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(a) Chapter 10, Exercise 2 

Why initialization is a problem in bearing only SLAM? 

The reason why initialization of landmark is an important issue is because there is no direct 

depth information from the bearing-only sensor. Therefore, the possible location of a newly 

observed landmark lies in a cone shape region. After several observation and updates, the 

region will converge into a closed region. However, traditional Gaussian distribution in XYZ 

space cannot provide a unified representation of these two kinds of probability distribution.  

 

 

Landmark Initialization 

Here I will describe the Inverse depth method proposed by Civera et al. It is a unified 

representation can initialize the landmark without delay. 

On first observation, 6 parameters are used to represent the landmark state:

) ( iiiiii zyx  , where each terms are described in the figure below. 

 

 

The camera pose can be easily obtained. We can also compute )( ii   using the camera 

parameters. For the inverse depth, i  is assigned a general Gaussian prior in inverse depth 

that encodes probabilistically the fact that the point has to be in front of the camera. 

 

which means 
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With the probabilistic framework (e.g. EKF), we can keep on updating the state. After the 

uncertainty reduced, the possible region of landmark location will form a closed space. 

 

(b) Chapter 12, Exercise 4 

Why?  

Because we assume that the variable xt does not depend on the passive features m
-
 if we 

know the active features m
0
 and m

+
. Therefore, we can set m

-
 to arbitrary value without 

affecting the conditional posterior. 

 

What would be the update equation if these features would not be conditioned away? 

If these features are not conditioned away, we should do a full EIF update (without multiplying 

the F-matrix). 

 

Would the result be more accurate or less accurate? 

The result would be more accurate if we conduct a full EIF update. On the other hand, if we 

perform the SEIF update without conditioning m
-
 away, the result should be less accurate 

because some information of some link is arbitrarily ignored. 

 

Would the computation be more or less efficient? 

Less efficient. If we conduct the full EIF update, the efficiency is similar to EKF. 

 

(c) Chapter 13, Exercise 1.  

EKF 

1. Using Gaussian distribution to represent the states makes the computation very fast. 

2. No need to sample among the state distribution. 

3. Capable to consider uncertainty over high dimensional state. In contrast, the number of 

particles required by particle filter increase exponentially. 

GraphSLAM 

1. Solve the full SLAM problem. It calculates posteriors over the full robot path along with 

map. 

2. Consider data association with probability. 

3. Incorporate sparsification idea by using information matrix. 

FastSLAM 

1. Multiple hypothesis tracking through per-particle data association. 

2. Use sampling on highly non-linear portions of state space can avoid linearization error 
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using EKF. 

3. Particle filter is generally easier to implement. 

   

 

(c) Chapter 13, Exercise 7.  

Fast slam simulation 

Red: ground truth 

Blue: particles 

Green: landmarks 

 

The following figure shows the strength of the correlations w.r.t timestep. At the beginning, the 

strength increases with time. This means the uncertainty increases. At time=72, the robot back 

to the starting point (20, 0), the strength reach the nadir. The situation is similar to the 

decrease of variance when closing a loop in EKF. 
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function fastslamProcedure 

    global Y; 

    global setting; 

    global landmark; 

    global x_groundtruth; 

  

    setting.nstep = 100; 

    setting.nparticle = 100; 

    setting.zrange = 10000; 

    setting.nlandmark = 100; 

    setting.Usigma = 0.1; 

    setting.Zsigma = 0.1; 

    %setting.Usigmath = 0.01; 

    %setting.R = [0.1 0 0; 0 0.1 0; 0 0 0.01]; 

    setting.R = [0.5 0; 0 0.5]; 

    initLandmark(); 

    initParticle(); %draw init samples 

    x_groundtruth = generate_x_groundtruth(); 
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    for i=2:setting.nstep 

        [u z c] = simulateOneStep(x_groundtruth,i); 

        %for j=1:length(c) 

            Y{i} = FastSlam(z,c,u,Y{i-1}); 

        %end 

    end 

    drawY(); 

    fitGaussian(); 

end 

function fitGaussian() 

global Y setting 

  

f = zeros(0,2); 

for kk = 1:setting.nstep 

    data = zeros(setting.nparticle,2+setting.nlandmark*2); 

    for i=1:setting.nparticle 

        data(i,1:2) = Y{kk}.p{i}.xt; 

        for j=1:setting.nlandmark 

            if(Y{kk}.p{i}.landmark{j}.init==1) 

                data(i,2+(j-1)*2 : 2+(j-1)*2+1) = 

Y{kk}.p{i}.landmark{j}.mu; 

            end 

        end 

    end 

     

    avg = mean(data); 

    Cov = zeros(2+setting.nlandmark*2); 

    for i=1:(2+setting.nlandmark*2) 

        for j=1:(2+setting.nlandmark*2) 

            for k=1:setting.nparticle 

                Cov(i,j) = Cov(i,j) + 

(data(k,i)-avg(i))*(data(k,j)-avg(j)); 

            end 

        end 

    end 

    Cov = Cov/setting.nparticle; 

    f = [f;kk norm(Cov)]; 

end 
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figure 

plot(f(:,1),f(:,2)); 

end 

  

function drawY() 

global Y  x_groundtruth landmark 

    figure 

    hold on; 

    for i=1:length(Y) 

        for j=1:length(Y{i}.p) 

            plot(Y{i}.p{j}.xt(1),Y{i}.p{j}.xt(2), 'b.'); 

        end 

        pause(0.1); 

        plot(x_groundtruth(i,1),x_groundtruth(i,2), 'r*'); 

    end 

    for i=1:size(landmark,1); 

        plot(landmark{i}(1),landmark{i}(2),'g*'); 

    end 

end 

  

function Yt = FastSlam(z, c, u, Yt_1) 

    global setting; 

