + f(θ) where f(θ) ≥ 0, fulfills Assump-
tion B with c(θ) = ‖θ‖ and r(z) = z. This includes
the mixture of norms, and the total variation prior (Kolar
et al., 2010; 2009; Zhang & Wang, 2010). Since f is not
required to be convex, quasiconvex regularizers of the form
R(θ) = ‖θ‖1 + ‖θ‖p for p < 1, fulfill Assumption B.

4.3. Norm-Loss Monotonicity

Here, we show some specific conditions on the expected
loss in order fulfill Assumption C. We also provide yet
unexplored cases with theoretical guarantees.

Strong Convexity. First, we show that strongly convex
expected losses are a special case in our framework. We
consider strongly convex functions that are not necessarily
smooth.

Several authors have shown different flavors of strong con-
vexity for specific problems. Almost strong convexity with
respect to a small neighborhood around the true minimizer
θ∗ was shown in (Kakade et al., 2010) for maximum likeli-
hood estimation of exponential family distributions. Strong
convexity of SVMs and logistic regression for Gaussian
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Table 1. Rates for different losses and regularizers (See Appendix D for further details.)

Rates εn,δ for n samples, with probability at least 1 − δ.
We show dependence with respect to dimension, i.e. θ ∈
H = Rp. For exponential-family PCA and max-margin ma-
trix factorization: θ ∈ H = Rn1×n2 where n = n1n2.
Rates were not optimized. All rates follow from the `1-norm
regularizer and norm inequalities.
NA: not applicable, NG: no guarantees, γ ∈ (0; 1/2).
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MLE for exponential family: sub-Gaussian (
√

log 1/δ)
√

log p
n

√
k log p
n

√
p log p
n

p1/4
√
log p√
n

√
g log p
n

g
√
log p√
n

√
p log p
n

Finite variance (
√

1/δ)
√

p
n

√
kp
n

p√
n

p3/4√
n

√
gp
n

g
√
p√
n

p√
n

GLM with fixed design: sub-Gaussian (
√

log 1/δ)
√

log p
n

√
k log p
n

√
p log p
n

p1/4
√
log p√
n

√
g log p
n

g
√
log p√
n

NA

Finite variance (
√

1/δ)
√

p
n

√
kp
n

p√
n

p3/4√
n

√
gp
n

g
√
p√
n

NA

Exponential-family PCA: sub-Gaussian (
√

log 1/δ)
√
logn
n

NA
√

logn
n

√
logn

n3/4 NA NA
√

logn
n

Finite variance (
√

1/δ) 1√
n

NA NG 1

n1/4 NA NA NG
Max-margin factorization with Lipschitz loss (δ=0) 1

n
NA 1√

n
1

n3/4 NA NA 1√
n

Nonparametric regression: sub-Gaussian (
√

log 1/δ)
√
log p

n1/2−γ

√
k log p

n1/2−γ
p
√
log p

n1/2−γ

√
p log p

n1/2−γ

√
g log p

n1/2−γ
g
√
log p

n1/2−γ NA

Finite variance (
√

1/δ)
√
p

n1/2−γ

√
kp

n1/2−γ
p3/2

n1/2−γ
p

n1/2−γ

√
gp

n1/2−γ
g
√
p

n1/2−γ NA

Nonparametric clustering: sub-Gaussian (
√

log 1/δ)
√

lognp
n

√
k lognp

n
p
√
lognp√
n

√
p lognp

n

√
g lognp

n
g
√

lognp√
n

√
p lognp

n

PAC-Bayes learning (
√

log 1/δ) Kullback-Leibler regularization
√

logn
n

predictors was proved in (Rocha et al., 2009). Restricted
strong convexity (i.e. strong convexity with respect to a
subset of directions) was shown in (Negahban et al., 2009;
2012) for generalized linear models under sparsity, group-
sparsity and low-rank promoting regularizers. For simplic-
ity, we focus on the regular form of strong convexity.

Claim viii (Strong convexity). Assumption C holds for
b(z) = ν

2 z
2 provided that the expected loss L is strongly

convex with parameter ν. Moreover, if L is twice contin-
uously differentiable, Assumption C holds if the Hessian
of L is positive definite, i.e. if there is ν > 0 such that
(∀θ ∈ H) ∂2L

∂θ2 (θ) � νI.

