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Abstract

Segmentation of medical imagery is a challenging problem due to the complexity of the images,
as well as to the absence of models of the anatomy that fully capture the possible deformations in
each structure. The brain is a particularly complex structure, and its segmentation is an important
step for many problems, including studies in temporal change detection of morphology, and 3-D
visualizations for surgical planning. We present a method for segmentation of brain tissue from
magnetic resonance images that is a combination of three existing techniques from the computer
vision literature: expectation/maximization segmentation, binary mathematical morphology, and
active contour models. Each of these techniques has been customized for the problem of brain
tissue segmentation such that the resultant method is more robust than its components. Finally,
we present the results of a parallel implementation of this method on IBM’s supercomputer Power
Visualization System for a database of 20 brain scans each with 256 x 256 x 124 voxels and

validate those results against segmentations generated by neuroanatomy experts.
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1. INTRODUCTION

Many current problems in image-guided surgery, therapy
evaluation and diagnostic tools strongly benefit from accurate
3-D models of anatomical structures. This implies that auto-
mated or semi-automated segmentation methods are of con-
siderable importance to the effective use of medical imagery
in clinical and surgical settings. Typically, segmentation in-
volves the isolation of anatomical structures from images ob-
tained using modalities such as computed tomography (CT),
X-ray, magnetic resonance imaging (MRI), positron emission
tomography (PET), single photon emission computed tomog-
raphy (SPECT) or ultrasound, with a primary goal of pro-
viding accurate representations of key anatomical structures,
to be used for: quantitative studies correlating volumes of
anatomical structures with pathological or normal develop-
ment (Shenton et al., 1992; Huppi et al., 1995b; Morocz et al.,
1995); or for 3-D visualization of structures for pre- and intra-
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operative surgical planning (Pelizzari et al., 1989; Szeliski
and Lavallee, 1993; Grimson et al., 1994; Ayache, 1995).

In this work we address the segmentation problem in the
context of isolating the brain in MRIs. Figure 1 shows an
example segmentation generated by our system from MRI
data.

Many issues inherent to medical imagery make segmenta-
tion a difficult task. The objects to be segmented from medical
imagery are true (rather than approximate) anatomical struc-
tures, which are often non-rigid and complex in shape, and
exhibit considerable variability from person to person. More-
over, there are no explicit shape models yet available that fully
capture the deformations in anatomy. Magnetic resonance
images are further complicated due to the limitations in the
imaging equipment that lead to a non-linear gain artifact in the
images. In addition, the signal is degraded by motion artifacts
due to voluntary or involuntary movement of the patient dur-
ing the scanning process.

In section 2 we present a brief summary of some techniques
that have been used for segmentation of medical imagery. In
section 3 we present our method for segmentation of brain
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Figure 1. Segmented brain tissue from MRI using our system.

tissue that combines the strengths of some of the existing
technology with some new ideas and that is more robust than
its individual components. We also briefly describe the paral-
lel hardware [IBM’s supercomputer, the Power Visualization
System (PVS)] on which we have implemented our system.
In section 4 we discuss issues regarding validation of medical
image segmentation, and present a comparison of our results
on a database of 20 brains, each of size 256 x 256 x 124 voxels,
against segmentations generated by experts. We conclude
with a discussion of potential generalizations of our method-
ology to segment other structures from medical imagery.

2. RELATED WORK

The goal of the present work is to segment MR scans of
brain tissue into key anatomical structures. Although there are
many rapid scanning techniques in use for MR scanning, here
we use gradient-echo images (Westbook and Kaut, 1993).
Several previous methods are at least in part applicable to this
problem.

Deformable models have been a popular technique for seg-
mentation of medical data, in part because of their ability to
encode approximate shape constraints. Systems that use such
models typically represent anatomical structures using stacks
of deformable contours in 2-D or using actual 3-D deformable
surfaces. Example systems include: Cohen and Cohen’s 2-D
and 3-D Balloons (Cohen and Cohen, 1993), Staib and Dun-

can’s Fourier snakes (Staib and Duncan, 1992; Chakraborty
et al., 1994), Grzeszczuk and Levin’s stochastic deformation
method (Grzeszczuk and Levin, 1994), Gindi ef al.’s ‘atlas
based snakes’ (Chang et al., 1994) and Goble et al.’s ‘active
surfaces’ (Gobel et al., 1994).

In our experience, snake-like models serve best in an in-
teractive setting because of the need for manual initialization
of the starting positions and the adjusting of parameters for
acceptable performance. Fourier snakes obviate the need for
manual initialization by constructing shape models from sam-
ple data and are attractive for smooth surfaces like that of the
corpus callosum, but would require a prohibitive amount of
computation if applied to surfaces as complex as that of the
brain. Atlas-based snakes also remain to be demonstrated on a
surface other than that of the smooth putamen. Itis also worth-
while to note that the efficacy of snakes as an interactive tool
depends greatly on the presence of a powerful graphical user
interface that allows the user easily, naturally, and efficiently
to control the different forces acting on different parts of the
snake.

Other systems have used binary morphological operators
such as erosion and dilation to incorporate topological in-
formation into segmentation algorithms (Gerig et al., 1991;
Brummer et al., 1993; Sandor and Leahy, 1994). Though
binary morphology provides a simple and efficient way for
incorporating distance and neighborhood information in seg-
mentation, it requires a prior binarization of the image into
object and background regions, which is not necessarily a
trivial thresholding.

In addition, statistical methods, such as maximum like-
lihood, Bayesian decision theory, and principal component
analysis have been used for intensity-based as well as location
based segmentation of medical imagery (Collins et al., 1992;
Cootes et al., 1994; Wells et al., 1994).

