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Deep learning-guided discovery of 
an antibiotic targeting Acinetobacter 
baumannii
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Acinetobacter baumannii is a nosocomial Gram-negative pathogen that 
often displays multidrug resistance. Discovering new antibiotics against 
A. baumannii has proven challenging through conventional screening 
approaches. Fortunately, machine learning methods allow for the rapid 
exploration of chemical space, increasing the probability of discovering new 
antibacterial molecules. Here we screened ~7,500 molecules for those that 
inhibited the growth of A. baumannii in vitro. We trained a neural network 
with this growth inhibition dataset and performed in silico predictions for 
structurally new molecules with activity against A. baumannii. Through 
this approach, we discovered abaucin, an antibacterial compound with 
narrow-spectrum activity against A. baumannii. Further investigations 
revealed that abaucin perturbs lipoprotein trafficking through a mechanism 
involving LolE. Moreover, abaucin could control an A. baumannii infection in 
a mouse wound model. This work highlights the utility of machine learning 
in antibiotic discovery and describes a promising lead with targeted activity 
against a challenging Gram-negative pathogen.

Acinetobacter baumannii is a nosocomial Gram-negative pathogen that 
often displays multidrug resistance due to its robust outer membrane 
and its ability to acquire and retain extracellular DNA1 that frequently 
encodes antibiotic resistance genes. Moreover, it can survive for pro-
longed durations on surfaces and is resistant to desiccation. Discovering 

fundamentally new antibiotics against A. baumannii has proven chal-
lenging through conventional screening approaches. Indeed, most 
new antibiotics that achieve clinical use are analogs of existing classes2. 
However, while structural analogs of existing antibiotic classes may 
satisfy short-term clinical needs, their long-term efficacy is inherently 
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a problematic nosocomial Gram-negative pathogen that commonly 
displays multidrug resistance and, increasingly, pan-drug resistance 
(Fig. 1a). We first screened a diverse collection of 7,684 small molecules 
at 50 µM for those that inhibited the growth of A. baumannii ATCC 17978 
in Lysogeny Broth (LB) medium (Fig. 1b and Extended Data Fig. 1a). This 
chemical collection consisted of both off-patent drugs (2,341 mol-
ecules) and synthetic chemicals (5,343 molecules) curated from various 
high-throughput screening sub-libraries at the Broad Institute. Using 
a conventional hit cutoff of one standard deviation below the mean 
growth of the entire dataset resulted in 480 molecules being defined 
as ‘active’ and 7,204 being defined as ‘inactive’ (Supplementary Data 1).

Next, this dataset was used to train a binary classifier to predict 
whether structurally new molecules may display activity against  
A. baumannii. Briefly, we leveraged a directed message-passing neural 
network architecture, which translates the graph structure of a mol-
ecule into a continuous vector18 (Fig. 1a).

This type of model operates by iteratively exchanging informa-
tion of local chemistry between adjacent atoms and bonds in a series 
of ‘message-passing’ steps. Each iteration of message passing propa-
gates information about local chemistry across the molecule, thereby 
allowing the model to build a more holistic representation of the mol-
ecule. After a defined number of message-passing steps, the vector 
representations of various local chemical regions of a molecule are 
summed into a single continuous vector that captures the complexity 
of the entire compound. This learned final vector is then supplemented 
with fixed molecular features computed using RDKit19. A final vector 
containing both learned and computed features is then used as an input 
vector for a feed-forward neural network that predicts antibacterial 
properties. The model was further optimized by using an ensemble 
of ten classifiers, increasing its robustness. Our final model achieved 
an area under the precision-recall curve of 0.337 ± 0.088 and an area 
under the receiver-operating characteristic curve of 0.792 ± 0.042, 
providing confidence in leveraging the model for predictions in new 
chemical spaces.

After model training, we applied our ensemble of ten 
RDKit-augmented models to identify antibacterial molecules with 
activity against A. baumannii from the updated Drug Repurposing 
Hub15 consisting of 6,680 molecules. This chemical library was selected 
as a proof-of-concept due to the structural diversity inherent to this 
collection, as well as the favorable cytotoxicity and drug-like proper-
ties that are observed for many Drug Repurposing Hub molecules. 
Our ensemble of ten classifiers returned a prediction score for each 
compound, representing the probability of growth inhibition against 
A. baumannii (Fig. 1c and Supplementary Data 2). Molecules that were 
both strongly predicted to be antibacterial and structurally unique 
from training set ‘actives’ were prioritized for in vitro testing (Supple-
mentary Data 3). Notably, this process of performing predictions and 
prioritizing molecules for validation was completed within a couple of 
hours. We note here that we also trained and applied a message-passing 
neural network model that was not augmented with RDKit features 
as a baseline reference (Supplementary Data 2). This model did not 
perform as well as the RDKit-augmented primary model, achieving 
an area under the precision-recall curve of 0.266 ± 0.070 and an area 
under the receiver-operating characteristic curve of 0.756 ± 0.050. The 
reduced performance of the model omitting RDKit features highlights 
the importance of these computable molecular features in maximizing 
predictive utility in the context of our training dataset.

Using a prediction score threshold of >0.2 (Fig. 1c) and subse-
quently filtering these predicted compounds based on a Tanimoto 
nearest neighbor similarity of <0.3 to molecules that were ‘active’ in the 
training dataset, we identified 240 priority molecules that met these 
highly stringent criteria (Supplementary Data 3). These molecules 
were acquired and tested against A. baumannii at a concentration of 
50 µM in LB medium—the same conditions in which the training data 
were acquired (Extended Data Fig. 1b and Supplementary Data 3). Using 

limited due to the high prevalence of existing resistance determinants3. 
Ideally, new antibiotic discovery efforts should focus on identifying 
new chemotypes with mechanisms of action that are unique relative to 
existing antibiotics. Such compounds are likely to have prolonged util-
ity, given that the probability of pre-existing clinical resistance is low.

Fortunately, machine learning methods allow for the rapid explo-
ration of vast chemical/sequence spaces in silico, increasing the prob-
ability of discovering desirable new chemotypes with antibacterial 
activity, particularly against challenging pathogens like A. bauman-
nii. As a reference, typical high-throughput screening programs are 
limited to testing a few million molecules for antibacterial activity at 
the largest scales4. Contrarily, contemporary algorithmic approaches 
can assess hundreds of millions to billions of molecules for antibacte-
rial properties. For example, Stokes et al.5 applied a message-passing 
neural network trained on growth inhibition of lab strain Escherichia 
coli to discover new broad-spectrum small molecule antibacterial 
compounds. In a complementary application, Ma et al.6 applied mul-
tiple natural language processing neural network models to predict 
broad-spectrum antimicrobial peptides encoded in the human gut 
microbiome. These, and other important studies (detailed in ref. 7) 
showcase the importance of machine learning approaches toward the 
discovery of structurally and functionally new antibiotic candidates.

Beyond simply discovering structurally and functionally 
new antibiotics, a largely unmet need exists for the application of 
narrow-spectrum therapies that target specific bacterial species. Such 
antibiotics are beneficial for the following two reasons8: first, the rate 
at which resistance to narrow-spectrum agents would disseminate 
is likely lower than conventional broad-spectrum agents, because 
narrow-spectrum drugs do not impose a universal selective pressure 
that favors the wide propagation of resistance determinants; second, 
narrow-spectrum antibiotics would not disrupt the ecology of the 
microbiota during treatment. Indeed, dysbiosis has been associated 
with a wide array of poor health outcomes, including infectious dis-
eases9, inflammatory bowel diseases10, metabolic diseases11, neuropsy-
chiatric disorders12 and cancer13. For instance, Clostridioides difficile 
infections are prime examples of opportunistic infections resulting 
from antibiotic-induced dysbiosis, causing upwards of 224,000 infec-
tions in hospitalized patients and 13,000 deaths in the US alone in 
2017 (ref. 14).