Note that the function b(z) = ν
2 z

2 is strictly increasing, and
its inverse function is b†(z) =

√
2z/ν. Furthermore, since

b†(0) = 0, Theorem 2 guarantees exact recovery of the true
hypothesis in the asymptotic case with exact minimization.
That is, since we require limn→+∞ εn,δ = 0 in Assump-
tion A and for ξ = 0, we have limn→+∞ ‖θ̂n − θ∗‖∞ = 0.

The constant ν has a problem-specific meaning. In linear
regression, ν is the minimum eigenvalue of the expected
covariance matrix of the predictors (Wainwright, 2009b).
In the estimation of Gaussian MRFs, ν is the squared min-
imum eigenvalue of the true covariance matrix (Ravikumar
et al., 2008).

Minimax Boundedness. Next, we provide an approach
for creating a “minimax” lower bound for an arbitrary ex-
pected loss. Note that we consider functions that are not
necessarily smooth or convex. On the other hand, any
strictly convex function is a “minimax bounded” function.

Our constructed lower bound resembles a cone without
apex. First, we create a flat disk of a prescribed radius cen-
tered at the true hypothesis θ∗. Then, we create a linear
lower bound (i.e. linear in ‖θ−θ∗‖2) with minimum slope
across the maximum over all possible directions. This lin-
ear function is the lower bound of the expected loss outside
the flat disk region.

Claim ix (Minimax boundedness). Let ν1 > 0 be a
fixed radius around the true hypothesis θ∗. Let M(θ) =
supγ≥0{γ | L(θ) − L(θ∗) ≥ γ(‖θ − θ∗‖2 − ν1)} be
the maximum slope for a linear lower bound of the ex-
pected loss L in the direction of θ − θ∗. Let ν2 =
infθ∈H,‖θ−θ∗‖2>ν1M(θ) be the “minimax” slope across
all possible directions. Assumption C holds for b(z) =
ν2 max(0, z − ν1) provided that ν2 > 0.

Note that the function b(z) = ν2 max(0, z − ν1) is not
strictly increasing for z ∈ (0; ν1), and its inverse function
is b†(z) = z

ν2
+ ν1. Furthermore, since b†(0) = ν1, The-

orem 2 only guarantees recovery of the true hypothesis up
to a small region in the asymptotic case, even with exact
optimization. That is, for limn→+∞ εn,δ = 0 and ξ = 0,
we have limn→+∞ ‖θ̂n − θ∗‖∞ = ν1.
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Other Types of Nonconvexity. By using our previ-
ous results, one can devise some yet unexplored settings
for which our framework provides theoretical guarantees.
Functions such as the square root (i.e. b(z) =

√
z) and the

logarithm (i.e. b(z) = log(1 + z)) can be used for noncon-
vex problems.

We construct a lower bound of the expected loss as follows.
First, we define a “transformed” expected loss L̃(θ) =
b†(L(θ) − L(θ∗)). Then, we invoke strong convexity
(Claim viii) or minimax boundedness (Claim ix) for the
“transformed” expected loss L̃. Thus, by using the square
root function (i.e. b(z) =

√
z and b†(z) = z2), we define

the family of “squared strongly convex” and “squared min-
imax bounded” functions. By using the logarithmic func-
tion (i.e. b(z) = log(1 + z) and b†(z) = ez − 1), we define
the “exponential strongly convex” and “exponential mini-
max bounded” functions. As expected, in order to obtain
theoretical guarantees, scaled uniform convergence has to
be shown with respect to the “transformed” expected loss
L̃.

4.4. Rates and Novel Results

Table 1 shows the rates for the different losses and regu-
larizers. We have not optimized these rates. All the rates
follow mainly from the `1-norm regularizer and norm in-
equalities. Thus, while we match some rates in the litera-
ture, some are not better. Note that our framework is more
general and uses less assumptions than previous analyses
for specific problems.

New results include the four types of consistency of MLE
of exponential family distributions, and GLMs for other
priors besides `1. We prove the four types of consistency
of regularizers that are a norm plus a nonnegative function
(elastic net, total variation, dirty models, sparsity and low-
rank), of relatively new regularizers (k-support norm, mul-
titask priors with overlapping groups), and of a proposed
quasiconvex regularizer. The analysis of matrix factoriza-
tion problems is novel and without the i.i.d assumption.
Our analysis of max-margin matrix factorization does not
assume convexity. We provide a new analysis of nonpara-
metric models, such as generalized regression and cluster-
ing. All the problems above have unbounded hypothesis
class and unbounded loss. Finally, we show a connection
between PAC-Bayes learning and Kullback-Leibler regu-
larization.

