(a) Chapter 10, Exercise 2

Why initialization is a problem in bearing only SLAM?

The reason why initialization of landmark is an important issue is because there is no direct depth information from the bearing-only sensor. Therefore, the possible location of a newly observed landmark lies in a cone shape region. After several observation and updates, the region will converge into a closed region. However, traditional Gaussian distribution in XYZ space cannot provide a unified representation of these two kinds of probability distribution.

Landmark Initialization

Here I will describe the Inverse depth method proposed by Civera *et al.* It is a unified representation can initialize the landmark without delay.

On first observation, 6 parameters are used to represent the landmark state:

 $(x_i \quad y_i \quad z_i \quad \theta_i \quad \phi_i \quad \rho_i)$, where each terms are described in the figure below.

The camera pose can be easily obtained. We can also compute $(\theta_i \quad \phi_i)$ using the camera parameters. For the inverse depth, ρ_i is assigned a general Gaussian prior in inverse depth that encodes probabilistically the fact that the point has to be in front of the camera.

$$\hat{\rho}_0 = 0.1, \sigma_{\rho} = 0.5$$

which means

 $\begin{array}{ll} \text{Initial inverse depth confidence} & [1.1,-0.9] \\ \text{region:} \\ \text{Initial depth confidence region:} [\frac{1}{1.1},\infty] \cup [-\infty,\frac{1}{-0.9}] \end{array}$

With the probabilistic framework (e.g. EKF), we can keep on updating the state. After the uncertainty reduced, the possible region of landmark location will form a closed space.

(b) Chapter 12, Exercise 4

Why?

Because we assume that the variable x_t does not depend on the passive features m⁻ if we know the active features m⁰ and m⁺. Therefore, we can set m⁻ to arbitrary value without affecting the conditional posterior.

What would be the update equation if these features would not be conditioned away?

If these features are not conditioned away, we should do a full EIF update (without multiplying the F-matrix).

Would the result be more accurate or less accurate?

The result would be more accurate if we conduct a full EIF update. On the other hand, if we perform the SEIF update without conditioning m⁻ away, the result should be less accurate because some information of some link is arbitrarily ignored.

Would the computation be more or less efficient?

Less efficient. If we conduct the full EIF update, the efficiency is similar to EKF.

(c) Chapter 13, Exercise 1.

EKF

- 1. Using Gaussian distribution to represent the states makes the computation very fast.
- 2. No need to sample among the state distribution.
- 3. Capable to consider uncertainty over high dimensional state. In contrast, the number of particles required by particle filter increase exponentially.

GraphSLAM

- 1. Solve the full SLAM problem. It calculates posteriors over the full robot path along with map.
- 2. Consider data association with probability.
- 3. Incorporate sparsification idea by using information matrix.

FastSLAM

- 1. Multiple hypothesis tracking through per-particle data association.
- 2. Use sampling on highly non-linear portions of state space can avoid linearization error

using EKF.

3. Particle filter is generally easier to implement.

(c) Chapter 13, Exercise 7.Fast slam simulationRed: ground truthBlue: particlesGreen: landmarks