Our approach is to combine aspects of each of these three
classes of techniques into a hybrid system that is an improve-
ment on each of the individual methods.

3. OUR METHOD

In our method for segmentation of brain tissue from mag-
netic resonance images, we combine methods that individ-
ually exploit grey level, topological and spatial information
in the images. The specific techniques we use are: expecta-
tion/maximization (EM) segmentation for an intensity-based
correction and classification of the data, binary morphology
and connectivity for incorporation of relative topological in-
formation, and balloon-based deformable contours for addi-
tion of spatial information to the segmentation process.

We begin the discussion with a description of the input
data to our algorithm, followed by a description of the model
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Figure 2. An annotated gradient echo MR slice (air, csf and cranium are dark in these images).

of the brain tissue that is implicit in our algorithm, and then
present details of each of the three steps in our algorithm.
We conclude the section with a brief discussion of a parallel
implementation of the algorithm that we are currently
using at the Surgical Planning Laboratory of Brigham and
Women’s hospital to routinely segment brains for clinical
and research purposes.

3.1. Description of input data

We use MR scans of the head as input to our algorithm. We are
currently working with gradient echo images acquired using
a General Electric Signa 1.5 Tesla clinical MR imager. The
voxel size is approximately 1 x 1 x 1.5 mm and there are
256 x 256 x 124 voxels per data set [see Shenton et al. (1992)
for details].

Tissue classes visible in such MRI scans include white and
grey matter, cerebrospinal fluid (csf), meninges (the protec-
tive membranes surrounding the brain), skull, muscle, fat,
skin or air (see Figure 2). Pathology introduces the additional
classes of edema, tumor, hemorrhage or other abnormality.

3.2. Model for the brain

Our first task was to construct a model for the brain that
would guide our segmentation process. This model is im-
plicit in our algorithms and was constructed based on expert
opinion from the Surgical Planning Laboratory, Brigham and
Women’s Hospital, and Harvard Medical School.

We represent the brain as the largest region consisting
of white and grey matter, located approximately in the cen-
ter of the head, and surrounded by csf and meninges. If
our segmenter could clearly identify white and grey matter,
without falsely including other tissue, and if it could do so
while clearly isolating this material for surrounding tissue,
that would be sufficient. Unfortunately, several other tissue
types can cause the white and grey matter to be connected to
other structures. For example, the meninges are surrounded
by the cranium. Blood vessels and nerves connect the cranium
to the brain tissue. In particular, the connectors are, in order of
increasing thickness: bridging veins from the cerebral cortex
to dura, and from dura to the skull, the second cranial nerve,
or optic nerve, the vertebral arteries around foramun magnum,
and the external carotid artery in the region of the temporalis
muscle. Thus, we need some way of removing these connect-
ing structures so that we can isolate the white and grey matter.
This is compounded by the fact that there is some natural
overlap in the intensity distributions of brain versus non-brain
structures. Additional overlap in the intensity distributions is
typically introduced due to limitations of the imaging process,
and noise may be introduced due to movement of the patient
during the acquisition of the scan.

This model of the brain strongly suggests the use of inten-
sity distributions as well as absolute and relative spatial ar-
rangement of the various structures in the head to aid the seg-
mentation process. In fact, several groups have approached
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this task with techniques that indicate a similar underlying
model for the brain tissue (Brummer et al., 1993; Sandor and
Leahy, 1994).

3.3. Details of method

Using the model described above, we divide the segmentation
of the brain into three steps. We will illustrate the details of
each of these steps using two example MRI scans. Although
the algorithm operates in 3-D, 2-D cross-sections are shown
for convenience. In the first example, the first two steps of our
method suffice to generate a segmentation, while the second
example additionally requires the third step.

3.3.1. Gain correction

Background on EM segmentation. Traditional intensity
based segmentation relies on elements of the same tissue
type having MR intensities that are clustered around a
mean characteristic value, and on each cluster being well
separated from other tissue clusters. Ideally, this means that
segmentation is a straightforward matter of choosing the
right thresholds to separate each cluster, but in practice this
is not as easy as the ideal case would suggest (Brummer
et al., 1993). Most MR scanners have inhomogeneities
in the imaging equipment, which give rise to a smoothly
varying, non-linear gain field. While the human visual
system easily compensates for this field, the gain can
perturb the intensity distributions, causing them to overlap
significantly and thus lead to substantial misclassification in
traditional intensity-based classification methods (e.g. Cline
et al., 1990). Figure 3 shows histograms of the intensity
distribution in the head in an MR scan, and of the intensity
distribution in segmented brain from the same scan. A visual
comparison of the brain histogram with the complete head
histogram shows that the intensities for the brain neither form
distinct peaks in the histogram, nor are clearly separated from
the rest of the structures in the head in any other way, which
are the two criteria on which intensity-based segmentation
relies.

One way to deal with this problem is to use a statistical clas-
sification scheme, in which one solves both for the assignment
of segmentation labels to voxels and for the gain field artifact
at each voxel. A simple version of this approach for dual-echo
MR data (Gerig et al., 1991) has previously appeared. A more
general method was introduced by Wells et al. (1994), whose
method uses knowledge of tissue properties and RF coil in-
homogeneity to correct for the spatial distortion in the signal.
The method, EM segmentation (or expectation/maximization
segmentation), produces simultaneous classification of tissue
classes and estimation of the gain field due to inhomogeneities
in the RF coil in MRI. The following is a description of the
details of the method presented in Wells et al. (1994, 1995,
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Figure 3. Intensity distributions for the head and brain in MRI.