5. Concluding Remarks
There are several ways of extending this research. While
we focused on the exact recovery of the entire sparsity pat-
tern, approximate sparsistency should also be studied. The
use of a surrogate loss and theoretical guarantees with re-

spect to the original loss is a challenging open problem.
Most consistency results, including ours, do not provide a
data-dependent mechanism for setting λn. Extending the
results on cross-validation for `1-penalized linear regres-
sion (Homrighausen & McDonald, 2013) is one of our fu-
ture goals. We provided examples for the i.i.d. and the
independent sampling settings. We plan to analyze exam-
ples for the non-i.i.d. setting as in (London et al., 2013;
Mohri & Rostamizadeh, 2010).
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A. Detailed Proofs
In this section, we state the proofs of all the theorems and claims in our manuscript.

A.1. Proof of Theorem 1

Proof. By optimality of the empirical minimizer, we have:

L̂n(θ̂n) + λnR(θ̂n) ≤ L̂n(θ̂
∗
n) + λnR(θ̂

∗
n) + ξ

≤ L̂n(θ∗) + λnR(θ∗) + ξ

or equivalently L̂n(θ̂n) − L̂n(θ∗) ≤ −λnR(θ̂n) + λnR(θ∗) + ξ. By Assumption A and B, and by conveniently setting
λn = αεn,δ for α ≥ 1:

L(θ̂n)− L(θ∗) ≤ L̂n(θ̂n)− L̂n(θ∗) + εn,δc(θ̂n) + εn,δc(θ
∗)

≤ −λnR(θ̂n) + λnR(θ∗) + εn,δc(θ̂n) + εn,δc(θ
∗) + ξ

≤ −λnr(c(θ̂n)) + λnR(θ∗) + εn,δc(θ̂n) + εn,δc(θ
∗) + ξ

= εn,δ(−αr(c(θ̂n)) + c(θ̂n)) + εn,δ(αR(θ∗) + c(θ∗)) + ξ

≤ εn,δ(−r(c(θ̂n)) + c(θ̂n)) + εn,δ(αR(θ∗) + c(θ∗)) + ξ

≤ εn,δ(αR(θ∗) + c(θ∗)) + ξ

A.2. Proof of Theorem 2

Proof. By Assumption C for θ = θ̂n and by Theorem 1, we have b(‖θ̂n − θ∗‖∞) ≤ L(θ̂n) − L(θ∗) ≤ εn,δ(αR(θ∗) +
c(θ∗)) + ξ. Since the function b is nondecreasing, its inverse function b† (as defined in eq.(8)) exists and we prove our
claim.

A.3. Proof of Theorem 3

Proof. For clarity, we remove the dependence of θ̂n with respect to the number of samples n. That is, θ̂ ≡ θ̂n. By
Theorem 2, we have ‖θ̂ − θ∗‖∞ ≤ b†(εn,δ(αR(θ∗) + c(θ∗)) + ξ) ≡ τ . Therefore, for all i we have |θ̂i − θ∗i | ≤ τ . Next,
we analyze the three possible cases.

Case 1: θ∗i = 0 ⇒ θ̃i = 0. Assume that i /∈ S(θ∗). Since θ∗i = 0, we have |θ̂i − θ∗i | = |θ̂i| ≤ τ . Therefore,
θ̃i = hi(θ̂, τ) = θ̂i1[|θ̂i| > τ ] = 0.

Case 2: θ∗i > 2τ ⇒ θ̃i > τ . Assume that i ∈ S(θ∗) and θ∗i > 2τ . Since |θ̂i−θ∗i | ≤ τ , we have θ̂i ≥ θ∗i −τ > 2τ−τ = τ .
Therefore, θ̃i = hi(θ̂, τ) = θ̂i1[|θ̂i| > τ ] = θ̂i > τ .

Case 3: θ∗i < −2τ ⇒ θ̃i < −τ . Assume that i ∈ S(θ∗) and θ∗i < −2τ . Since |θ̂i − θ∗i | ≤ τ , we have θ̂i ≤ θ∗i + τ <

−2τ + τ = −τ . Therefore, θ̃i = hi(θ̂, τ) = θ̂i1[|θ̂i| > τ ] = θ̂i < −τ .