An opportunity exists to apply contemporary machine learning 
methods to discover structurally and functionally new antibiotics 
that specifically target challenging pathogens, with A. baumannii 
being a prime candidate. Here we screened ~7,500 molecules for those 
that inhibited the growth of A. baumannii in vitro. We trained a 
message-passing neural network with this growth inhibition dataset 
and performed predictions on the Drug Repurposing Hub15 for struc-
turally new molecules with activity against A. baumannii. Through this 
approach, we discovered abaucin, an antibacterial compound with 
narrow-spectrum activity against A. baumannii, which could overcome 
intrinsic and acquired resistance mechanisms in clinical isolates. Fur-
ther mechanistic investigations revealed that abaucin perturbs lipo-
protein trafficking through a mechanism involving LolE, a functionally 
conserved protein that contributes to shuttling lipoproteins from the 
inner membrane to the outer membrane16,17. Moreover, abaucin was 
able to control an A. baumannii infection in a mouse wound model. 
This study highlights the utility of machine learning in discovering 
new antibiotics and describes a promising lead molecule with specific 
activity against a challenging Gram-negative pathogen.

Results
Machine learning-guided discovery of abaucin
Our recent work has highlighted the utility of machine learning in dis-
covering new antibacterial molecules using E. coli K12 as a model organ-
ism5. Building off this prior research, here we applied a message-passing 
deep neural network18 to discover new antibiotics against A. baumannii, 
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another stringent cutoff of >80% growth inhibition, we observed that 
nine of the tested molecules displayed antibacterial activity against 
A. baumannii, emphasizing the ability of our model to generalize to 
compounds that are highly divergent from the chemical space on 
which the model was trained. We note here that >80% growth inhibi-
tion is a statistically more stringent cutoff than that used for model 
training, which was a conventional one standard deviation below the 
mean growth of the dataset, or ~20% growth inhibition. This stringent 
>80% growth inhibition cutoff was applied to efficiently prioritize 
the most potent predicted molecules on which to conduct further 
experimentation. For reference, if we defined a hit cutoff of 20% growth 
inhibition for prediction selection—similar to that used for model train-
ing—we would acquire 41 molecules classified as active predictions 
(Supplementary Data 3). Notably, we also tested the 240 molecules 

with the lowest prediction scores and observed that none displayed 
antibacterial activity as defined by >80% growth inhibition, emphasiz-
ing the discriminatory utility of our model (Extended Data Fig. 1b and 
Supplementary Data 3). Furthermore, testing the 240 molecules with 
the highest prediction scores, without considering Tanimoto nearest 
neighbor similarity to training set ‘actives’, resulted in 40 molecules 
that passed the stringent >80% growth inhibition cutoff, indicating 
that our model has a high predictive value over traditional chemical 
screening (Extended Data Fig. 1b and Supplementary Data 3).

The nine priority molecules were subsequently assessed to remove 
(1) those with major structural features that are observed in known 
antibiotics; (2) those with reported antibacterial activity from the 
scientific or patent literature; and (3) those with possible nonspecific 
membrane activity as assessed by the presence of acyclic aliphatic 
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Fig. 1 | Machine learning-guided discovery of abaucin. a, Machine learning 
approaches allow for the rapid exploration of chemical space, increasing the 
probability of discovering new chemical matter with antibacterial activity. We 
screened ~7,500 molecules for those that inhibited the growth of A. baumannii 
(blue), trained a directed message-passing deep neural network with this growth 
inhibition dataset and performed predictions (red) on the Drug Repurposing 
Hub for structurally new molecules with activity against A. baumannii (purple). 
b, Growth inhibition of A. baumannii ATCC 17978 by a collection of 7,684 small 
molecules at 50 µM. The mean of two biological replicates is shown. Red dots 
represent actives, with the hit cutoff defined as one standard deviation below 
the mean of the dataset. c, Rank-ordered prediction scores of molecules within 
the Drug Repurposing Hub by our trained model. Molecules with prediction 
scores > 0.2 were considered preliminary candidates for experimental validation. 

d, A t-SNE plot showing the chemical relationship between the training dataset 
(blue), the prediction set (red) and abaucin (yellow). e, Growth inhibition of A. 
baumannii by abaucin in LB medium. Experiments were conducted in biological 
duplicate. Individual replicates with means connected are plotted. The structure 
of abaucin is shown. f, Killing of A. baumannii by abaucin in nutrient-replete 
conditions (LB) at varying concentrations after incubation for 1.5 h (blue), 3 h 
(teal), 4.5 h (green) and 6 h (purple). Experiments were conducted in biological 
duplicate. Individual replicates with means connected are plotted. g, Killing 
of A. baumannii by abaucin in nutrient-deplete conditions (PBS) at varying 
concentrations after incubation for 1.5 h (blue), 3 h (teal), 4.5 h (green) and 
6 h (purple). Experiments were conducted in biological duplicate. Individual 
replicates with means connected are plotted.
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moieties. This structure-based filtering resulted in the retention of 
two molecules—RS102895 and serdemetan. RS102895 is a well-studied 
CCR2− selective chemokine receptor antagonist20,21 that displayed a 
minimum inhibitory concentration (MIC) of ~2 µg ml−1 against A. bau-
mannii ATCC 17978 (Fig. 1d,e); serdemetan22,23 is an antagonist of the 
transcription factor HDM2 that displayed MIC of ~32 µg ml−1 (Extended 
Data Fig. 1c). Given that RS102895 was substantially more potent at 
inhibiting the growth of A. baumannii, we focused our subsequent 
investigations on this molecule.

Upon further experimentation with RS102895 to assess A. bauman-
nii viability after treatment, we observed modest bactericidal activity 
against A. baumannii in LB medium (Fig. 1f). Indeed, upon removal of 
RS102895 from A. baumannii cultures in vitro after 6 h of treatment, 
we observed A. baumannii regrowth, wherein the apparent lag period 
increased with increasing concentrations of abaucin (Extended Data 
Fig. 1d). We observed no discernable activity in nutrient-deplete PBS 
(Fig. 1g). Collectively, these data suggest that RS102895—renamed 
abaucin for its activity against A. baumannii—displayed its antibacterial 
efficacy through inhibition of a biological process that was maximally 
active during growth and division24, consistent with most known antibi-
otics25. Notably, these data also suggest that abaucin is not membrane 
active via physical disruption of the phospholipid bilayer, a mechanism 
of action that we deliberately attempted to avoid during our prediction 
filtering process. Indeed, membrane-active molecules generally retain 
bactericidal efficacy in nutrient-deplete conditions24.

Abaucin has a narrow spectrum of activity
After probing the activity of abaucin against A. baumannii ATCC 17978, 
we next tested for growth inhibitory activity against clinical isolates 
of A. baumannii. Here we acquired 41 strains of A. baumannii from the 
Center for Disease Control and Prevention Antibiotic Resistance Iso-
late Bank (ARIsolate Bank; Supplementary Table 1) and tested abaucin 
at a range of concentrations below and above MIC. Remarkably, we 

observed that abaucin could overcome all intrinsic and acquired resist-
ance mechanisms within the A. baumannii isolates from this diverse 
clinical strain library (Fig. 2a and Supplementary Table 1).