The following figure shows the strength of the correlations w.r.t timestep. At the beginning, the strength increases with time. This means the uncertainty increases. At time=72, the robot back to the starting point (20, 0), the strength reach the nadir. The situation is similar to the decrease of variance when closing a loop in EKF.


```
function fastslamProcedure
   global Y;
   global setting;
   global landmark;
   global x_groundtruth;
   setting.nstep = 100;
   setting.nparticle = 100;
   setting.zrange = 10000;
   setting.nlandmark = 100;
   setting.Usigma = 0.1;
   setting.Zsigma = 0.1;
   %setting.Usigmath = 0.01;
   %setting.R = [0.1 0 0; 0 0.1 0; 0 0 0.01];
   setting.R = [0.5 0; 0 0.5];
   initLandmark();
   initParticle(); %draw init samples
   x_groundtruth = generate_x_groundtruth();
```

```
for i=2:setting.nstep
       [u z c] = simulateOneStep(x_groundtruth,i);
      %for j=1:length(c)
         Y{i} = FastSlam(z,c,u,Y{i-1});
      %end
   end
   drawY();
   fitGaussian();
end
function fitGaussian()
global Y setting
f = zeros(0,2);
for kk = 1:setting.nstep
   data = zeros(setting.nparticle, 2+setting.nlandmark*2);
   for i=1:setting.nparticle
      data(i, 1:2) = Y\{kk\}.p\{i\}.xt;
      for j=1:setting.nlandmark
          if(Y{kk}.p{i}.landmark{j}.init==1)
             data(i,2+(j-1)*2 : 2+(j-1)*2+1) =
Y{kk}.p{i}.landmark{j}.mu;
          end
      end
   end
   avg = mean(data);
   Cov = zeros(2+setting.nlandmark*2);
   for i=1:(2+setting.nlandmark*2)
      for j=1:(2+setting.nlandmark*2)
          for k=1:setting.nparticle
             Cov(i,j) = Cov(i,j) +
(data(k,i)-avg(i))*(data(k,j)-avg(j));
          end
      end
   end
   Cov = Cov/setting.nparticle;
   f = [f;kk norm(Cov)];
end
```

```
figure
plot(f(:,1),f(:,2));
end
function drawY()
global Y x groundtruth landmark
   figure
   hold on;
   for i=1:length(Y)
      for j=1:length(Y{i}.p)
          plot(Y{i}.p{j}.xt(1),Y{i}.p{j}.xt(2), 'b.');
      end
      pause(0.1);
      plot(x groundtruth(i,1), x groundtruth(i,2), 'r*');
   end
   for i=1:size(landmark,1);
      plot(landmark{i}(1), landmark{i}(2), 'q^*');
   end
end
function Yt = FastSlam(z, c, u, Yt_1)
   global setting;
   Yt.p = cell(length(Yt_1.p), 1);
   for k=1:length(Yt 1.p) % loop over particles
      pstate = Yt 1.p\{k\};
      xt = pstate.xt + u+ randn(1,2)*setting.Usigma*2;
      Yt.p{k}.landmark = pstate.landmark;
      Yt.p\{k\}.w = 0;
      for j=1:length(c)
          j lmk = c(j);
          if Yt.p{k}.landmark{j_lmk}.init == 0 % j never seen before
             mu = z(j,1:2) + xt; % initialize mean
             invG = invgp(xt, mu);
             Cov = invG*setting.R*invG';
             Yt.p{k}.landmark{j lmk}.mu = mu;
             Yt.p{k}.landmark{j lmk}.Cov = Cov;
             Yt.p{k}.landmark{j_lmk}.init = 1;
```

```
Yt.p\{k\}.w = Yt.p\{k\}.w+0.9;
          else
             Cov = Yt.p{k}.landmark{j lmk}.Cov;
             mu = Yt.p{k}.landmark{j lmk}.mu;
             zt = z(j, 1:2);
             zh = mu-xt; %g(mu, xt);
             G = gp(xt, mu);
             Q = G' * Cov * G + setting.R;
             K = Cov * G * Q;
             mu = mu + (K* (zt-zh)')';
             Cov = (eye(2) - K*G') * Cov;
             Yt.p{k}.landmark{j lmk}.Cov = Cov;
             Yt.p{k}.landmark{j lmk}.mu = mu;
             %Yt.p{k}.w = exp(-(zt-zh)*(zt-zh)');
             Yt.p{k}.w = Yt.p{k}.w+(1/sqrt(det(2*pi*Q))) *
exp(-0.5*(zt-zh)*inv(Q)*(zt-zh)');
          end
          Yt.p\{k\}.xt = xt;
      end
   end
   Yttmp = Yt;
   corr = zeros(setting.nparticle, 1);
   corr(1) = Yt.p\{1\}.w;
   for i=2:setting.nparticle
      corr(i) = corr(i-1) + Yt.p{i}.w;
   end
   RAND = rand(setting.nparticle,1)*corr(setting.nparticle);
   for i=1:setting.nparticle
      j=0;
      for j=1:setting.nparticle
          if j == 1, ub = 0;
          else ub = corr(j-1);
          end
          if RAND(i) < corr(j) && RAND(i) >= ub;
             break;
```

```
end
      end
      Yt.p{i} = Yttmp.p{j};
   end
end
function x = gp(xt, mu)
  x = [1 \ 0; \ 0 \ 1];
end
function x = invgp(xt, mu)
   x = [1 \ 0; \ 0 \ 1];
end
function x groundtruth = generate x groundtruth()
global setting
   x groundtruth = zeros(setting.nstep, 2);
   for i=1:setting.nstep
      x groundtruth(i,1:2) = [cos((i-1)*pi/36), sin((i-1)*pi/36)] * 20;
      %x groundtruth(i,3) = i*pi/36; % 5 degree each step
   end
end
function [u,z,c] = simulateOneStep(x groundtruth, index)
   global landmark;
   global setting;
   u = x groundtruth(index,:) - x_groundtruth(index-1,:)+
[randn(1,2)*setting.Usigma]; % R
   c = zeros(0,1);
   z = zeros(0,2);
   for i=1:length(landmark)
      dist = norm( landmark{i} - x_groundtruth(index,1:2) );
      if(dist < setting.zrange) %% visible</pre>
          z = [z; (landmark{i} - x groundtruth(index, 1:2))];
          c = [c; i];
      end
   end
end
```

```
function initLandmark()
   global setting landmark;
   landmark = cell(setting.nlandmark,1);
   rnd = rand(setting.nlandmark,2);
   for i=1:setting.nlandmark
      landmark{i} = rnd(i,:)*40-[20,20];
   end
end
function initParticle()
   global Y;
   global setting;
   global landmark;
   Y = cell(setting.nstep,1);
   Y{1}.p = cell(setting.nparticle,1);
   initLandmarkSigma = [0.1<sup>2</sup>, 0, 0, 0.1<sup>2</sup>];
   for k=1:setting.nparticle
      Y{1}.p{k}.xt = [20 0];
      Y{1}.p{k}.landmark = cell(setting.nlandmark,1);
      Y{1}.p{k}.w = 1/setting.nparticle;
      for i=1:setting.nlandmark
          Y{1}.p{k}.landmark{i}.init = 0;
          %Y{1}.p{k}.landmark{i}.u = landmark{i};
          %Y{1}.p{k}.landmark{i}.Sigma =initLandmarkSigma;
      end
   end
end
```