DogBOT

Team 6 – Kuan-Ting Yu Wei How Mo Ping-Che Shiao Issue Lee

Outline

- Gesture recognition Kinect
- Human following laser range finder
- Chase ball color camera
- Facial expression emotion

Gesture

- Stereo Vision
 - Compare two images to extract 3D info.
 - But, depth image become broken for area with less texture

Alternative: Kinect Sensor

Kinect

- Kinect is an active sensor which projects structured infrared light on objects.
 - use the dot pattern to derive 3D information
 - with built-in body parts tracker

Stereo v.s. Kinect

erform click or wave gestures to track hand

Gesture Recognition

- We have designed the finite state machine to recognize the 5 gestures for interaction.
- But, later we utilize Kinect's built-in gesture recognizer.

	Gestures	State 1	State 2	State 3	State 4	Complete
	HELLO					
	INTRODUCTION					
	COME					\checkmark
	CHASE					
	STOP					

Human Following

Laser Scanner

 High precision and scan rate
Invariant to different lighting conditions, perspective change, etc

► Flow Chart:

Human Following

- Human detection using laser scanner
 - Detection position : lower legs

Human Following

- Obstacle Avoiding:
 - Laser based
 - Front of pioneer, degree 45 to degree 135

Ball chasing

- 1) calculate hue histogram of the ball
- 2) back projection on current image
- 3) thresholding and finding contour
- 4) coordinate transform from image to base

Coordinate transform

• To achieve higher level planning, precise target localization is a plus.

$${}^{base}p = {}^{base}T_{cam} {}^{cam}T_{img} {}^{img}p$$

$^{cam}T_{img}$ Recall

Difficulty

The perspective transformation $^{image}T_{camera}$ is singular!

• $p^{aug}(\lambda)$:augmented image coordinate of p^{i}

 $camera T_{image} \neq image T_{camera}^{-1}$

Depth is not fixed in our case!

 $^{cam}T_{board}~$ is measured by calibration tool as extrinsic parameter. $^{base}T_{board}~$ is measured by hand.

Our solution (2/2)

 $^{cam}T_{img}$, the inverse perspective transform, can be solved by extending the constraint of fixed depth, $\lambda = p_3^c$, to a general plane equation of the ground: $(\mathbf{p}^c - \mathbf{o}_{board}^c) \cdot \overrightarrow{n^c} = 0$

Experimental result

The system can locate ball within 5m from camera with precision around 10cm.

Summery

- Gesture recognition Kinect
- Human following laser range finder
- Chase ball color camera
- Facial expression emotion