Next, we investigated the phylogenetic spectrum of activ-
ity displayed by abaucin by testing this compound against 24 
carbapenem-resistant Enterobacteriaceae strains (Supplementary 
Table 2), 24 Pseudomonas aeruginosa strains (Supplementary Table 3) 
and 14 Staphylococcus aureus strains (Supplementary Table 4), all from 
the ARIsolate Bank. In stark contrast to our observations with A. bau-
mannii, abaucin did not display any growth inhibitory activity against 
these pathogenic species up to 20× the MIC in A. baumannii ATCC 17978 
(Fig. 2b–d). Excitingly, in the context of clinical bacterial pathogens, 
these data provide strong evidence that abaucin has narrow-spectrum 
antibacterial activity, which is advantageous for decreasing the inter-
pathogen dissemination of resistance. We note here that a modest 
collection of structural analogs of abaucin displayed varying levels 
of activity against A. baumannii but avoided any discernable activity 
against lab strains of the bacterial species mentioned above (Table 1).  
This initial structure–activity relationship investigation provides 
strong support that exploration of the chemical space around abaucin 
toward developing a medicinal chemistry-optimized narrow-spectrum 
antibiotic against A. baumannii is feasible without being hampered by 
broad-spectrum antibacterial activity.

Given these observations, we hypothesized that abaucin would 
display minimal growth inhibitory activity against human commensal 
species. Indeed, currently employed antibiotics often induce dysbiosis 
during treatment26, resulting in a wide array of complications, including 
secondary infections caused by opportunistic pathogens—C. difficile 
gut infections being a common example27. To test this hypothesis, 
we curated panels of 34 diverse human gut commensal isolates (Sup-
plementary Table 5) and 19 diverse human skin commensal isolates 
(Supplementary Table 6), then tested the growth inhibitory proper-
ties of abaucin at varying concentrations, as well as ampicillin and 
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Fig. 2 | Abaucin has a narrow phylogenetic spectrum of antibacterial activity. 
a, Growth inhibition of 41 multidrug-resistant clinical A. baumannii isolates by 
abaucin. Drug concentrations are shown as fold-MIC based on the MIC of abaucin 
against A. baumannii ATCC 17978. Each dot represents a different clinical strain 
(mean OD of two biologically independent replicates). Black bars show the mean 
growth inhibition of the entire panel at each abaucin concentration. b, Same as  
a, except using 24 carbapenem-resistant Enterobacteriaceae clinical isolates.  
c, Same as a, except using 24 multidrug-resistant P. aeruginosa clinical isolates.  
d, Same as a, except using 14 S. aureus clinical isolates. e, Heat map showing mean 

growth inhibition of a panel of human gut commensal species (left) and human 
skin commensal species (right) by abaucin at 0×, 1×, 10× and 20× MIC (left to 
right), ampicillin (A) at 128 µg ml−1, and ciprofloxacin (C) at 2 µg ml−1. Darker red 
indicates more growth inhibition as analyzed by OD. Strains used are described 
in Supplementary Tables 5 and 6. Experiments were conducted in biological 
duplicate. Note that abaucin displays minimal activity against commensal 
species, whereas ampicillin and ciprofloxacin have broad-spectrum activity 
against commensals. Actino, Actinobacteriota; Bact, Bacteroidota; Fermi, 
Fermicutes; Proteo, Proteobacteria; Verruco, Verrucomicrobiota.
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ciprofloxacin at their respective MIC concentrations in A. bauman-
nii ATCC 17978 (Extended Data Fig. 2a). As expected, ampicillin and 
ciprofloxacin displayed antibacterial activity across a wide range of 
commensal isolates, whereas abaucin largely avoided growth inhibi-
tion of commensal species, even up to 20× MIC (Fig. 2e). Indeed, of the 
53 isolates tested, abaucin only displayed bona fide growth inhibition 
against the gut isolates Bifidobacterium breve and Bifidobacterium 
longum, and this occurred above the MIC observed in A. baumannii  
ATCC 17978 (Extended Data Fig. 2b–d). Given that Bifidobacterium 
is a Gram-positive genus that is phylogenetically divergent from 
Gram-negative Acinetobacter, it is likely that the lower potency activ-
ity of abaucin against Bifidobacterium is through a mechanism that is 
unrelated to that in Acinetobacter. This statement is elaborated below.

Abaucin inhibits lipoprotein trafficking in A. baumannii
Given the A. baumannii selectivity displayed by abaucin, we next ven-
tured to elucidate the mechanism underlying its narrow-spectrum 
functionality. To this end, we first selected abaucin-resistant mutants 
using wild-type A. baumannii growing on solid media supplemented 
with varying concentrations of abaucin. Using 4 µg ml−1 and 5 µg ml−1, 
we were able to isolate abaucin-resistant clones that did not dis-
play cross-resistance to functionally diverse antibiotics (Fig. 3a and 
Extended Data Fig. 3a–h). Whole-genome sequencing of four inde-
pendent isolates revealed mutations in or upstream of the gene 
encoding LolE, an essential inner membrane protein involved in lipo-
protein trafficking that has become a target of strong interest for new 

Gram-negative antibiotic development16,17,28. Two mutants (Y394F and 
an upstream G to A mutation) displayed fourfold resistance to abaucin 
relative to wild-type A. baumannii, and two independent mutants con-
tained an identical A362T variant that resulted in 16-fold resistance. 
We note that the frequency of resistance to abaucin in vitro is 10−8–10−7  
(Supplementary Table 7), largely consistent with known antibiotics 
that target a single protein29. Interestingly, A. baumannii LolE position 
A362 is homologous to E. coli LolE position I365, which resides near the 
acyl chains of the nascent lipoprotein during transport17. We predicted 
the structure of A. baumannii LolE using RoseTTAFold30,31 (Extended 
Data Fig. 3i,j) and observed that AbLolE position A362 is near EcLolE 
position I365 in space, and both are adjacent to the accommodated 
acyl chains of the nascent lipoprotein (Fig. 3b).

These mutational data, combined with in silico structural insights, 
provided evidence suggesting that abaucin may disrupt lipoprotein 
accommodation and transport facilitated by LolE. To further explore 
the hypothesis that abaucin was interfering with lipoprotein traffick-
ing, we treated wild-type A. baumannii with 5× MIC of abaucin, or no 
compound, for varying durations and subjected cells to RNA sequenc-
ing. A transcriptomics approach would afford systems-level insight 
that could provide additional indirect evidence to support or negate 
our initial mechanistic hypothesis. After sequencing, we performed 
differential expression analyses between the no-drug control cultures 
and the abaucin-treated cultures to quantify up- and down-regulated 
transcripts. Differentially abundant transcripts were then clustered 
based on Gene Ontology (GO) term to identify the biological processes 

Table 1 | MICs of abaucin analogs against a panel of bacterial species

E. coli P. aeruginosa S. aureus A. baumannii

CF3

NHN
O

O
Abaucin (1)

>128 µg ml−1 >128 µg ml−1 >128 µg ml−1 2 µg ml−1

2

NHN
O

O

>128 µg ml−1 >128 µg ml−1 >128 µg ml−1 8 µg ml−1

CF3

NHN
O

O
3

F

>128 µg ml−1 >128 µg ml−1 >128 µg ml−1 64 µg ml−1

CF3

NHN
O

O
4

Cl

>128 µg ml−1 >128 µg ml−1 >128 µg ml−1 128 µg ml−1

Growth inhibition of bacterial species by abaucin and analogs thereof. Cells were grown in LB in the presence of varying concentrations of each molecule at 37 °C and the MIC of each was 
determined. The strains shown are E. coli BW25113, P. aeruginosa PAO1, S. aureus RN4220 and A. baumannii ATCC 17978. Experiments were conducted in biological duplicate and resulted in 
identical MIC values.
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that most statistically changed due to abaucin exposure. Through this 
method, we observed that abaucin caused downregulation of genes 
involved in the aerobic electron transport chain and transmembrane 
ion transport (Fig. 3c, Extended Data Fig. 3k and Supplementary Data 
4). Interestingly, this transcriptional response is consistent with the 
activation of the Cpx two-component envelope stress response that 
has been well-characterized in the model bacterium E. coli32,33. Indeed, 
CpxAR has a principal role in monitoring lipoprotein trafficking from 
the inner membrane to the outer membrane in Gram-negative bacte-
ria34. When lipoprotein trafficking is perturbed, CpxA autophospho-
rylates upon associated membrane stress, before phosphotransfer 
to the transcriptional regulator CpxR and subsequent transcriptional 
remodeling to restore envelope homeostasis32. These transcriptomics 
data further strengthen the hypothesis that abaucin displays antibacte-
rial efficacy through perturbation of Lol complex-mediated lipoprotein 
trafficking. We note that the A. baumannii Lol system has not yet been 
thoroughly explored, necessitating our interpretation of these data in 
the context of the better-studied E. coli model.