A.4. Proof of Claim i

Proof. Let ‖ · ‖∗ be the dual norm of ‖ · ‖. Note that L̂n(θ)−L(θ) = −〈T̂n−T,θ〉. By the generalized Cauchy-Schwarz
inequality, we have:

(∀θ) |L̂n(θ)− L(θ)| = |〈T̂n −T,θ〉|

≤ ‖T̂n −T‖∗‖θ‖
≤ εn,δ‖θ‖
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A.5. Proof of Claim ii

Proof. Let ‖·‖∗ be the dual norm of ‖·‖. Note that L̂n(θ)−L(θ) = −( 1
n

∑
i t(y

(i))〈x(i),θ〉− 1
n

∑
i Ey∼Di [t(y)]〈x(i),θ〉).

By the generalized Cauchy-Schwarz inequality, we have:

(∀θ) |L̂n(θ)− L(θ)| = | 1n
∑
i t(y

(i))〈x(i),θ〉 − 1
n

∑
i Ey∼Di [t(y)]〈x(i),θ〉|

= |〈 1n
∑
i (t(y(i))− Ey∼Di [t(y)])x(i),θ〉|

≤ ‖ 1n
∑
i (t(y(i))− Ey∼Di [t(y)])x(i)‖∗‖θ‖

≤ εn,δ‖θ‖

A.6. Proof of Claim iii

Proof. Let ‖ · ‖∗ be the dual norm of ‖ · ‖. Note that L̂n(θ)− L(θ) = −( 1
n

∑
ij t(xij)θij −

1
n

∑
ij Ex∼Dij [t(x)]θij). By

the generalized Cauchy-Schwarz inequality, we have:

(∀θ) |L̂n(θ)− L(θ)| = | 1n
∑
ij t(xij)θij −

1
n

∑
ij Ex∼Dij [t(x)]θij |

= | 1n
∑
ij (t(xij)− Ex∼Dij [t(x)])θij |

≤ ‖ 1n (t(x11)− Ex∼D11 [t(x)], . . . , t(xn1n2)− Ex∼Dn1n2
[t(x)])‖∗‖θ‖

≤ εn,δ‖θ‖

A.7. Proof of Claim iv

Proof. Let K be the Lipschitz constant of f . Without loss of generality, assume that f(0) = 0 (this can be accomplished
by adding a constant factor to f ). Note that L̂n(θ) − L(θ) = 1

n

∑
ij f(xijθij) − 1

n

∑
ij Ex∼Dij [f(xθij)]. Recall that

xij ∈ {−1,+1}. We have:

(∀θ) |L̂n(θ)− L(θ)| = | 1n
∑
ij (f(xijθij)− Ex∼Dij [f(xθij)])|

= | 1n
∑
ij (1[xij = +1]f(θij) + 1[xij = −1]f(−θij)− Px∼Dij [x = +1]f(θij)− Px∼Dij [x = −1]f(−θij))|

= | 1n
∑
ij ((1[xij = +1]− Px∼Dij [x = +1])f(θij) + (1[xij = −1]− Px∼Dij [x = −1])f(−θij))|

≤ 1
n

∑
ij (|1[xij = +1]− Px∼Dij [x = +1]| |f(θij)|+ |1[xij = −1]− Px∼Dij [x = −1]| |f(−θij)|)

≤ 1
n

∑
ij (K|θij |+K|θij |)

= 2K
n ‖θ‖1

A.8. Proof of Claim v

Proof. First, we represent the function θ : X → R by using the infinitely dimensional orthonormal basis. That is,
θ(x) =

∑∞
j=1 ν

(θ)
j ψj(x) = 〈ν(θ),ψ(x)〉, where ν(θ) = (ν

(θ)
1 , . . . , ν

(θ)
∞ ). In the latter, the superindex (θ) allows for

associating the infinitely dimensional coefficient vector ν with the original function θ. Then, we define the norm of the
function θ with respect to the infinitely dimensional orthonormal basis. That is, ‖θ‖ = ‖ν(θ)‖.

Let ‖ · ‖∗ be the dual norm of ‖ · ‖. Note that L̂n(θ) − L(θ) = −( 1
n

∑
i t(y

(i))θ(x(i)) − 1
n

∑
i Ey∼Di [t(y)]θ(x(i))). By

the generalized Cauchy-Schwarz inequality, we have:

(∀θ) |L̂n(θ)− L(θ)| = | 1n
∑
i t(y

(i))θ(x(i))− 1
n

∑
i Ey∼Di [t(y)]θ(x(i))|

= | 1n
∑
i t(y

(i))〈ψ(x(i)),ν(θ)〉 − 1
n

∑
i Ey∼Di [t(y)]〈ψ(x(i)),ν(θ)〉|

= |〈 1n
∑
i (t(y(i))− Ey∼Di [t(y)])ψ(x(i)),ν(θ)〉|

≤ ‖ 1n
∑
i (t(y(i))− Ey∼Di [t(y)])ψ(x(i))‖∗‖ν(θ)‖

≤ εn,δ‖θ‖
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A.9. Proof of Claim vi