1996).
Intra- and inter-scan MRI intensity inhomogeneities can be
modeled with a spatially varying factor called the gain field
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that multiplies the intensity data. Log transformation of the
data allows the artifact to be modeled as an additive bias field.
EM segmentation is based on the following observations.

e When the bias field is known, classification of voxels
based on their signal intensity is straightforward. After
the bias field is subtracted from the signal, conventional
statistical intensity classifiers work well for the determi-
nation of tissue classes.

e If, on the other hand, the tissue class of each voxel is
known, then it is feasible to estimate the bias field—by
subtracting the appropriate tissue class mean from the
observed intensity at each voxel. A low-pass filter may
be used to reduce the noise level in the resulting estimate
of the bias field.

Of course, individually, the above observations are not
very useful. While each of the important unknowns (tissue
class and intensity correction) can be determined from the
other, at the outset neither one is known. EM segmentation
works by alternately using partial information about one of
the unknowns to improve the estimate of the other, until good
estimates are obtained for both unknowns.

Statistical models are used for the following aspects of the
domain.

e The intensity properties of each tissue are modeled by
probability densities conditioned on tissue class and the
local value of the bias field.

e The overall probability of each tissue in the volume
is modeled by a spatially stationary prior probability
model.

e A probability density is used to model the entire bias
field. This model is used to enforce the constraint that the
intensity inhomogeneities of MR scanners are spatially
smooth.

The above modeling is used to construct an estimator of
the unknown bias field. The bias field estimate is obtained
by solving a non-linear optimization problem that depends on
the scan data. When formulated in this way, the bias field
estimation problem is a natural candidate for solution by the
EM algorithm. The EM algorithm is often used in estimation
problems that would be easy, if the values of some discrete
‘hidden’ variables were known. In this application the hidden
variables are the tissue classes of the voxels.

The EM algorithm is iterative, and alternates between two
steps, the ‘E step’, where the hidden variables are estimated
(based on the most recent estimate of the ‘ordinary’ variables)
and the ‘M step’, where the ordinary variables are estimated
(based on the most recent estimate of the ‘hidden’ variables).
In this application, the E step corresponds to estimating the

tissue probabilities at each voxel based on the most recent
bias field estimate, while the M step corresponds to estimat-
ing the bias field, based on the most recent tissue probability
estimates.

In practice, EM segmentation converges in ~7-15 itera-
tions. Convergence here means that the location and value of
the maximum bias is within a predefined tolerance of values
in the previous iteration. The segmentation method may be
started on either of the E or M steps, and initial estimates
will be needed for one of the unknowns, bias field or tissue
probabilities. The algorithm is usually started on the E step,
with the bias field initialized to zero at all voxels. Training
data—sample intensities from each tissue type occurring—are
used to construct the probability densities for different tissue
classes which are used in the E step. This training process
is done once for each different type of acquisition (such as
gradient echo or T1-T2 pairs) and need not be repeated for
each scan that is segmented.

This method has been used successfully to segment >1000
scans in a multiple sclerosis study with training data collected
from only one data set (Wells et al., 1995). There is no addi-
tional manual intervention after the initial training data, and
this method is one of the most aggressively tested intensity
based classifiers.

EM segmentation in context of our method. Initially, we use
EM segmentation to correct for the gain introduced in the
data by the imaging process. We use a single channel, non-
parametric, multi-class implementation of the segmenter that
is described in Wells et al. (1994, 1995). Training points are
used for white matter, grey matter, csf and skin, and therefore
the resultant tissue classifications correspond to these four
classes. The output of this stage is a set of classified voxels.

Figures 4 and 5 show the results of EM segmentation on
our two examples. The top left image in each figure is the
input given to the segmenter, and the rest of the images (top to
bottom, left to right) show the tissue classifications generated
by the EM segmenter in successive iterations.

Since this step classifies voxels purely on the basis of their
signal intensities, and there is a natural overlap between in-
tensity distributions of the brain and non-brain structures, the
misclassifications (of surrounding tissue, skin and scalp as
white or grey matter) that we see in the results were pre-
dictable. The next step aims to reduce some of this misclassi-
fication by using neighborhood and connectivity information.

3.3.2.  Removal of thin connectors using morphological op-
erations

One way to deal with the potential misclassification is to sepa-

rate thin connections between similar structures, then use con-

nectivity to isolate major structures with similar responses.
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Figure 4. Top to bottom, left to right: input image and tissue classification generated by successive iterations of the EM segmenter (white matter
is brightest, grey matter is medium grey, and csf and air are black). Bottom right is the final segmentation.
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Figure 5. Top to bottom, left to right: input image and tissue classification generated by successive iterations of the EM segmenter (white matter
is brightest, grey matter is medium grey, and csf and air are black). Bottom right is the final segmentation.
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Figure 6. Examples of erosion and dilation on a binary brain image.

Background on mathematical morphology. Image morphol-
ogy provides a way to incorporate neighborhood and distance
information into algorithms (see Serra, 1982; Haralick et al.,
1987 for detailed treatment of morphological operators). The
basic idea in mathematical morphology is to convolve an im-
age with a given mask (known as the structuring element) and
to binarize the result of the convolution using a given function.
Choice of convolution mask and binarization function depend
on the particular morphological operator being used.