With mutational, in silico structural and transcriptional data pro-
viding support that abaucin perturbs lipoprotein trafficking, we next 
investigated whether modulation of LolE expression would change 
abaucin potency. First, we hypothesized that the MIC of abaucin would 
decrease with decreased LolE expression35. To test this, we engineered 
A. baumannii with an inducible CRISPRi system using three distinct 
guide RNAs targeting AbLolE. As expected, we observed that induction 

of the CRISPRi construct resulted in fourfold to eightfold decreased 
abaucin MIC relative to an empty vector control with no guide RNA 
(Fig. 3d). Notably, uninduced cells with or without LolE-targeting 
guide RNAs all displayed identical abaucin sensitivities (Extended Data  
Fig. 3l). Next, we hypothesized that the abaucin-resistant mutant 
with the upstream intergenic mutation may be conferring resistance 
through increased expression of lolE—multicopy suppression-mediated 
resistance36. This is the inverse experiment to that described above. 
To test this hypothesis, we performed qPCR on all four independent 
abaucin-resistant mutants, as well as the wild-type parent strain of  
A. baumannii, and observed that the mutant carrying the upstream G 
to A mutation displayed ~4-fold increased expression of lolE relative 
to all other strains tested (Fig. 3e and Extended Data Fig. 3m). Intrigu-
ingly, this fourfold increase in lolE expression parallels the fourfold 
increase in abaucin MIC observed relative to wild-type A. baumannii. 
Collectively, these data are consistent with the mechanistic model that 
abaucin targets LolE-mediated lipoprotein trafficking.

Prior work has shown that inhibition of lipoprotein transport in E. 
coli results in abnormal cell morphology characterized by significant 
bacterial cell swelling and loss of nucleoid condensation37. We hypoth-
esized that abaucin treatment would result in similar morphological 
features in A. baumannii. Therefore, we subjected wild-type A. bau-
mannii to increasing concentrations of abaucin and imaged these 
cells using fluorescence microscopy. Here we stained A. baumannii 
cells with DAPI and FM4-64, respectively, to visualize DNA and the 
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Fig. 3 | Abaucin inhibits lipoprotein trafficking in A. baumannii. a, Growth 
inhibition of wild-type A. baumannii (red), two independent abaucin-resistant 
mutants with the A362T variant in LolE (2,901,674C→T; blue), a mutant with 
the Y394F variant in LolE (2,901,577T→A; teal) and a mutant with an intergenic 
mutation (2,902,955G→A) upstream of LolE (green). All strains were grown in 
LB medium. Experiments were conducted in biological duplicate. Individual 
replicates with means connected are plotted. b, Structure of the LolCDE complex 
from E. coli (EcLolC is green, EcLolD is gray and beige and EcLolE is orange),  
with the predicted structure of A. baumannii LolE overlayed (AbLolE is blue).  
The highlighted region shows the position of the A362T variant of AbLolE  
and the homologous position in E. coli (I365). Note how AbLolE position 362 is 
predicted to reside near EcLolE I365 and both are adjacent to the acyl chain.  
c, RNA sequencing of wild-type A. baumannii treated with 5× MIC abaucin for 3 h. 
Data are the mean of biological duplicates. Transcript abundance in drug-treated 
samples is normalized to no-drug control cultures grown in identical conditions. 

Vertical black lines show statistical significance cutoff values. Note the 
significant downregulation of genes involved in the electron transport chain and 
transmembrane ion transport. d, Growth inhibition of A. baumannii harboring 
an empty CRISPRi vector (red), or three distinct sgRNAs targeting lolE (blue, 
teal and green). All strains were grown in LB medium with induction using aTc to 
knock down lolE. Experiments were conducted in biological duplicate. Individual 
replicates with means connected are plotted. e, qPCR quantifying the expression 
of lolE relative to the housekeeping gene rpoD in all four abaucin-resistant 
mutants, normalized to wild-type A. baumannii. Experiments were conducted in 
biological duplicates with technical triplicates. Bar height represents the mean 
normalized expression. f, Fluorescence micrographs of wild-type A. baumannii 
treated with abaucin. From left to right, cells were treated with no drug, or 
abaucin (1 µg ml−1, 1.5 µg ml−1 or 2 µg ml−1) before imaging. Scale bars, 5 µm. Note 
the loss of native cell morphology and nucleoid condensation as a function of 
abaucin concentration.
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cell envelope. Consistent with prior work in E. coli, abaucin-treated  
A. baumannii cells displayed increased swelling and a loss of intracel-
lular nucleoid condensation as a function of concentration (Fig. 3f).  
These data provide compelling phenotypic support that abaucin dis-
rupts lipoprotein trafficking.

Abaucin can suppress A. baumannii in a wound infection 
model
A. baumannii is a problematic nosocomial pathogen that survives 
for prolonged periods on surfaces and has the ability to accumulate 
extracellular DNA1, including antibiotic resistance genes38. Indeed, 
A. baumannii is a major cause of multidrug-resistant infections in 
wounded military personnel39. Our data showing that abaucin inhib-
ited the growth of a wide array of multidrug-resistant clinical isolates of  
A. baumannii—including pan-resistant strains—provided confidence 
that abaucin may be used to treat such problematic wound infections. 
To test the in vivo efficacy of abaucin, we established a wound infection 
on the dorsal surface of neutropenic C57BL/6 mice using A. baumannii 
ATCC 17978 (~6.5 × 106 CFU inoculum) and allowed the bacterial popu-
lation to expand for 1 h. Mice were subsequently treated with Glaxal 
Base Moisturizing Cream supplemented with vehicle (1.65% DMSO) 
or abaucin (4% wt/vol). Application of vehicle or abaucin occurred 
at 2 h, 3 h, 4 h, 6 h, 10 h, 21 h and 24 h postinfection. Mice were killed 
at 25 h postinfection, and tissue was aseptically dissected and then 
plated to quantify A. baumannii viability. In vehicle-treated mice, we 
retrieved ~6.9 × 108 CFU g−1 at the experimental endpoint and observed 
that the wounded tissues displayed significant inflammation. Contra-
rily, abaucin-treated mice carried ~4.0 × 107 CFU g−1—nearly identical 
to the pretreated infection control mice—and abaucin-treated tissues 
displayed markedly less inflammation (Fig. 4). These data show that 
abaucin can effectively suppress an A. baumannii wound infection, con-
sistent with its effect on A. baumannii viability in vitro (Fig. 1f). We note, 
however, that conventional clinically employed bactericidal antibiotics 
would likely result in enhanced A. baumannii clearance in our wound 
model relative to abaucin. However, due to widespread resistance to 
conventional antibiotics, as well as the broad-spectrum activity of these 
medicines, abaucin and derivatives thereof may represent a structurally 
and functionally new class of A. baumannii-specific antibiotics that can 
overcome existing resistance determinants. Indeed, given that abaucin 

is readily amenable to medicinal chemistry optimization (Table 1), we 
emphasize the existing opportunity to develop structural analogs of 
abaucin with enhanced in vivo activity.