Proof. Let ‖ · ‖∗ be the dual norm of ‖ · ‖. Let C(j,θ) = {x ∈ X | j = arg mink −〈t(x),θ(k)〉+ logZ(θ(k))}.
Note that C(1,θ), . . . , C(∞,θ) define a partition of X . We can rewrite the empirical loss as follows L̂n(θ) =∑
j

1
n

∑
i 1[x(i) ∈ C(j,θ)](−〈t(x(i)),θ(j)〉+ logZ(θ(j))). Similarly, the expected loss can be written as L(θ) =∑

j Ex∼D[1[x ∈ C(j,θ)](−〈t(x),θ(j)〉+ logZ(θ(j)))].

By the generalized Cauchy-Schwarz inequality, we have:

(∀θ) |L̂n(θ)− L(θ)| = |
∑
j ( 1

n

∑
i 1[x(i) ∈ C(j,θ)]〈t(x(i)),θ(j)〉 − Ex∼D[1[x ∈ C(j,θ)]〈t(x),θ(j)〉])|

= |
∑
j 〈

1
n

∑
i 1[x(i) ∈ C(j,θ)]t(x(i))− Ex∼D[1[x ∈ C(j,θ)]t(x)],θ(j)〉|

≤
∑
j |〈

1
n

∑
i 1[x(i) ∈ C(j,θ)]t(x(i))− Ex∼D[1[x ∈ C(j,θ)]t(x)],θ(j)〉|

≤
∑
j ‖

1
n

∑
i 1[x(i) ∈ C(j,θ)]t(x(i))− Ex∼D[1[x ∈ C(j,θ)]t(x)]‖∗‖θ(j)‖

By assumption, for all partitions X (1), . . . ,X (∞) of X , the dual norm fulfills (∀j) ‖ 1n
∑
i 1[x(i) ∈ X (j)]t(x(i)) −

Ex∼D[1[x ∈ X (j)]t(x)]‖∗ ≤ εn,δ . Therefore:

(∀θ) |L̂n(θ)− L(θ)| ≤ εn,δ
∑
j ‖θ

(j)‖

A.10. Proof of Claim vii

Proof. By Pinsker’s inequality and Theorem 5 of (Maurer, 2004) which assumes n ≥ 8, we have:

(∀θ) |L̂n(θ)− L(θ)| ≤
√

1
2 (L̂n(θ) log L̂n(θ)L(θ) + (1− L̂n(θ)) log 1−L̂n(θ)

1−L(θ) )

≤
√

1
2n (KL(θ||θ(0)) + log 2

√
n
δ )

≤
√

1
2n max(1, log 2

√
n
δ )
√
KL(θ||θ(0)) + 1

≤
√

1
2n log 2

√
n
δ (KL(θ||θ(0)) + 1)

A.11. Proof of Claim viii

Proof. The expected loss L is strongly convex with parameter ν if and only if:

(∀θ1,θ2 ∈ H,g ∈ ∂L
∂θ (θ1)) L(θ2)− L(θ1) ≥ 〈g,θ2 − θ1〉+ ν

2‖θ2 − θ1‖
2
2

First, we set θ1 = θ∗ and θ2 = θ. Next, note that the subdifferential vanishes at θ∗, that is 0 ∈ ∂L
∂θ (θ∗). Therefore:

L(θ)− L(θ∗) ≥ ν
2‖θ − θ

∗‖22
≥ ν

2‖θ − θ
∗‖2∞

which proves our first claim. Our second claim regarding twice continuously differentiable L is well-known in the calculus
literature.

A.12. Proof of Claim ix

Proof. Note that by the definition ofM(θ), we have:

(∀θ ∈ H, 0 ≤ γ ≤M(θ)) L(θ)− L(θ∗) ≥ γ(‖θ − θ∗‖2 − ν1)
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By the definition of ν2, we have:

(∀θ ∈ H) ν2 ≤M(θ)

By putting both statements together for γ = ν2, we have:

(∀θ ∈ H) L(θ)− L(θ∗) ≥ ν2(‖θ − θ∗‖2 − ν1)

≥ ν2(‖θ − θ∗‖∞ − ν1)

Since (∀θ ∈ H) L(θ)− L(θ∗) ≥ 0, we prove our claim.