Binary morphology has been used in several segmentation
systems, and we provide here functional descriptions of mor-
phological elements as applicable in our work.

e Erosion: an erosion operation on an image / containing
labels 0 and 1, with a structuring element S, changes
the value of pixel i in I from 1 to 0, if the result of
convolving S with I, centered at i, is less than some
predetermined value. We have set this value to be the
area of S, which is basically the number of pixels that
are 1 in the structuring element itself. The structuring
element (also known as the erosion kernel) determines
the details of how a particular erosion thins boundaries.

e Dilation: dual to erosion, a dilation operation on an
image I containing labels 0 and 1, with a structuring
element S, changes the value of pixel i in / from O to 1,
if the result of convolving § with I, centered at i, is more
than some predetermined value. We have set this value
to be zero. The structuring element (also known as the
dilation kernel) determines the details of how a particular
dilation grows boundaries in an image.

e Conditional dilation: a conditional dilation is a dilation
operation with the added condition that only pixels that
are 1 in a second binary image, /., (the image on which
the dilation is conditioned), will be changed to 1 by the
dilation process. It is equivalent to masking the results

of the dilation by the image /..
e Opening: an opening operation consists of an erosion
followed by a dilation with the same structuring element.
e Closing: a closing operation consists of a dilation fol-
lowed by an erosion with the same structuring element.

As an example, Figure 6 shows (from left to right) a bi-
narized MR cross-section, erosion of the MR image with a
circular structuring element of radius 3, conditional dilation
of the largest connected component in the eroded image with
a circular structuring element of radius 4. Since the dilation
is conditioned on the original image, no boundaries are ex-
panded in this process.

Mathematical morphology in context of our method. This
step uses morphological operations (in 3-D) to incorporate
neighborhood information into the tissue-labeled image ob-
tained from EM segmentation. The strategy is to use morpho-
logical operators to ‘shave off’ the misclassified nerve fibers
and muscles connecting the brain tissue to the cranium, and
then use connectivity to find the largest connected component
of white and grey matter in the image. Similar methods have
been used by others (e.g. Hohne and Hanson, 1992). Specif-
ically, the sequence of operations performed is as follows.

e Perform an erosion operation on the input with a spheri-
cal (in real space which implies elliptical in image space
due to the anisotropy of the voxels) structuring element
with radius corresponding to the thickness of the con-
nectors between brain and the cranium (determined em-
pirically, and held constant over scans), so that it elim-
inates connections from the brain to any misclassified
non-brain structure.

e Find the largest 3-D connected component with tissue
labels corresponding to the brain.
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e Dilate the brain component obtained in the previous step
by a structuring element slightly larger in size than the
one used in the erosion, conditioned on the brain labels
in the input image. Since the dilation is conditioned on
the original image, no boundaries are expanded in this
process. This corresponds approximately to restoring the
boundaries of the brain component that were distorted in
the erosion step.

The result of this stage is an improved segmentation of
the tissue types, which incorporates topological information
into the results of the pure intensity classification. Figure
7 illustrates the results of this step on the first of our two
example scans, and is representative of the case in which the
EM segmentation step combined with the morphology step
achieves an isolation of the brain.

Occasionally (in ~10% of the over 100 scans we have
segmented), due to the variation in the size of the connecting
elements from the brain tissue to the cranium, the empirically
determined radius of the erosion kernel does not adequately
model the width of the connectors between the brain and non-
brain structures, and therefore the brain tissue is not isolated at
the end of this step. This case is illustrated in the results of the
morphological operations on our second example (Figure 8).
Such scenarios are currently detected by manual inspection,
and lead to the use of the third step of our algorithm which uses
manually initialized deformable models to annihilate connec-
tions between the brain and spurious structures. More auto-
matic methods for detecting these cases are currently under
development.

3.3.3.  Refinement using deformable contour models
Background on snakes and balloons. Deformable models
are a popular component of medical image segmentation sys-
tems due to their ability to encode approximate shape con-
straints. For segmentation purposes, anatomical structures
can be modeled using stacks of deformable contours in 2-D or
using actual 3-D deformable surfaces. Also known as active
contour models, these provide a method for minimizing an ob-
jective function to obtain a contour of interest, especially if an
approximate location of the contour is available. We start with
some background on two earlier deformable contour models:
snakes (Witkin et al., 1988) and balloons (Cohen, 1991) in
order to familiarize the reader with the essential components
of such models.

A deformable contour is a planar curve which has an ini-
tial position and an objective function associated with it. A
special class of deformable contours called snakes was intro-
duced by Witkin et al. (1988) in which the initial position is
specified interactively by the user and the objective function is

referred to as the energy of the snake. By analogy to physical
systems, the snake slithers to minimize its energy over time.
This energy of the snake (Ej,qk.) is expressed as a sum of
two components: its internal energy (E;pzernqr) and its external
energy (Eexternal)

Esnake = Einternal + Eexrernal' (1)

The internal energy term imposes a piecewise smoothness
constraint on the snake by preferring low first and second
derivatives along the contour:

Einternal = /(wl(S)IIv'(S)II2 + wa) " )I1%)ds,  (2)

where s is arc length, derivatives are with respect to s, and
v(s) stands for the ordered pair (x(s), y(s)), which denotes a
point along the contour. The choice of w; and w, reflects the
penalty associated with first and second derivatives along the
contour respectively. w; is also known as the coefficient of
elasticity, and w, as the coefficient of rigidity for the snake.

The external energy term in Equation (1) is responsible for
attracting the snake to interesting features in the image. The
exact expression for E, . e Would depend on the character-
istics of the features of interest. For example, if points of high
brightness gradient magnitude in the image are interesting for
a particular image, then the expression for the external energy
can be:

Eexternat = —|| v 1(0(s))]|*.

Finding a local minima for Ej,; . from Equation (1) corre-
sponds to solving the following Euler-Lagrange equation for
v:

—(wy U/)/ + (U)ZU”)” + V Eexternai(v) = 0.

with boundary conditions specifying if the snake is a closed
contour, or the derivatives are discontinuous at the end points.
This equation is then written in matrix form as

Av=F,

where
F(U) =—-V Eexternal- (3)

Here A is a pentadiagonal banded matrix that represents
the ‘stiffness’ properties of the snake, v is the position vector
of the snake, and F is gradient of the external energy of the
snake, or the external force acting on it.