Discussion
Structurally and functionally new antibiotics are urgently needed for  
A. baumannii, which is notoriously difficult to eradicate due to its abil-
ity to uptake and retain antibiotic resistance determinants1. Moreover, 
species-selective antibiotics hold promise to limit the horizontal dis-
semination of resistance determinants and decrease the likelihood of 
dysbiosis during treatment8. The machine learning-guided discovery 
of abaucin highlights the utility of algorithmic approaches to discover 
new antibacterial molecules against A. baumannii and provides the 
field with a promising new narrow-spectrum molecular scaffold to 
address one of the world’s most challenging Gram-negative pathogens. 
Lipoprotein trafficking is a highly sought-after antibiotic target that 
has yet to be perturbed by clinically used antibacterial drugs, which 
is advantageous toward increasing the duration of clinical utility of 
molecules that disrupt this process. Notably, our observations that 
abaucin displays narrow-spectrum activity through perturbation of 
LolE-mediated lipoprotein trafficking can be explained, at least in part, 
due to the divergence of the A. baumannii Lol system relative to most 
other Gram-negative species16. Specifically, in most Gram-negative 
organisms, the inner membrane-associated lipoprotein transport 
machinery consists of LolC, LolD and LolE in an asymmetric multipro-
tein complex. A. baumannii, on the other hand, encodes a symmetric 
inner membrane complex containing LolD and two copies of LolE (also 
termed LolF), without LolC.

The work described herein represents an advancement toward 
the validation of machine learning for new narrow-spectrum antibiotic 
discovery and adds to the growing body of literature that supports the 
utility of computational approaches to accelerate drug discovery more 
generally7. Indeed, over the past half-decade, investigators have suc-
cessfully applied classic molecular fingerprint-based machine learning 
methods, as well as more sophisticated neural network approaches, to 
predict antibiotics5, antiviral compounds40 and anticancer therapies41. 
Furthermore, recent advancements in chemical generation algorithms 
have resulted in the design of new molecules with desired properties 
of interest42.

Expectedly, there exist opportunities for improvement of molecu-
lar property prediction methods. For example, future endeavors can 
readily expand on this work by increasing the size of the A. baumannii 
antibiotic training dataset and performing predictions on larger in 
silico chemical libraries. Given that our prediction filtering method 
was exceptionally stringent to enrich for chemicals that were struc-
turally divergent from our training dataset, it is likely that similarly 
aggressive filtering approaches could be leveraged going forward to 
manage the number of molecules for experimental validation, even 
when predictions are performed on the scale of hundreds of millions 
to billions of compounds. However, we emphasize that algorithmic 
approaches may be applied to in silico chemical libraries of any size, 
serving to decrease the time and costs required to identify valuable 
molecules by avoiding the strict necessity for successive rounds of 
resource-intensive screening.

Moreover, investigators can apply multiproperty optimization 
models that simultaneously predict numerous properties of interest. 
In the context of antibiotic drug discovery specifically, future models 
could be trained on (1) growth inhibition of a pathogen of interest and 
(2) mammalian cell toxicity, given that a sufficiently robust training 
dataset exists. In this manner, forthcoming predictive models can 
be applied to wide regions of unexplored chemical space, with more 
confidence that prioritized molecules will satisfy multiple properties 
that are required of new clinical antibiotics. Indeed, with the increas-
ing availability of high-quality datasets on which to train, we posit that 
machine learning methods are now well positioned to become widely 
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Fig. 4 | Abaucin can suppress A. baumannii infection in a wound model.  
a, In a dorsal wound infection model, mice were infected with A. baumannii 
ATCC 17978 (~6.5 × 106 CFU). After 1 h of infection, mice were treated with vehicle 
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the vehicle control (arrows) that is absent in the abaucin-treated mouse.
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employed tools to more efficiently identify structurally and function-
ally new antibacterial leads.
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Methods
Training data acquisition
A. baumannii ATCC 17978 was grown in 2 ml LB medium (Becton, Dick-
inson and Company) overnight at 37 °C with shaking. Cells were diluted 
1/10,000 into fresh LB and 99 µl of cells was added to each well of a 
96-well flat-bottom plate (Corning). Next, 1 µl of a 5 mM stock of each 
molecule from a collection of 7,684 small molecules (FDA-approved 
drugs and molecules from screening collections from the Broad Insti-
tute) was added, in duplicate, using an Agilent Bravo liquid handling 
system. The final concentration was 50 µM. Plates were incubated 
in sealed plastic bags at 37 °C for 16 h and read at 600 nm using a 
SpectraMax M3 plate reader. Plate data were normalized based on 
the interquartile mean of each plate before binarization into ‘active’ 
and ‘nonactive’ categories for model training. Active molecules were 
defined as those that resulted in growth at least 1σ below the mean 
growth of the entire dataset.

Model training and predictions
A directed message-passing neural network (Chemprop), like other 
message-passing neural networks, learns to predict molecular prop-
erties directly from the graph structure of molecules, where atoms 
are nodes and bonds are edges. For every molecule in our training 
dataset, we reconstructed the molecular graph corresponding to each 
compound’s SMILES string and determined the set of atoms and bonds 
using RDKit19. Next, we initialized a feature vector for each atom and 
bond, as described previously5.

The model applies a series of message-passing steps where it 
aggregates information from neighboring atoms and bonds to build 
a representation of local chemistry. On each step of message passing, 
every bond’s featurization is updated by summing the featurization of 
neighboring atoms and bonds, applying a single neural network layer, 
adding the bond’s previous featurization, and then applying ReLU acti-
vation. After a defined number of message-passing steps, the learned 
featurizations across the molecule are summed to produce a single 
featurization for the whole molecule. Lastly, this featurization is sub-
jected to a feed-forward neural network that outputs a prediction of the 
property of interest—in our case, antibiotic activity against A. baumannii. 
To augment the architecture described here, we employed the following 
two model enhancements: molecule-level features and ensembling.

Molecule-level features. The message-passing approach is ideal 
for extracting features of local chemistry within a larger molecule. 
However, it can struggle to extract global molecular features for larger 
molecules. To address this limitation, we concatenated the molecular 
representation that is learned during message passing with 200 addi-
tional molecule-level features computed using RDKit.

Ensembling. Ensembling was used to further improve model per-
formance, where several copies of the same model architecture with 
different random initial weights are trained and their predictions are 
averaged. Here we used an ensemble of ten models, with each model 
trained on a unique split of the training dataset.

After model building and training on the 7,684-molecule train-
ing dataset (with ~6.2% active examples), we applied our model to the 
updated Drug Repurposing Hub, consisting of 6,680 compounds, many 
of which occupy a unique chemical space relative to that on which the 
model was trained. Here we randomly split the dataset into 80% train-
ing data, 10% validation data and 10% test data. We trained our model 
on these data for 30 epochs and evaluated the model on the validation 
data at the end of each epoch. Once training was complete, we used 
the model parameters that performed best on the validation data 
and tested the model on the test data. We ran tenfold cross-validation 
by repeating this procedure with ten different splits by systemati-
cally dividing training, validation and test sets such that all molecules 
appeared at equal proportions across all sets over the course of training 

iterations. After we achieved model performance that was accept-
able for our prediction task, we conducted predictions on the Drug 
Repurposing Hub.

Our model had the following hyperparameters: number of 
message-passing steps = 3; neural network hidden size = 300; number 
of feed-forward layers = 2; dropout probability = 0.

Structural analysis
We used Tanimoto similarity to quantify the chemical relationship 
between molecules in our training dataset and prediction dataset. 
The Tanimoto similarity between two molecules is a measure of the 
proportion of shared chemical substructures. To compute Tanimoto 
similarity, we first made Morgan fingerprints for each molecule using 
radius = 2 and 2,048-bit fingerprint vectors using RDKit. Tanimoto 
similarity was then computed as the number of chemical substructures 
contained in both molecules divided by the total number of unique 
chemical substructures in either molecule. The Tanimoto similarity is a 
number between 0 and 1, where 0 represents no shared substructures 
and 1 represents all substructures that are shared. For t-distributed sto-
chastic neighbor embedding (t-SNE) analysis, plots were created using 
the implementation of t-distributed stochastic neighbor embedding 
by scikit-learn43. Here we first used RDKit to compute Morgan finger-
prints for each molecule as described above. We then used t-SNE with 
the Jaccard distance metric to reduce the data from 2,048 dimensions 
to the two dimensions that are plotted. Jaccard distance is Tanimoto 
distance, which is defined as follows: Tanimoto distance = 1 – Tanimoto 
similarity. We used the scikit-learn default values for all t-SNE param-
eters besides the distance metric.