B. Discussion on Sparsistency
One way to prove sparsistency and sign consistency is to use the primal-dual witness method (Negahban & Wainwright,
2011; Obozinski et al., 2011; Ravikumar et al., 2008; Wainwright, 2009b; Wainwright et al., 2006). These results are
specific to the given loss (linear regression (Negahban & Wainwright, 2011; Obozinski et al., 2011; Wainwright, 2009b),
log-likelihood of Gaussian MRFs (Ravikumar et al., 2008), pseudo-likelihood of discrete MRFs (Wainwright et al., 2006))
as well as the specific regularizer (`1-norm (Ravikumar et al., 2008; Wainwright, 2009b; Wainwright et al., 2006), `1,2-
norm (Obozinski et al., 2011) and `1,∞-norm (Negahban & Wainwright, 2011)). Furthermore, due to nonuniqueness of
the dual of the `1,∞-norm (Negahban & Wainwright, 2011), characterizing sign consistency by primal-dual arguments is
difficult. In this paper, we prove sparsistency and sign consistency for general regularizers, besides the `1 and `1,p norms.
Indeed, our results also hold for regularizers that are not norms.

Our approach is to perform thresholding of the empirical minimizer. In the context of `1-regularized linear regression,
thresholding has been previously used for obtaining sparsistency and sign consistency (Meinshausen & Yu, 2009; Zhou,
2009). Note that the primal-dual witness method of (Negahban & Wainwright, 2011; Obozinski et al., 2011; Ravikumar
et al., 2008; Wainwright, 2009b; Wainwright et al., 2006) applies only when mutual incoherence conditions hold. If such
conditions are not met, sparsistency and sign consistency is not guaranteed, independently of the number of samples. In
our two-step algorithm, the threshold decreases with respect to the amount of data samples. Potentially, the sparsity pattern
of every true hypothesis can be recovered, even if mutual incoherence does not hold.

Seemingly contradictory results are shown in (Zhao & Yu, 2006) where mutual incoherence conditions are shown to be
necessary and sufficient for `1-regularized linear regression. Note that here, we consider regularization followed by a
thresholding step, which is not considered in (Zhao & Yu, 2006).

C. Dirty Multitask Prior

(Jalali et al., 2010) proposed a dirty multitask prior of the form R(θ) = ‖θ(1)‖1 + ‖θ(2)‖1,∞ where θ = θ(1) + θ(2). By
the triangle inequality:

‖θ‖1,∞ = ‖θ(1) + θ(2)‖1,∞
≤ ‖θ(1)‖1,∞ + ‖θ(2)‖1,∞
≤ ‖θ(1)‖1 + ‖θ(2)‖1,∞
= R(θ)

Thus, the dirty multitask prior fulfills Assumption B with c(θ) = ‖θ‖1,∞ and r(z) = z.

D. Specific Dimension-Dependent Rates εn,δ
D.1. Claim i for the sub-Gaussian case and `1-norm

Let θ ∈ H = Rp. Let ‖ · ‖∗ = ‖ · ‖∞ and ‖ · ‖ = ‖ · ‖1. Let (∀j) tj(x) be sub-Gaussian with parameter σ. By the union
bound, sub-Gaussianity and independence, we have P[(∃j) | 1n

∑
i (tj(x

(i))− Ex∼D[tj(x)])| > ε] ≤ 2p exp(−nε
2

2σ2 ) = δ.
By solving for ε, we have εn,δ = σ

√
2/n(log p+ log 2/δ).
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D.2. Claim i for the finite variance case and `1-norm

Let θ ∈ H = Rp. Let ‖ · ‖∗ = ‖ · ‖∞ and ‖ · ‖ = ‖ · ‖1. Let (∀j) tj(x) have variance at most σ2. By the union bound and
Chebyshev’s inequality, we have P[(∃j) | 1n

∑
i (tj(x

(i))− Ex∼D[tj(x)])| > ε] ≤ p σ2

nε2 = δ. By solving for ε, we have
εn,δ = σ

√
p
nδ .

D.3. Claim ii for the sub-Gaussian case and `1-norm

Let θ ∈ H = Rp. Let ‖ · ‖∗ = ‖ · ‖∞ and ‖ · ‖ = ‖ · ‖1. Let (∀x) ‖x‖∗ ≤ B and thus (∀ij) |x(i)j | ≤ B. Let

(∀i and y ∼ Di) t(y) be sub-Gaussian with parameter σ. Therefore (∀i and y ∼ Di) t(y)x
(i)
j is sub-Gaussian with param-

eter σB. By the union bound, sub-Gaussianity and independence, we have P[(∃j) | 1n
∑
i (t(y(i))− Ey∼Di [t(y)])x

(i)
j | >

ε] ≤ 2p exp(− nε2

2(σB)2 ) = δ. By solving for ε, we have εn,δ = σB
√

2/n(log p+ log 2/δ).

