
Machine Learning Final Project Report
Team Name: Zero

Kuan-Ting Yu (r99922070) and Yu-Chun Huang (d98922047)
January 13, 2012

Abstract

The final project of this machine learning class is a challenging multi-label prediction
problem with missing data. We use polynomial surface regression for pairwise-feature
fitting, and then use the features with least fitting error to predict missing data. Then we
did 5-fold cross-validation against 4 learners and applied uniform blending on the learners
to achieve better performance. A brief comparison of the learners and recommendations
for different application requirements are also discussed in this survey report.

1. Dealing with missing data
We designed three algorithms for recovering missing data, 1) sorting by pairwise correlation then use

polynomial fitting for interpolation, 2) sorting by pairwise fitting error then use polynomial fitting for interpolation,
3) sorting by fitting error then use a polynomial surface to fit the missing data from two existing features.

1.1. Sorting by correlation - polynomial fitting

Step1. Calculate the correlation among every pairs of feature as shown in Fig 1 (a).
Step2. For each missing feature i, we rank the candidate feature j for recovering by the absolute correlation

value because higher absolute correlation implies the pair have stronger relation rather than being independent.
Step3. Given the missing feature i and feature j for recovering, we use second order polynomial fitting to

interpolate the missing value. The fitted curve is shown in Fig 1 (b). The reason to pick second order polynomial
is that most distribution when we visualize the data are not linear and monotonically increasing or decreasing. The
second reason is that higher order polynomial may is more possibly incur overfitting and from experiments we
observe no much improvement as the order becomes greater than two.

(a) (b)
Fig 1. (a) The correlation value presented using heat map, the origin is at the bottom-left corner.
We intentionally ignore the value of self-correlation because we need another feature to recover the
missing feature. (b) Using feature 30 to fit feature 27.

1

1.2. Sorting by fitting error - polynomial fitting

Although correlation is one heuristic that estimate which two pair has better fitting result, a more direct
measurement would be the fitting error. The fitting error correspond to the training error taught in class. We can
further use cross validation to further estimate the testing error. As a result we gain a significant improvement in
testing performance of the entire multilabel problem. The error we used is root mean squared error (RMSE).

1.3. Sorting by fitting error - surface fitting

The method above is good enough for certain feature but not for all features. For example, the best curve to fit
feature 60 is shown in Fig 2. We can observe a great error on the right hand side. Therefore, we propose to use two
features to fit the target missing feature in order to lower the fitting error. We can achieve a better fitting error of
0.052 against the error of 0.08 obtained from section 1.2. We choose the two features for each target by fitting error.

Fig 2. (a) Curve fitting result of feature 60 against feature 56. (b) Surface fitting result.

Fig 3. (a) We added some missing value to the testing data to test our recovering mechanism. This
shows the distribution of L1 error. The error is mostly bounded by 0.1.

2. Choosing learners
In order to find a good multi-label predictor for this particular data set, we applied 5-fold cross-validation

against 4 learners (MLkNN, J48, SVM, and Random Forest1) with various parameter configurations. Note that, all
the parameters not listed here are left using implementation defaults. After the evaluation is done, uniform blending
is applied to further improve the performance.

1 We applied two meta-algorithms (RAkEL and Power Labelset[3]) to J48 and Random Forest.

2

The learner implementations we use for this project are Mulan[1] and LIBSVM[2]. The source code of this
project can be found at http://code.google.com/p/ml2011-final-project/.

2.1. MLkNN 5-fold cross-validation

Table 1. MLkNN 5-fold cross-validation result

K Smoothness Hamming loss F1

8 0.7 0.0328±0.0003 0.4844±0.0018

8 1.0 0.0328±0.0003 0.4844±0.0018

8 1.3 0.0328±0.0003 0.4844±0.0018

12 0.7 0.0326±0.0003 0.4829±0.0023

12 1.0 0.0326±0.0003 0.4828±0.0023

12 1.3 0.0326±0.0003 0.4828±0.0023

16 0.7 0.0325±0.0003 0.4849±0.0039

16 1.0 0.0325±0.0003 0.4849±0.0039

16 1.3 0.0325±0.0003 0.4849±0.0039

22 1.0 0.0324±0.0003 0.4904±0.0046

26 1.0 0.0323±0.0003 0.4909±0.0030

30 1.0 0.0323±0.0003 0.4895±0.0025

34* 1.0 0.0323±0.0003 0.4922±0.0034

* Considered the best choice and used by our team.

2.2. J48 5-fold cross-validation

Table 2. J48 5-fold cross-validation result

Confidence interval Hamming loss F1

0.25 0.0321±0.0002 0.5572±0.0036

0.30* 0.0322±0.0002 0.5569±0.0036

0.40 0.0322±0.0002 0.5569±0.0037

0.50 0.0323±0.0002 0.5569±0.0038

* Considered the best choice and used by our team.