Pathogen growth inhibition
Cells were grown overnight in 2 ml LB medium and diluted 1/10,000 
into fresh LB. In 96-well flat-bottom plates (Corning), cells were then 
introduced to compound at a final concentration of 50 µM, or to com-
pound at twofold serial dilutions, in final volumes of 100 µl. Plates 
were then incubated at 37 °C until untreated control cultures reached 
the stationary phase, at which time plates were read at 600 nm using 
a SpectraMax M3 plate reader. We note here that the incubation time 
required to reach the stationary phase differed slightly between strains. 
For abaucin analog spectrum of coverage assays, the laboratory strains 
were E. coli BW25113, S. aureus RN4220 and P. aeruginosa PAO1. Clinical 
isolate panels were curated from the CDC ARIsolate Bank and assayed 
in LB as described above.

Bacterial cell killing
Cells were grown overnight in 2 ml LB medium and diluted 1/10,000 
into fresh LB. In 96-well flat-bottom plates (Corning), cells were grown 
to the required density (100 µl final volume) at 37 °C, at which time 
compound was added at the indicated concentration and cultures were 
incubated for the required duration. Cells were then pelleted in plates 
by centrifugation at 4,000g for 15 min at 4 °C and washed in ice-cold 
PBS. After washing, cells were tenfold serially diluted in PBS and plated 
on LB. In experiments where cells were incubated with antibiotic in 
nutrient-deplete conditions, cells were grown to the required density in 
LB media at 37 °C, washed in PBS and subsequently resuspended in PBS 
before the addition of compound (100 µl final volume). After cultures 
were incubated for the required duration at 37 °C, cells were pelleted 
in plates by centrifugation at 4,000g for 15 min at 4 °C and washed in 
ice-cold PBS. After washing, cells were tenfold serially diluted in PBS 
and plated on LB. For post-treatment regrowth experiments, cells were 
treated with abaucin and incubated in LB for 6 hours as described above 
(100 µl final volume). Cells were then pelleted in plates by centrifuga-
tion at 4,000g for 15 min at 4 °C and washed in ice-cold PBS. After 
washing, cells were resuspended in 100 µl fresh LB, diluted 1/1,000 in 
fresh 100 µl LB and grown at 37 °C in a Biotek Synergy H1 plate reader. 
Plates were read at 600 nm every 20 min for 16 h.
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Commensal species growth inhibition
For analysis of commensal species from the human gut, strains were 
grown from frozen stock on brain heart infusion (BHI) agar supple-
mented with 0.5 g l−1 l-cysteine, 10 mg l−1 hemin and 1 mg l−1 vitamin K 
(BHI3). Single colonies were picked, transferred to 96-well plates con-
taining liquid BHI3 and grown for 24 h at 37 °C. Antibiotics (ampicillin, 
Sigma-Aldrich; ciprofloxacin, Sigma-Aldrich; abaucin; Supplementary 
Note) were arrayed in BHI3 broth at twofold the final desired concen-
trations, and prereduced in an anaerobic environment overnight. 
Liquid bacterial cultures were standardized to twofold the desired 
optical density (OD600 = 0.02). The twofold concentrated cultures 
were then inoculated into 96-well plates (50 µl) containing twofold 
concentrated antibiotics (50 µl). The final antibiotic concentrations 
were ampicillin (128 µg ml−1), ciprofloxacin (0.25 µg ml−1) and abaucin 
(2 µg ml−1, 20 µg ml−1 and 40 µg ml−1). The final culture volume was 
100 µl. After inoculation, plates were sealed with breathable mem-
branes (Breathe-Easy) and incubated at 37 °C without shaking for 24 h. 
After incubation, the plates were read at 600 nm using Biotek Synergy 
H1 plate reader. All bacterial strains were grown and incubated in a 
Coy Laboratory Vinyl Anaerobic Chamber (5% CO2, 2% H2 and 93% N2). 
All media was prereduced under anaerobic conditions for at least 4 h 
before use.

For analysis of commensal skin species in aerobic conditions, 
strains were grown from frozen on BHI3 agar and incubated at 37 °C for 
24 h. Single colonies were picked and transferred to 96-well plates con-
taining liquid BHI3, which were then incubated at 37 °C without shaking 
for 24 h. Liquid cultures were then standardized to OD600 = 0.02 (two-
fold the final OD). Antibiotics (ampicillin, ciprofloxacin and abaucin) 
were arrayed in BHI3 broth at twofold the final concentrations (the final 
antibiotic concentrations were ampicillin (128 µg ml−1), ciprofloxa-
cin (0.25 µg ml−1) and abaucin (2 µg ml−1, 20 µg ml−1 and 40 µg ml−1)). 
The twofold concentrated cultures (50 µl) were then inoculated into 
96-well plates containing the twofold concentrated antibiotics (50 µl) 
to achieve a final volume of 100 µl. Plates were sealed with breathable 
membranes (Breathe-Easy) and incubated at 37 °C without shaking for 
48 h under 5% CO2. After incubation, plates were read at 600 nm using 
a Biotek Synergy H1 plate reader.

Suppressor mutant evolution and sequencing
A. baumannii ATCC 17978 was grown in 2 ml LB medium overnight at 
37 °C with shaking. ~108 CFU in 100 µl liquid LB was deposited onto 
solid LB plates supplemented with abaucin at varying concentrations 
ranging from 2 µg ml−1 to 10 µg ml−1. Plates were incubated at 37 °C 
and monitored every 24 h for the emergence of abaucin mutants. On 
the emergence of colonies, these were purified by restreaking onto 
solid LB and solid LB supplemented with abaucin at the same con-
centration from which the colonies were originally collected. Four 
independent abaucin-resistant strains were subsequently selected for 
whole-genome sequencing. Chromosomal DNA from each mutant and 
wild-type A. baumannii ATCC 17978 was purified using a Gentra Pure-
gene DNA isolation kit (Qiagen). DNA (chromosomal and plasmid) was 
sequenced on an Illumina MiSeq platform and reads were aligned to the 
reference A. baumannii ATCC 17978 genome (CP053098.1, CP053099.1 
and CP053100.1) using Breseq44. For frequency of resistance quanti-
fication, 1.1 × 108 CFU of A. baumannii ATCC 17978 in 100 µl liquid LB 
was deposited onto solid LB plates supplemented with abaucin at the 
noted concentrations. After 24 h, 48 h and 72 h of incubation at 37 °C, 
colonies were counted, and these values were divided by 1.1 × 108 to 
quantify the frequency of resistance.