    Yt.p = cell(length(Yt_1.p),1); 

    for k=1:length(Yt_1.p)  % loop over particles 

        pstate = Yt_1.p{k}; 

        xt = pstate.xt + u+ randn(1,2)*setting.Usigma*2; 

      

        Yt.p{k}.landmark = pstate.landmark; 

        Yt.p{k}.w = 0; 

        for j=1:length(c) 

            j_lmk = c(j); 

            if Yt.p{k}.landmark{j_lmk}.init == 0 % j never seen before 

                mu = z(j,1:2) + xt;   % initialize mean 

                invG = invgp(xt, mu); 

                Cov = invG*setting.R*invG'; 

                Yt.p{k}.landmark{j_lmk}.mu = mu; 

                Yt.p{k}.landmark{j_lmk}.Cov = Cov; 

                Yt.p{k}.landmark{j_lmk}.init = 1; 
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                Yt.p{k}.w = Yt.p{k}.w+0.9; 

            else 

                Cov = Yt.p{k}.landmark{j_lmk}.Cov; 

                mu = Yt.p{k}.landmark{j_lmk}.mu; 

                zt = z(j,1:2); 

                zh = mu-xt; %g(mu, xt); 

                G = gp(xt,mu); 

                Q = G'*Cov*G + setting.R; 

                K = Cov*G*Q; 

                mu = mu + (K* (zt-zh)')'; 

                Cov = (eye(2) - K*G') * Cov; 

  

               Yt.p{k}.landmark{j_lmk}.Cov =  Cov; 

               Yt.p{k}.landmark{j_lmk}.mu = mu; 

               %Yt.p{k}.w = exp(-(zt-zh)*(zt-zh)'); 

               Yt.p{k}.w = Yt.p{k}.w+(1/sqrt(det(2*pi*Q))) * 

exp(-0.5*(zt-zh)*inv(Q)*(zt-zh)'); 

            end 

  

            Yt.p{k}.xt = xt; 

        end 

    end 

  

    Yttmp = Yt; 

    corr = zeros(setting.nparticle, 1); 

    corr(1) = Yt.p{1}.w; 

    for i=2:setting.nparticle 

        corr(i) = corr(i-1) + Yt.p{i}.w; 

    end 

    RAND = rand(setting.nparticle,1)*corr(setting.nparticle); 

    for i=1:setting.nparticle 

        j=0; 

        for j=1:setting.nparticle 

            if j==1, ub = 0; 

            else ub = corr(j-1); 

            end 

            if RAND(i) < corr(j) && RAND(i) >= ub; 

                break; 
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            end 

        end 

        Yt.p{i} = Yttmp.p{j}; 

    end 

end 

  

function x = gp(xt, mu) 

    x =  [1 0; 0 1]; 

  

end 

  

function x = invgp(xt, mu) 

    x =  [1 0; 0 1]; 

end 

function x_groundtruth = generate_x_groundtruth() 

global setting 

    x_groundtruth = zeros(setting.nstep, 2); 

    for i=1:setting.nstep 

        x_groundtruth(i,1:2) = [cos((i-1)*pi/36), sin((i-1)*pi/36)] * 20; 

        %x_groundtruth(i,3) = i*pi/36;   % 5 degree each step 

    end 

end 

  

function [u,z,c] = simulateOneStep(x_groundtruth, index) 

    global landmark; 

    global setting; 

    u = x_groundtruth(index,:) - x_groundtruth(index-1,:)+ 

[randn(1,2)*setting.Usigma]; % R 

    c = zeros(0,1); 

    z = zeros(0,2); 

    for i=1:length(landmark) 

        dist = norm( landmark{i} - x_groundtruth(index,1:2) ); 

        if(dist < setting.zrange) %% visible 

            z = [z; (landmark{i} - x_groundtruth(index,1:2))] ; 

            c = [c; i]; 

        end 

    end 

end 
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function initLandmark() 

    global setting landmark; 

    landmark = cell(setting.nlandmark,1); 

    rnd = rand(setting.nlandmark,2); 

    for i=1:setting.nlandmark 

        landmark{i} = rnd(i,:)*40-[20,20]; 

    end 

     

end 

function initParticle() 

    global Y; 

    global setting; 

    global landmark; 

    Y = cell(setting.nstep,1); 

    Y{1}.p = cell(setting.nparticle,1); 

    initLandmarkSigma = [0.1^2 , 0, 0, 0.1^2]; 

    for k=1:setting.nparticle 

        Y{1}.p{k}.xt = [20 0]; 

         

        Y{1}.p{k}.landmark = cell(setting.nlandmark,1); 

        Y{1}.p{k}.w = 1/setting.nparticle; 

        for i=1:setting.nlandmark 

            Y{1}.p{k}.landmark{i}.init = 0; 

            %Y{1}.p{k}.landmark{i}.u = landmark{i}; 

            %Y{1}.p{k}.landmark{i}.Sigma =initLandmarkSigma; 

        end 

    end 

     

end 

 