The evolution equation:

dv

— —Av=F,

dr
is solved to obtain the v that is closest to the initial position.
As ‘é—'; tends to zero, we get a solution to the system Av = F.
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Figure 7. Top to bottom, left to right: EM segmentation from Figure 5, binarized image, eroded image, largest connected component in eroded
image, dilated connected component, conditionally dilated connected component.
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Figure 8. Top to bottom, left to right: EM segmentation from Figure 4, binarized image, eroded image, largest connected component in eroded
image, dilated connected component, conditionally dilated connected component. Note that the slice shown here is a cross-section of a full 3-D
data which happens not to show the connectors between brain and non-brain structures.
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Formulating this evolution problem using finite differences
with time step t, we obtain a system of the form (Cohen,
1991):

(I+ 1AV =0 +1FQ',

where v’ denotes the position vector of the snake at time ¢,
and / is the identity matrix. The system is considered to have
reached equilibrium when the difference between v’ and v'~!
is below some threshold.

The 2-D balloon model extends the snake energy to include
a ‘balloon’ force, which can either be an inflation force, or
a deflation force. The external force F in Equation (3) is
changed to

v Eexternal

F=kn@is)+k—,
1 || VEexternal”

“)
where n(s) is a unit vector normal to the contour at point
v(s), and |k;| is the amplitude of this normal force. Changing
the sign of k; makes this normal force inflating or deflating.
Comparing Equation (4) with Equation (3) shows that the
balloon model uses only the direction of the gradient of the ex-
ternal force, while snakes employ the magnitude of this force.
This normalization of the external force, along with careful
selection of the magnitude of k, constrains the motion of each
point on the contour to at most one pixel per iteration. This
avoids instabilities due to time discretization, and is discussed
in detail in Cohen (1991).

Contrasting the Balloon and Snake models, we note that
incorporation of the normal force in the balloon model allows
the initial position of the contour to be further from the in-
tended final position, while still enabling convergence. As
well, in the balloon model, the initial position can lie either
inside or outside the intended contour, while the snake model
requires the initial position to surround the intended contour
if regions of zero image force lie between the initial and in-
tended contours, since snakes can only collapse to a point in
the absence of image forces.

Snakes and balloons have been typically used with creative
external forces to segment various anatomical structures. Us-
ing snakes to track 2-D contours in 3-D, coupling of the snakes
to region information in the image, using simulated annealing
to find the global minimum of the snake energy, and imposing
shape priors are notable extensions to the original snakes.

Snakes and balloons in context of our method. The third
step in our segmentation algorithm is the use of deformable
contour models to refine the result of the brain tissue estimate
obtained using morphological operations, since morphology
is occasionally unable to remove all connectors from the brain
to the cranium (as shown in the example in Figure 8). The

intuition behind this step is to incorporate substantial spatial
information into the segmentation process via manual inter-
vention.

For our deformable model, we started with the classical
snakes (Witkin et al., 1988), applied the refinements discussed
in Cohen (1991) and added a radial force to the contours. The
direction of this radial force, instead of being determined a
priori [as is the case in the direction of the normal force in
Cohen (1991)], is determined by the results of the previous
steps. Specifically, voxels that are classified as brain in the
previous steps exert a radial force directed towards the center
of the contour, and the voxels classified as non-brain exert a
force radially away from the center of the contour. From an
implementation point of view, instead of using a fixed prede-
termined direction for the balloon force by selecting a sign
for the factor k; in Equation (4) which is independent of the
image characteristics, we define a signed balloon force direc-
tion vector, B, with one entry per voxel of the input data. The
sign at the ith position of vector B indicates whether the voxel
i exerts a force along the inward or outward normal to the
evolving contour. This vector B is determined using the brain
estimate obtained after applying the morphological operations
as discussed in the previous section. If voxel i is classified as
brain tissue at the end of the morphological routines, then B[i]
gets a positive sign, so that the voxel pushes the contour in
the direction of the normal towards the boundary of the brain
estimate, otherwise B[i] gets a negative sign. The external
force now becomes:

F = kB(s)n(s),

where B(s) is the direction of the balloon force exerted by
the image at the point v(s) of the contour, and n(s) is the
normal to the local tangent vector to the contour at s. The
unsigned constant k is used to determine the magnitude of
the balloon force. If B(s) is positive, motion is along n(s),
which corresponds to an inflating force applied to the contour
at s. Negative B(s) results in a deflating force applied to the
contour at v(s).

This deformable contour model is employed in our system
as follows. If the brain tissue has not been isolated by the end
of the morphological operations, an expert manually initial-
izes the true boundary of the brain tissue in a few carefully
chosen slices, and sets the parameters for the ‘internal’ and
‘external’ forces of the deformable contour (i.e. the coeffi-
cients of elasticity, rigidity and the weight associated with the
image data). The number and accuracy requirements of the
initial contours, as well as the choice of the contour param-
eters, depend on the performance of the previous two steps
on a particular data set. Once initialized, these contours are
propagated slice-by-slice through the entire volume until the
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Table 1. Sample running times for segmentation steps.

Algorithm

Time per iteration (s)

Number of iterations in average case

EM segmentation 30
Erosion/dilation
3-D connectivity 30

10 (kernel radius 3)

10
1
1

brain volume is isolated®. This step often requires as little
intervention as the user zeroing in on the spurious connecting
element (this is done by inspection, but casual observation
indicates that the these occur in a few select places, which sug-
gests possibilities for incorporating strong spatial priors into
the segmentation process, and thereby reducing the need for
manual intervention) and drawing the correct brain boundary
through it in a couple of slices, adjusting the contour param-
eters so that the weight of the image forces in the neighbor-
hood of the offending connector is very low, and allowing the
contour to be propagated to the adjacent few slices (since a
connector is usually only a few slices in thickness).