D.4. Claim ii for the finite variance case and `1-norm

Let θ ∈ H = Rp. Let ‖ · ‖∗ = ‖ · ‖∞ and ‖ · ‖ = ‖ · ‖1. Let (∀x) ‖x‖∗ ≤ B and thus (∀ij) |x(i)j | ≤ B. Let

(∀i and y ∼ Di) t(y) have variance at most σ2. Therefore (∀i and y ∼ Di) t(y)x
(i)
j has variance at most (σB)2. By the

union bound and Chebyshev’s inequality, we have P[(∃j) | 1n
∑
i (t(y(i))− Ey∼Di [t(y)])x

(i)
j | > ε] ≤ p (σB)2

nε2 = δ. By
solving for ε, we have εn,δ = σB

√
p
nδ .

D.5. Claim iii for the sub-Gaussian case and `1-norm

Recall θ ∈ H = Rn1×n2 where n = n1n2. Let ‖·‖∗ = ‖·‖∞ and ‖·‖ = ‖·‖1. Let (∀ij and x ∼ Dij) t(x) be sub-Gaussian
with parameter σ. By the union bound, sub-Gaussianity and independence, we have P[(∃ij) |t(xij) − Ex∼Dij [t(x)]| >
nε] ≤ 2n exp(− (nε)2

2σ2 ) = δ. By solving for ε, we have εn,δ = σ
n

√
2(log n+ log 2/δ).

D.6. Claim iii for the finite variance case and `1-norm

Recall θ ∈ H = Rn1×n2 where n = n1n2. Let ‖·‖∗ = ‖·‖∞ and ‖·‖ = ‖·‖1. Let (∀ij and x ∼ Dij) t(x) have variance at
most σ2. By the union bound and Chebyshev’s inequality, we have P[(∃ij) |t(xij)− Ex∼Dij [t(x)]| > nε] ≤ n σ2

(nε)2 = δ.
By solving for ε, we have εn,δ = σ/

√
(nδ).

D.7. Claim v for the sub-Gaussian case and `1-norm

Let x ∈ X = Rp. Let ‖ · ‖∗ = ‖ · ‖∞ and ‖ · ‖ = ‖ · ‖1. Let (∀x) ‖ψ(x)‖∗ ≤ B and thus (∀ij) |ψj(x(i))| ≤ B. Let
(∀i and y ∼ Di) t(y) be sub-Gaussian with parameter σ. Therefore (∀i and y ∼ Di) t(y)ψj(x

(i)) is sub-Gaussian with
parameter σB. The complexity of our nonparametric model grows with more samples. Let qn be increasing with respect
to the number of samples n. Assume that we have qn orthonormal basis functions ϕ1, . . . , ϕqn : R→ R. With these bases,
we define qnp orthonormal basis functions of the form ψj(x) = ϕk(xl) for j = 1, . . . , qnp, k = 1, . . . , qn, l = 1, . . . , p.
By the union bound, sub-Gaussianity and independence, we have P[(∃j) | 1n

∑
i (t(y(i))− Ey∼Di [t(y)])ψj(x

(i))| > ε] ≤
2qnp exp(− nε2

2(σB)2 ) = δ. By solving for ε, we have εn,δ = σB
√

2/n(log p+ log qn + log 2/δ).

In Table 1, we set qn = en
2γ

for γ ∈ (0; 1/2), although other settings are possible for obtaining a decreasing rate εn,δ with
respect to n.

D.8. Claim v for the finite variance case and `1-norm

Let x ∈ X = Rp. Let ‖ · ‖∗ = ‖ · ‖∞ and ‖ · ‖ = ‖ · ‖1. Let (∀x) ‖ψ(x)‖∗ ≤ B and thus (∀ij) |ψj(x(i))| ≤ B. Let
(∀i and y ∼ Di) t(y) have variance at most σ2. Therefore (∀i and y ∼ Di) t(y)ψj(x

(i)) has variance at most (σB)2. The
complexity of our nonparametric model grows with more samples. Let qn be increasing with respect to the number of
samples n. Assume that we have qn orthonormal basis functions ϕ1, . . . , ϕqn : R → R. With these bases, we define qnp
orthonormal basis functions of the form ψj(x) = ϕk(xl) for j = 1, . . . , qnp, k = 1, . . . , qn, l = 1, . . . , p. By the union
bound and Chebyshev’s inequality, we have P[(∃j) | 1n

∑
i (t(y(i))− Ey∼Di [t(y)])ψj(x

(i))| > ε] ≤ qnp
(σB)2

nε2 = δ. By
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solving for ε, we have εn,δ = σB
√

qnp
nδ .