Transcriptomic analysis
A. baumannii ATCC 17978 was grown in 2 ml LB medium overnight at 
37 °C with shaking. Cells were diluted 1/10,000 into 50 ml fresh LB and 
grown to mid-log at 37 °C with shaking, at which time cultures were sup-
plemented with 5× MIC (10 µg ml−1) abaucin or no drug and grown for an 

additional 3 h, 4.5 h or 6 h. After the required durations of incubation 
post-treatment, 2 ml samples were collected and flash-frozen on liquid 
nitrogen. cDNA library construction and sequencing for these samples 
were performed by Genewiz. Paired-end sequence data in FASTQ file 
format were aligned to the transcripts of CP053098.1 (A. baumannii 
ATCC 17978 chromosome), CP053099.1 (A. baumannii ATCC 17978 
plasmid 1) and CP053100.1 (A. baumannii ATCC 17978 plasmid 2). mRNA 
abundances were then quantified as transcripts per million using the 
kallisto (version 0.46.2)45 ‘quant’ function, and the parameter ‘-b 100’ 
with paired-end reads. All downstream analyses were performed using 
R (version 4.1.0)46. Expression differences between abaucin-treated 
samples and nontreated controls were quantified using the DESeq2 
pipeline (version 1.34.0)47. We defined a cutoff of log2(FC) ≥ 1.5 and 
padj ≤ 0.01 to identify differentially expressed genes. For GO enrich-
ment, differentially expressed A. baumannii transcripts for which no 
gene name was identified in CP053098.1, CP053099.1 or CP053100.1 
were subject to blastp analysis against E. coli MG1655 (https://blast.
ncbi.nlm.nih.gov/). A. baumannii proteins with E values < 10−50, percent 
identify >40% and query coverage >80% to annotated E. coli proteins 
were binned and GO-enriched with EcoCyc Pathway Tools48–50 using the 
Fisher exact test for statistical significance of GO enrichment.

CRISPRi LolE knockdown
Three independent 20 base pair sgRNAs targeting lolE (sgRNAlolE-1:  
5′-TAAACGTAAGCCAAGCGAAT-3′; sgRNAlolE-2: 5′-CAAATTCTTCAC 
AATGTCAT-3′; sgRNAlolE-3: 5′-TTTAAGTGAGTCGAGGCTAC-3′) were 
designed using predictive software51 to maximize on-target activity 
and minimize off-target binding in A. baumannii ATCC 17978. sgRNAs 
were then cloned into pFD152 (Addgene plasmid 125546; provided by D. 
Bikard) using a single-step golden gate assembly reaction, as described 
previously52. sgRNA sequences were verified using Sanger sequenc-
ing and constructs were transformed into A. baumannii ATCC 17978. 
pFD152 was selected in A. baumannii using spectinomycin (250 µg ml−1 
in liquid media and 500 µg ml−1 on solid media; Sigma-Aldrich).  
To determine whether LolE knockdown enhanced the growth inhibi-
tory potency of abaucin, A. baumannii ATCC 17978 harboring pFD152, 
pFD152-sgRNAlolE-1, pFD152-sgRNAlolE-2 or pFD152-sgRNAlolE-3 were 
grown overnight in LB medium, diluted 1/10,000 into fresh LB, and 
grown mid-log phase (OD ~ 0.2) at 37 °C. Anhydrotetracycline (aTc; 
Sigma-Aldrich) was added to the subcultures at a final concentration 
of 1 µg ml−1 to induce knockdown of lolE expression and cultures were 
incubated for an additional 2.5 h at 37 °C with shaking. Following this 
induction period, cultures were back diluted to the equivalent OD 
of 1/10,000 of a dense culture and introduced to varying concentra-
tions of abaucin and 0.5 µg ml−1 of aTc. MICs were then determined as 
described above.

Quantitative reverse transcription (qRT)–PCR
Wild-type A. baumannii ATCC 17978 and the resistant mutants were 
grown in 3 ml LB medium overnight at 37 °C with shaking. Cells were 
diluted 1/10,000 into 15 ml fresh LB and grown to mid-log at 37 °C 
with shaking, at which time cells were pelleted by centrifugation at 
4,000g for 15 min at 4 °C and frozen for ~2 h. Cells were lysed in 100 µl 
of 1 mg ml−1 lysozyme and incubated at room temperature for 10 min. 
RNA was isolated using the RNEasy Mini Kit (Qiagen), with some modi-
fications. Briefly, to each sample, 3.5 µl of 2-mercaptoethanol, 250 µl 
of RLT buffer and 250 µl of 95% ethanol was added. Seven hundred 
microliters of each sample was then loaded onto a spin column and 
incubated at room temperature for 5 min. The sample was centrifuged 
at 8,000g for 1 min. The column was washed with 700 µl RW1 buffer 
and centrifuged at 8,000g for 1 min. The column was washed with 
700 µl RPE buffer and centrifuged at 8,000g for 2 min. The column 
was washed again with 500 µl RPE buffer and centrifuged at 8,000g 
for 2 min. The column was transferred to a new collection tube and 
incubated at room temperature for 5 min. The empty column was 
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centrifuged at 13,000g for 2 min and incubated at room temperature 
for 5 min. The column was then placed into a fresh 1.5 ml microcentri-
fuge tube and 45 µl of RNase-free water was added to the center of the 
column and incubated at room temperature for 5 min. To elute RNA, 
the column was centrifuged at 8,000g for 2 min. RNA was subject 
to DNase I treatment for 10 min at room temperature. The resulting 
RNA was quantified using a Nanodrop. Next, the RNA integrity was 
assessed through agarose gel electrophoresis. For cDNA synthesis, the 
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) 
was used as specified by the manufacturer’s instructions. The cDNA 
was then amplified with iTaq Universal SYBR Green Supermix (Bio-Rad) 
via a Bio-Rad CFX96 (Bio-Rad) following the manufacturer’s instruc-
tions. The target amplification efficiency was evaluated by generating 
a standard curve with dilutions of cDNA (>95% amplification efficiency 
for each primer pair). Primers lolE195F + lolE195R were used to amplify 
lolE; rpoD182F + rpoD182R, glt188F + glt188R and gyrB196F + gyrB196R 
were used to amplify the housekeeping genes rpoD, gltA and gyrB. 
Triple technical replicates were examined per biological sample, with 
controls omitting reverse-transcriptase to verify a lack of genomic DNA 
contamination, and cDNA to verify the absence of external nucleic acid 
contamination and primer dimer formation. Transcript level of lolE 
from each mutant was evaluated using the comparative 2−ΔΔCt method 
to the wild-type strain, normalizing to the 2−ΔΔCt value of housekeep-
ing genes.

lolE195F—5′-CAGCTGGAGATGGAGTCGCT-3′
lolE195R—5′-TGGTGACGGGTATTGACCCT-3′
rpoD182F—5′-ACATGGCCGTAATAGCCCTGA-3′
rpoD182F—5′-CCATACGGCCACGACGTACT-3′
glt188F—5′-GCGACAGCTTCATGCGAGTC-3′
glt188R—5′-TGAGCACGAACTTTCGCATCG-3′
gyrB196F—5′-ATTAGTGCTGATGCGCCTGC-3′
gyrB196R—5′-CTTGATCCGCCCATTGCTGG-3′

Structural protein prediction
We aligned the wild-type A. baumannii protein sequence of inter-
est against the UniProt/SwissProt database53 using blastp (version 
2.13.0+)54,55 through the NCBI blast platform (https://blast.ncbi.
nlm.nih.gov/) and obtained a multiple-sequence alignment. This 
alignment identified the E. coli K12 LolE protein as a homolog with  
E value = 6 × 10−88. Next, we aligned the E. coli LolE protein, the A. bauman-
nii wild-type LolE protein and the A. baumannii abaucin-resistant A362T 
variant LolE protein using Geneious Prime software (version 2021.2.2; 
https://www.geneious.com); we applied a ‘global alignment with free 
end gaps’ as the alignment type and ‘blosum62’ as the cost matrix, with 
parameters gap open penalty = 12; gap extension penalty = 3 and refine-
ment iterations = 2. We then predicted the structure of the wild-type 
A. baumannii LolE protein and A362T variant protein sequences with 
RoseTTAfold30 through the Robetta platform (https://robetta.baker-
lab.org/). We did not provide a multiple-sequence alignment for this 
computation. We obtained the protein structure of the wild-type E. coli 
LolCDE in complex with a lipoprotein from ref. 17, Protein Data Bank: 
7ARH. We then aligned the structures of the wild-type A. baumannii LolE 
protein and the LolCDE complex with Maestro (version 12.9.137) from 
Schrödinger and ChimeraX (version 1.3rc202112020528)56,57. In Maestro, 
we used the default structural alignment parameters. With ChimeraX, 
we used the ‘Needleman-Wunsch’ alignment algorithm with ‘blosum62’ 
as the similarity matrix, with parameters ‘bb’ as chain pairing; 0.3 as SS 
fraction; 1 as gap extend; 18/18/6 as gap open (HH/SS/other); and 2 as 
iteration cutoff. Final figures of structural alignments were generated 
with ChimeraX (version 1.3rc202112020528)56,57.