As an alternative to using deformable contour models
as the final step, morphological operations with specialized
kernels (larger size, different connectivity) were also
explored as a means for eliminating the undesirable
connecting elements. In that approach, manual intervention
was required in the form of choosing the optimal kernel.
Manual intervention appears necessary if acceptable
segmentation is to be achieved in 100% of the cases.
Deformable models were our editing tool of choice because
they provide an elegant framework in which various various
degrees of manual intervention—by way of positioning the
initial contour, and determining the weight on the image and
smoothness forces—can be incorporated with ease.

We have presented a method for segmentation of brain tis-
sue from MR images, which combines intensity, topological,
and spatial information into the process. Next, we briefly dis-
cuss the implementation of this method on a supercomputer,
IBM Power Visualization System.

3.4. Implementation
Implementation of the EM segmentation, morphological op-
erations, and connectivity has been done on an IBM PVS. In
this section we present a brief description of the architecture
of the PVS (IBM, 1993), along with sample running times for
each algorithm.

The PVS is a platform for scientific visualization, imag-

2We think of this step as operational in ‘2.5-D’ since the estimate of the brain
is obtained by processing the data as a 3-D volume, and smoothness of the
brain boundary between adjacent slices is imposed by the propagation of
contours between adjacent slices.

ing, and graphics applications. It is composed of a parallel
processor server, a video controller, and a disk array. The
server at the Surgical Planning Lab, Brigham and Women’s
Hospital contains 32 processors, 500 Mbyte of shared mem-
ory, HiPPI channels, all interconnected by a 1280 Mbyte/s
backplane. Each processor consists of a 40 MHz Intel i860
microprocessor, 16 Mbyte of private memory, and a buffered
interface to the high-speed backplane. The server attaches to
an IBM RS6000, which serves as the support processor, and
provides access to standard networks. The video controller
takes images over a 100 Mbyte/s HiPPI channel from the
server and displays them at a resolution of 1280 x 1024. The
disk array subsystem provides data storage for 20 Gbyte, and
communicates with the server at sustained data transfer rate of
55 Mbyte/s using a HiPPI channel.

Table 3.3.3 shows sample running times for different steps
of the segmentation process on a 256 x 256 x 124 data set. The
intent of this table is simply to give the reader a rough idea of
how long each of these steps takes on this parallel machine,
and to show that these running times make the process realistic
for use in actual surgical planning tasks.

The deformable contour code runs on standard Sun/SGI
workstations, and it takes 2—3 seconds for a typical contour to
converge from an initial position on one slice. Since there is
considerable variation in the time it takes a user to initialize
contours, as well as the number of slices that the contours are
propagated to, the total time of this step varies from case to
case.

4. THE VALIDATION PROBLEM AND RESULTS

While several systems for segmentation of medical data are
currently in use in various research laboratories and hospitals,
the issue of correct validation is often ignored. The import of
this statement is not that these systems perform unsatisfacto-
rily, rather it is an illustration of the fact that the medical image
processing community is reaching the consensus that validat-
ing segmentations of medical data is a hard, and perhaps even
a poorly defined, problem.
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Table 2. Strengths and weaknesses of validation methods.

# Segmentation task

Strengths Weaknesses

Brain tissue (Brummer et al., 1993)

2 White and grey matter

(Gerig et al., 1991; Kikinis et al., 1992; Wells et al., 1994)

3 White and grey matter (Wells et al., 1994),

cardiac walls and corpus callosum (Chakraborty et al., 1994)

Cardiac motion (Shi et al., 1994)
Brain tissue (Gobel et al., 1994)

Simple Subjective

15% variation in manual
segmentations and labor intensive

Less subjective
Scientific approach ~ Not sufficient in all applications

Reliable
Reliable

Invasive

Labor intensive

Each row summarizes one of five validation schemes: (1) visual inspection, (2) comparison with manual segmentation, (3) testing on synthetic data, (4) use of

fiducials on subjects, (5) use of fiducials and/or cadavers.

4.1. The validation problem

A validation method can be thought of as a combination of two
components. One component is the notion of a ‘ground truth’
against which the results of an algorithm are to be judged. The
second component is a measure for establishing the deviation
of the results from this ground truth. For their second compo-
nent, most validation schemes use standard statistical meth-
ods of finding means, modes, variances, standard deviations,
or root mean squared errors. The first component requires
developing the notion of a ground truth for a segmentation
algorithm and that is where one tends to run into difficulty.
The problem is not that there is no ground truth for medical
data, for certainly there is; the problem is that the ground truth
is not typically available to the segmentation systems in any
form that they can readily use. For instance, in the case of
segmentation of brain tissue from MR images, there is indeed
a true boundary of the brain tissue for each patient, but we do
not know what it is. Approximations to the true boundary can
be obtained in the form of manual segmentation by experts of
neuroanatomy, but experiments have shown that there can be
up to 15% variations in classifications generated by different
experts (Kikinis et al., 1992; Wells et al., 1994). We could test
our method on synthetic images, but it is difficult to generate
synthetic images that capture the complexity and deforma-
bility of the human head. We could test our method on a
phantom brain, but we are not aware of the existence of one.
We could place fiducials or markers randomly in the patient
in known areas of the brain, and use that as a subsampled
ground truth to measure the classifications against, but that is
too invasive to be practical. A reasonable alternative would
be to use cadaver brains for marker based validation, but we
are not aware of many systems that actually do this. One way
of working around the ground truth issue would be to note
that segmentation is usually a pre-processing step for other
applications, and instead to measure the suitability of various
segmentation algorithms to particular applications based on

the performance of the applications that build upon them. Of
course, this ‘lazy evaluation’ would only be useful in appli-
cations where the validation problem is easier, for example in
the case of registration of data from different modalities where
external markers can be used (Mellor, 1995) to facilitate val-
idation.