In Table 1, we set qn = n2γ for γ ∈ (0; 1/2), although other settings are possible for obtaining a decreasing rate εn,δ with
respect to n.

D.9. Claim vi for the sub-Gaussian case and `1-norm

In order to allow for proper estimation of the parameters θ(j) ∈ Rp of each cluster, we assume that the hypothesis
class H allows only for clusters containing the same number of training samples. The complexity of our nonparametric
model grows with more samples. Let qn be increasing with respect to the number of samples n. Assume that we have
qn clusters with n/qn samples each. In order to show that for all partitions X (1), . . . ,X (∞) of X , the dual norm ful-
fills (∀j) ‖ 1n

∑
i 1[x(i) ∈ X (j)]t(x(i)) − Ex∼D[1[x ∈ X (j)]t(x)]‖∗ ≤ εn,δ , we will show concentration for all subsets of

{1, . . . , n} with size n/qn. That is:

(∀C ⊆ {1, . . . , n}, |C| = n/qn) ‖ 1n
∑
i 1[x(i) ∈ C]t(x(i))− Ex∼D[1[x ∈ C]t(x)]‖∗ ≤ εn,δ

Let ‖·‖∗ = ‖·‖∞ and ‖·‖ = ‖·‖1. Let (∀j) tj(x) be sub-Gaussian with parameter σ. By the union bound, sub-Gaussianity
and independence, we have:

P[(∃j, C) | 1
n/qn

∑
i 1[x(i) ∈ C]t(x(i))− Ex∼D[1[x ∈ C]tj(x)]| > γ] ≤ 2p

(
n

n/qn

)
e−

n/qnγ
2

2σ2

≤ 2p (qne)
n/qne−

n/qnγ
2

2σ2

= δ

By solving for γ, we have γ = σ
√

2(1 + log qn + qn
n log p+ qn

n log 2/δ). Note that εn,δ = γ/qn and by setting qn =
√
n

we have:

εn,δ = σ
√

2( 1+log qn
q2n

+ 1
nqn

log p+ 1
nqn

log 2/δ)

= σ
√

2( 1+log
√
n

n + 1
n3/2 log p+ 1

n3/2 log 2/δ)

D.10. Norm inequalities to extend results to other norms

• For the k-support norm ‖ · ‖supk , we have (∀θ ∈ Rp) ‖θ‖1 ≤
√
k‖θ‖supk .

• For the `2-norm ‖ · ‖2, we have (∀θ ∈ Rp) ‖θ‖1 ≤
√
p‖θ‖2.

• For the `∞-norm ‖ · ‖2, we have (∀θ ∈ Rp) ‖θ‖1 ≤ p‖θ‖∞.

• For the Frobenius norm ‖ · ‖F, we have (∀θ ∈ R
√
p×√p) ‖θ‖1 ≤

√
p‖θ‖F.

• For the trace norm ‖ · ‖tr, we have (∀θ ∈ R
√
p×√p) ‖θ‖1 ≤

√
p‖θ‖tr.

• For the `1,2-norm ‖ · ‖1,2, we have (∀θ ∈ R
√
p×√p) ‖θ‖1 ≤ p1/4‖θ‖1,2.

• For the `1,∞-norm ‖ · ‖1,∞, we have (∀θ ∈ R
√
p×√p) ‖θ‖1 ≤

√
p‖θ‖1,∞.

• For the `1,2-norm with overlapping groups ‖ · ‖ov1,2, we have (∀θ ∈ Rp) ‖θ‖1 ≤
√
g‖θ‖ov1,2 where g is the maximum

group size. Additionally, we have (∀θ ∈ Rp) ‖θ‖2 ≤ ‖θ‖ov1,2.

• For the `1,∞-norm with overlapping groups ‖ · ‖ov1,∞, we have (∀θ ∈ Rp) ‖θ‖1 ≤ g‖θ‖ov1,∞ where g is the maximum
group size. Additionally, we have (∀θ ∈ Rp) ‖θ‖ov1,2 ≤

√
g‖θ‖ov1,∞.