3

2.3. Random Forest 5-fold cross-validation

Table 3. Random Forest 5-fold cross-validation result

Number of trees Number of features Hamming loss F1

10 3 0.0287±0.0002 0.5659±0.0029

10 5 0.0285±0.0003 0.5716±0.0017

10 8 0.0261±0.0001 0.6192±0.0021

10 12 0.0262±0.0001 0.6194±0.0040

10 16 0.0261±0.0002 0.6201±0.0023

10 20 0.0261±0.0002 0.6216±0.0037

20 8 0.0255±0.0002 0.6264±0.0034

20 16 0.0254±0.0001 0.6296±0.0028

20 24 0.0253±0.0002 0.6317±0.0029

20* 32 0.0253±0.0001 0.6320±0.0024

20 40 0.0254±0.0002 0.6316±0.0029

30 8 0.0255±0.0002 0.6259±0.0036

30 16 0.0253±0.0002 0.6292±0.0043

30 24 0.0253±0.0002 0.6304±0.0031

30 32 0.0253±0.0002 0.6318±0.0033

* Considered the best choice and used by our team.

2.4. SVM 5-fold cross-validation

We tried two meta-algorithms to transform the multilabel problem into single label classification problem, 1)
label combination 2) binary transformation. For label combination method, we obtain 3436 classes from all possible
label combination in the training dataset. However, the best result we obtained is (Hamming loss: 3.7092 F1:
0.5284515637) using surface fitting data, which is very limited. The reason we think is because after dividing all the
data into 3436 classes, there are not much examples left for each class, and the number of examples of each class is
unbalanced.

For binary transformation, we obtain generally better result than using label combination but the training time is
rather long, because every label requires both training and testing. On the other hand, the default of libsvm outputs
accuracy, which is correspond to hamming loss. To optimize the parameter for F1 score, we modify the output to be
F1 score so that the “grid.py” program for choosing SVM parameters that will maximize the F1 score.

Table 4. SVM 5-fold cross-validation result

4

 Recover method Hamming loss F1

SVM Binary Surface fitting 3.047 0.5734046426

SVM Binary ErrSort CurveFitting 3.2604 0.5163759345

SVM Binary CorrSort CurveFitting 3.598 0.4434131551

SVM Label Combine Surface fitting 3.7092 0.5284515637

SVM Label Combine ErrSort CurveFitting 3.7886 0.5387293934

SVM Label Combine CorrSort CurveFitting 4.2394 0.4077892325

2.5 Blending

We tried 3 methods for blending, 1) Pocket PLA, 2) Linear Regression, and 3) Uniform voting. After several
experiments, we found that uniform blending generates best result and is much simpler. Hence we use uniform
blending to produce the final prediction for the test data set.

We also tried several prediction combinations of the 4 learners to do uniform blending. Interestingly, the result
shows that mixing MLkNN and J48 altogether with Hamming-optimized SVM, F1-optimized SVM and Random
Forest does not help. We believe the reason why MLkNN and J48 does not make the prediction better is that
Random Forest and the 2 SVMs are already too powerful, and the votes from MLkNN and J48 are not accurate.
Therefore, blending Hamming-optimized SVM, F1-optimized SVM, and Random Forest is our final choice, and
it does help us win the 3rd place in turns of Hamming loss in the final competition (Hamming loss: 2.9942; F1:
0.5802797948).

3. Discussion

In this section, a brief comparison of the 4 learners, and recommendation for different application requirements
are discussed.

Because our team’s best Hamming loss and F1 are predicted by our blending solution, we recommend this
blending solution for both Hamming loss and F1. The pros and cons are also stated in Table 6 (application
requirement: “Hamming loss is important” and “F1 is important”).

Table 5. Comparison between the 4 learners

 Efficiency Scalability Popularity Interpret-ability

MLkNN High High Medium Medium

J48 Medium High Medium High

Random Forest Medium Medium High High

SVM Low Medium High Low

Table 6. Recommendations for different application requirements

5

Application
Requirement Recommendation* Pros and cons**

Computation time is
critical MLkNN

Pros:
- Fast (train: 16.74 minutes; predict: 14.64 minutes).

Cons:
- Comparing to other learners evaluated by us, the

out-of-sample error is relatively high for both
Hamming loss and F1.

Out-of-sample error
is critical

(Hamming loss &
F1)

Uniform blending of Random
Forest and SVM

Pros:
- Out-of-sample error is low, especially for

Hamming loss measure (Hamming loss:
0.029942; F1: 0.5802797948).

Cons:
- Computation intensive (training time is more than

24 hours).
- Hard to interpret how the prediction is done.

Decision maker should have “faith” on the
learner.

Hamming loss is
critical Same as above Same as above

F1 is critical Same as above Same as above

* Learner configurations are based on the cross-validation results discussed in section 2.
** Computation time is machine-dependent.

4. Credits

Kuan-ting Yu (r99922070)
- Missing data pre-processing;
- SVM prediction;
- Survey report.

Yu-chun Huang (d98922047)
- MLkNN, J48, and Random Forest prediction;
- Prediction blending;
- Survey report.

References

[1] Mulan: A Java library for multi-label learning, http://mulan.sourceforge.net/.
[2] LIBSVM -- A Library for Support Vector Machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
[3] Multi-Label Classification: An Overview, International Journal of Data Warehousing & Mining, 3(3), 1-13, July-

September 2007.

6

http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/
http://mulan.sourceforge.net/