In the rest of this section we briefly summarize the methods
that have been typically used for validation of segmentation
algorithms, their strengths and weaknesses, and then present
our results based on the validation scheme that we have cho-
sen.

4.2. Validation methods
The following are representative of schemes used for valida-
tion of medical segmentation results.

e Method 1: visual inspection
e Method 2: comparison with manual segmentation
e Method 3: testing on synthetic data
e Method 4: use of fiducials on patients
e Method 5: use of fiducials and/or cadavers

Table 4 presents for each of these methods a summary
of the particular segmentation applications for which it been
used, as well as its strengths and weaknesses.

4.3. Our validation scheme and results

We use a combination of methods 1 and 2, i.e. visual inspec-
tion by radiologists and comparison with manual segmenta-
tion for validating our results.

Recently our segmenter has gained usage in three volumet-
ric studies underway at Harvard Medical School and Brigham
and Women’s Hospital: a schizophrenia study that examines
the white matter and grey matter content in the temporal lobes
(Shenton et al., 1992), a study of the change in brain compo-
sition in newborns (Huppi et al., 1995a, b), and a study of ef-
fects of altitude change on brain volume (Morocz et al., 1995).
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Table 3. Difference in classification between our method
and manual segmentation.

Caseno Number of different voxels  Percentage difference
1 120463 1.72
2 129 648 1.85
3 153631 2.19
4 124335 1.77
5 150297 2.14
6 133743 1.91
7 192502 2.75
8 221291 3.16
9 188528 2.69

10 171776 2.45

11 176724 2.52

12 144990 2.07

13 136753 1.95

14 184274 2.63

15 142237 2.03

16 258752 3.69

17 194908 278

18 197774 2.82

19 101356 1.45

20 103202 1.19

The middle column shows the number of pixels that were classified differ-
ently by our 3-class (white matter, grey matter, csf) segmentation method as
compared with manual segmentation for each of 20 cases of size 256 x 256 x
124 voxels.

Quantitative results for the comparison of our segmentation
against expert segmentations are given below. All presented
results are for gradient echo data sets of size 256 x 256 x 124
voxels.

4.3.1. Quantitative results

Table 4.3 shows a simple comparison of the number and per-
centage of pixels that are classified differently by our seg-
menter as compared with expert segmentation, based on a 3-
class segmentation of the data into white matter, grey matter
and csf. Note that while the total number of voxels classified
differently in the two cases appears large, compared with the
total volume in each data set, only a small fraction (typically
1-2%) are actually different.

To test the extent to which this difference in classification
affects the overall segmentation, we ran a second test. Tables
4.3 and 4.3.2 present the result of a test in which the edges
of the brain tissue generated by our segmentations and the
edges generated by the manual segmentations are compared.
This comparison is performed in two steps: first by finding
the mean distance (city-block) from each edge in our segmen-
tation to edges in the manual segmentation (which basically
penalizes false positives) as shown in Table 4.3, and then by

Table 4. Measuring false positives.

Caseno Meand % atd =0 %atd =1 %atd =2 % atd > 2

1 1.10 19.84 69.05 7.65 3.47
2 1.23 8.19 73.49 12.67 5.65
3 0.84 31.49 61.27 5.10 2.13
4 1.07 20.91 66.45 7.29 5.35
5 1.11 11.00 75.19 9.27 4.54
6 0.85 28.20 65.20 4.82 1.78
7 0.76 38.58 55.20 442 1.80
8 0.81 34.74 57.45 5.04 2.78
9 0.52  57.18 39.12 2.29 1.41
10 1.21 22.34 63.32 6.78 7.56
11 0.77 4297 47.00 5.14 4.89
12 222 15.27 61.86 8.13 14.74
13 1.67 17.96 58.14 8.43 15.47
14 1.36 13.12 68.58 8.84 9.47
15 1.59 13.63 63.66 10.33 12.38
16 6.44 37.79 31.49 4.58 26.14
17 129 4225 40.81 532 11.63
18 126  41.16 40.10 5.94 12.80
19 1.15 16.53 71.84 8.29 3.35
20 1.54 30.51 64.55 2.19 2.04

The second column shows the mean distance d (in pixels) between a pixel that
falls on the boundary of the brain in the manual segmentation and the nearest
brain-boundary pixel in our segmentation. The rest of the columns show the
percentage of brain-boundary pixels in the manual segmentation at different
distances from the nearest brain-boundary pixels in our segmentation.

finding the mean distance from an edge in the manual seg-
mentation to edges in our segmentation (which penalizes false
negatives) as shown in Table 4.3.2. We also include some
other statistics on the edges, such as the percentage of edges in
our segmentation that coincide with (or are one and two pixels
away from) edges in the manual segmentation. We repeat this
test to compute the number of edges in the manual segmen-
tation that coincide with, or are within one or two pixels of
the edges of our segmentation. The idea behind these tests is
to convey the ‘goodness of fit’ between the brain boundaries
produced by our segmentation and ones produced manually.
As can be seen by the numbers in these tables, we are usually
within 2-3% of manual segmentations, which is considered
acceptable performance in the applications with which we are
dealing (Kikinis ef al., 1992).