Quantitative microscopy
A. baumannii ATCC 17978 was grown overnight in 2 ml LB medium and 
diluted 1/10,000 into fresh LB. In 96-well flat-bottom plates, cells were 
then introduced to the compound at the indicated concentrations, in 

final volumes of 100 µl. Plates were grown to mid-exponential phase 
in a Biotek Epoch 2 plate reader with shaking at 37 °C. Cell suspensions 
were transferred to a poly-lysine coated 0.17 mm glass-bottom imag-
ing plate (Brooks Scientific) and incubated with FM 4-64 (1 µg ml−1 
final concentration; Invitrogen) and DAPI (0.2 µg ml−1 final concentra-
tion; Invitrogen) probes for 10 min in the dark. Samples were imaged 
using a Nikon Eclipse Ti inverted microscope at ×100 magnification, 
and cell widths were assessed using Nikon Elements software. Cell 
widths for each sample were summarized in R using the density func-
tion to explore population shifts in morphology as a function of drug 
concentration.

Animal models
Mouse model experiments were conducted according to the guide-
lines set by the Canadian Council on Animal Care, using protocols 
approved by the Animal Review Ethics Board and McMaster Univer-
sity under Animal Use Protocol 20-12-41. Before infection, mice were 
relocated at random from housing cages to single-occupancy control 
or treatment cages. No animals were excluded from the analysis, 
and blinding was considered unnecessary. Six- to eight-week-old 
female C57BL/6N mice were pretreated with 150 mg kg−1 (day T-4) 
and 100 mg kg−1 (day T-1) of cyclophosphamide to render mice neu-
tropenic. On day T-0, mice were anesthetized using isoflurane and 
administered buprenorphine as an analgesic at 0.1 mg kg−1 intraperi-
toneally. A 2 cm2 abrasion on the dorsal surface of the mouse was 
inflicted through tape-stripping to the basal layer of the epidermis 
using approximately 30–35 pieces of autoclave tape. Mice were imme-
diately infected with ~6.5 × 106 CFU A. baumannii ATCC 17978 directly 
pipetted onto the wound bed. The infection was left to establish for 
1 h before the first treatment with Glaxal Base supplemented with 
vehicle (1.65% DMSO) or abaucin (4% wt/vol). Mice (n = 5 or 6) were 
treated 1, 2, 3, 4, 6, 10, 21 and 24 h postinfection with ~10 to 20 µl Glaxal 
Base with abaucin (treatment) or DMSO (control). Mice were killed 
at experimental endpoint (25 h postinfection) and wound tissue was 
collected, homogenized in phosphate-buffered saline and plated on 
solid LB medium supplemented with chloramphenicol to quantify 
bacterial load. For chemical preparation, abaucin was weighed and 
solubilized in 1.65% DMSO and then added to a predetermined amount 
of Glaxal Base to a final concentration of 4% w/v. The solution was 
mixed thoroughly to ensure an even distribution of the compound in 
the carrier. For control groups, the same amount of vehicle (DMSO) 
was measured and mixed through Glaxal Base.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data Availability
GenBank accession numbers for sequencing of abaucin-resistant 
mutants are BankIt2629921 – OP677864, OP677865, OP677866 
and OP677867. GEO accession numbers for RNA sequencing data-
sets are GSE214305 – GSM6603484, GSM6603485, GSM6603486, 
GSM6603487, GSM6603488, GSM6603489 and GSM6603490. Source 
data are provided with this paper.

Code Availability
All custom code used for antibiotic prediction is open source and can 
be accessed without restriction at https://github.com/chemprop/
chemprop. A cloned snapshot used for this paper is available at https://
github.com/GaryLiu152/chemprop_abaucin. All commercial software 
used is described in Methods. Source data are provided with this paper.
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Extended Data Fig. 1 | Model training data and prediction. (a) Replicate plot 
showing primary screening data of 7,684 small molecules for those that inhibited 
the growth of A. baumannii ATCC 17978 in LB medium at 50 µM. (b) Rank-ordered 
growth inhibition data of the prioritized 240 molecules from our prediction set 
that were selected for empirical validation (top); rank-ordered growth inhibition 
data of the 240 predicted molecules with the lowest prediction score (middle); 
rank-ordered growth inhibition data of the 240 predicted molecules with the 
highest prediction score that were not found in the training dataset (bottom). 
Experiments were conducted in biological duplicate. Individual replicates with 

means connected are plotted. Dashed horizontal line represents the stringent 
hit cut-off of >80% growth inhibition at 50 µM. (c) Growth inhibition of A. 
baumannii by abaucin (blue) and serdemetan (red) in LB medium. Experiments 
were conducted in biological duplicate. Individual replicates with means 
connected are plotted. The structure of serdemetan is shown. (d) Growth kinetics 
of A. baumannii cells after treatment with abaucin at varying concentrations 
for 6 hours. Experiments were conducted in biological duplicate. Individual 
replicates with means connected are plotted.
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Extended Data Fig. 2 | Antibacterial activity of abaucin against human 
commensal species. (a) Growth inhibition of A. baumannii ATCC 17978 by 
ampicillin (blue) and ciprofloxacin (red) in LB medium. Experiments were 
conducted in biological duplicate. Individual replicates with means connected 
are plotted. (b) Growth inhibition of B. breve by abaucin. Experiments were 

conducted in biological duplicate. (c) Growth inhibition of B. longum by abaucin. 
Experiments were conducted in biological duplicate. Individual replicates with 
means connected are plotted. (d) Non-validated (see Fig. 2e) growth inhibition 
of E. lenta by abaucin. Experiments were conducted in biological duplicate. 
Individual replicates with means connected are plotted.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Abaucin mechanism of action. (a–h) Growth inhibition 
of wildtype A. baumannii (WT) and the four independent abaucin-resistant 
mutants by a collection of diverse antibiotics. From left to right for each plot, 
the mutants are: A362T variant 1, Y394F, intergenic, and A362T variant 2. 
Experiments were conducted in biological duplicate. Note that the abaucin-
resistant mutants do not display cross-resistance to other antibiotics. (i) 
Structural prediction of wildtype A. baumannii LolE using RoseTTAFold 
(bottom), with the structural error estimate of each amino acid (top). Position 
362 is highlighted orange and resides in a disordered region of the protein. (j) 
same as (i), except with the Y362T abaucin-resistant mutant of LolE. (k) RNA 
sequencing of wildtype A. baumannii treated with 5x MIC abaucin for 4.5 hr 
(top) or 6 hr (bottom). Data are the mean of biological duplicates. Transcript 

abundance is normalized to no-drug control cultures grown in identical 
conditions. Vertical black lines show statistical significance cut-off values. Note 
the highly significant downregulation of genes involved in the electron transport 
chain and transmembrane ion transport. (l) Growth inhibition of A. baumannii 
harboring an empty CRISPRi vector (red), or three distinct sgRNAs targeting lolE 
(blue, teal, and green). All strains were grown in LB medium without induction. 
Experiments were conducted in biological duplicate. Individual replicates 
with means connected are plotted. (m) qPCR quantifying the expression of 
lolE relative to the housekeeping gene gltA (left) and gyrB (right) in all four 
abaucin resistant mutants, normalized to wildtype A. baumannii. Experiments 
were conducted in biological duplicate with technical triplicates. Bar height 
represents mean expression.
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