Although we did not test the distribution of false positives
and false negatives in a detailed manner, we observed from
sampling of the data that these errors appeared to be ran-
domly uniformly distributed, rather than aggregated in partic-
ular places.

We illustrate our results in Figure 9 using a representative
slice from an MR scan. The top left image shows the edges
of brain in our segmentation overlaid on the input image (in
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Figure 9. Top left, input image overlaid with brain edges from our segmentation; top right, input image overlaid with brain edges from manual
segmentation; bottom left, our segmentation overlaid with brain edges from manual segmentation; bottom right, manual segmentation overlaid

with brain edges from our segmentation.

white), and the top right image shows the edges of the brain
in the manual segmentation overlaid on the input image (also
in white). The bottom left image shows our segmentation
overlaid with the edges of the brain from the manual segmen-
tation, and the bottom right shows the manual segmentation
overlaid with the edges of the brain in our segmentation. The
purpose of the top two images of the figure is to give an idea of
how well the boundaries of our segmentation and the manual
segmentation agree with the original greyscale images, and
the purpose of the bottom two images is to illustrate how well
these two sets of edges agree with each other.

4.3.2.  Qualitative results
We are now generating routine segmentations for surgi-
cal planning at the Surgical Planning Lab of Brigham and

Women’s Hospital. It takes us about 20 minutes to process a
single case, which makes the method attractive to clinicians
who could otherwise spend 4—6 h creating the segmentations
with less automatic tools. Typically clinicians overlay these
segmentations with manually segmented pathological areas of
the brain to create the final visualizations. Figure 10 shows
two views of the segmented white matter surface for two dif-
ferent normal controls. Figure 11 shows a view of a patient
with subdural hematoma as well as a tumor.

4.4. Generalization to other anatomical structures

Through in this paper we have developed the details for the
segmentation of a particular anatomical structure (the brain)
there are other structures that share the characteristics of the
brain that have been exploited in this process, and hence, this
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Table 5. Measuring false negatives.

Caseno Meand % atd =0 %atd =1 %atd =2 %atd > 2

1 1.20  10.37 72.57 12.39 4.67
2 134 2141 69.02 4.46 5.11
3 1.51 7.44 66.06 15.97 10.54
4 1.69 1097 72.20 11.81 5.03
5 1.08 1249 78.51 6.56 243
6 1.46 6.46 69.14 16.03 8.37
7 1.44 6.67 65.49 18.50 9.34
8 1.32 8.34 67.57 19.73 4.36
9 2.09 533 48.32 28.47 17.88
10 1.10 1491 69.71 11.58 3.80
11 1.34 8.76 63.61 22.36 5.27
12 1.25 14.82 71.71 9.71 3.76
13 1.17 1421 70.97 10.74 4.07
14 1.17  13.08 75.40 8.00 3.52
15 1.00 1791 72.09 7.48 2.53
16 1.48 9.00 55.81 26.81 8.39
17 2.26 8.87 56.99 24.13 10.02
18 1.43 11.28 56.98 25.07 6.68
19 142 15.12 68.81 10.04 6.03

The second column shows the mean distance d (in pixels) between a pixel that
falls on the boundary of the brain in our segmentation and the nearest brain-
boundary pixel in the manual segmentation. The rest of the columns show the
percentage of brain-boundary pixels in our segmentation at different distances
from the nearest brain-boundary pixels in the manual segmentation.

method may be extensible to those structures also. The kidney
and the heart are two examples of such structures. In order
to extend our process to other structures, one could apply the
following methodology:

e Identify the various relevant intensity distributions in the
data using EM segmentation.

e Incorporate topological information using customized
morphological operators or other techniques.

e Incorporate spatial information using deformable con-
tours or other customized spatial priors.

The key word in the above method is ‘customize’, since
most of the effort in applying this segmenter to any other
application will be hidden in doing exactly this. In some
sense, this customization step corresponds to the construction
of a model for each anatomical structure, which cannot be
bypassed. However, explicit shape modeling promises a more
elegant approach to creating general purpose segmentation
methods, and is an attractive direction to pursue.

4.5. Conclusions

We have presented a method for segmentation of brain tissue
in MR images. This method combines three techniques into
an effective tool for segmentation. The EM segmentation step

Figure 10. Top, top view of a reconstructed white matter surface;
bottom, left view of the same reconstructed white matter surface.

provides reliable intensity-based classification of the data into
various tissue classes. Further processing is needed because
brain structures are not defined by unique intensities in MRI.
The morphology step leverages the tissue labels generated by
the EM segmentation to binarize the image into hypotheses for
brain and non-brain regions. It is important to note here that a
less powerful method for intensity-based classification could
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Figure 11. Side view of a reconstructed brain surface of a patient overlaid with manually segmented pathology—subdural hematoma (red) and

tumor (green).

lead to gross errors in using binary morphology. In the cases
that the morphology step does not isolate the brain, snakes (or
related deformable models) are used as a fast manual editing
tool. We have created an implementation that has been used
to segment well over 100 brain scans, with results that are
comparable to segmentations performed manually by experts.

The key aspect of our system is that it divides the segmen-
tation task into three simpler steps, each of which exploits a
different set of constraints of the problem, and more impor-
tantly, the result of each step facilitates the one that follows it.
Specifically, the success of binary mathematical morphology
hinges on prior accurate binarization of the data into object
and background, and by employing EM segmentation prior
to the morphological operations, we generate reliable class
labels for the data, thereby facilitating the morphology step.

Second, removal of most connecting elements between the
brain and non-brain structures in the morphology step makes
the process of initializing the true brain contour easier on the
user, thereby facilitating the final, deformable contour step of
our system.
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