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Abstract

Depth estimation from 2D images has been extensively
studied in the computer vision society. Stereo vision is one
that calculates depth from disparities in two or more im-
ages. Traditional stereo research focused on how to reli-
ably find correspondences in two images. Hence, success-
ful feature point detection and matching are crucial steps.
However, for some scenes e.g. textureless walls, there is no
enough texture that can be served as feature points. In
this project, we attempt to implement the multiview stereo
algorithm with Manhattan-world assumption as structure
prior [3]. We believe this is how human reason the depth in-
formation when seeing a scene of textureless surfaces. Our
contributions are solving important implementation details
that was omitted in the original paper, and discuss interest-
ing findings in experiment.

1. Introduction
Shape from visual sensing is an important topic in com-

puter vision. To build a model, measuring an object directly
is one naive way, but sometimes we cannot use this intrusive
measurement. The reason may be the object is too large,
e.g. a building, or with too much fine details, e.g. a human
face. Light turns out to be a useful measuring tool because it
travels with one exact direction, unlike sound that radiates
in space. In computer vision, triangulation is a technique
to recover depth from disparity in two images. Regions
that can be inferred are required to have textures. Though
for some textureless area in the triangulation will fail, hu-
man use some common sense in structure to recover dense
depth information. In this project, we aim to evaluate the
stereo algorithm based on Manhattan-world assumption as
described in [3]. The assumption assumes the surfaces in a
scene are perpendicular to each other. More specifically, the
normal of surfaces lie in three orthogonal directions, a.k.a
dominant directions. Many artificial scenes like buildings,
or interiors of them are following this assumption as shown
in Figure 1.

Figure 1. Man-made scenes or objects usually follow the
Manhattan-world assumption but with textureless surfaces.

This report describes the system pipeline following the
data process order. A system diagram is presented in Fig-
ure 2. Besides a concise version of algorithm described
in [3], Our contribution to the implementation details are
highlighted in the following sections. In Section 2.4, we
describe an geometric approach to estimate an important pa-
rameter - 3D sample rate. In Section 2.5, we show how to
downsample the input properly to run each stage in reason-
able amount of time.

we added our low-level description of camera character-
istic from geometry Section 2.4, and how to realize each
step in reasonable amount of time Section 2.5. Time is
crucial because the number of reconstructed points from
PMVS [4], the number of sites that we need to infer in MRF
(Markov random field), the number of hypothesis plane, and
the number of input views all together contribute to a fairly
large search space. Many intuitive implementation will take
hours to run, which makes the experiment infeasible. In
Section 3.3 we present our solution to the violation of sub-
modular constraint while running α-expansion for MRF. Fi-
nally, the experimental results are discussed in Section 4.
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Figure 2. System diagram.

2. Hypothesis Planes
2.1. MVS Preprocessing

Given multiple images from several views of a scene,
we aim to reconstruct 3D oriented points (positions with
normals). First, we used a publicly available program,
Bundler [8], which will output sparse reconstructed points
without normal, and camera projection matrices Qj associ-
ated to each view.

Qj = Kj ·Rj · Tj (1)

whereKj is a 3-by-3 camera intrinsic matrix,Rj is a 3-by-3
rotation matrix, and Tj is a 3-by-4 homogeneous translation
matrix.

Kj =

fx 0 cx
0 fy cy
0 0 1

 (2)

Tj =

1 0 0 tx
0 1 0 ty
0 0 1 tz

 (3)

The Bundler program needs an initial guess of focal
length. If we have the camera, we can use camera calibra-
tion tool box [1] to find out precise focal length in pixel. We
found that through experiments with accurate initial guess
of focal length, the success rate of running Bundler is rather
high. Inside Bundler, SIFT key point detection and match-
ing are used for finding correspondences in different views.
RANSAC is also used to reject outlying matches. 1 Sec-
ond, we input the sparse point cloud and camera matrices
into PMVS, Patch-Based Multiview Software. The output
will be a dense point cloud with normal estimates.

1We still rely on keypoint triangulation on contours for model skeleton,
but not too much in surface area.

In practice, we used the Catena framework [7] which
combined Bundler and PMVS and allows us to easily ex-
periment with the tool chain with different paramenters. As
we have tried, it was strenuous to install and run each pro-
gram manually line due to issues of old dependency needed
by the two program also impede the experiment.

2.2. Extract Dominant Axis

To infer the three dominant axes in a Manhattan World,
we use the voting scheme described in [3]. We first convert
normal direction Ni = (nx, ny, nz) associated with Pi into
a hemispherical coordinate (θ, φ), where θ denotes longi-
tude, and φ denotes latitude, −π ≤ θ ≤ π, 0 ≤ φ ≤ π/2.
Because we don’t care about the signed direction of the nor-
mal when defining a plane, we use a hemispherical coordi-
nate, instead of a whole sphere. We devide φ into G discrete
ranges, and φ into 4G. Thus, there will be 4G×G bins for
voting. G = 33 in our experiment. First axis ~d1 is extracted
by averaging the Ni that are in the bin of highest vote. Sec-
ond axis ~d2 is found among the bins are 80◦ ∼ 100◦ against
~d1. Same as ~d1, ~d2 is the average of Ni that is in the high-
est valid bin. Third axis ~d3 is found in the bins that are
80◦ ∼ 100◦ against ~d1 and ~d2, and with the same averag-
ing process. Figure 3 shows the histograms for extracting
dominant axes of hall dataset.

2.3. Generating Hypothesis Planes

For each dominant axis ~dm and reconstructed point Pi,
we can create a plane hypothesis. Having ~dm as normal,
pasing through Pi, the plane will be equation ( ~dm·X = ~dm·
Pi). The offsets ~dm · Pi is fed into meanshift clustering [2]
with bandwidth σ =R or 2R whereR is the 3D sample rate
that will be described in Section 2.4. Clusters with less than
50 supporting offsets are discarded. Each cluster center of
offsets combines with the normal direction ~dm to generate
hypothesis planes. Figure 4 shows Pi with hypothesis plane
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(c)

Figure 3. Finding dominant axes of hall dataset with histogram of
Ni (a) ~d1 is the average of Ni in maximum voting bin. (b) ~d2 is
averaged from maximum bins that are 80◦ ∼ 100◦ against ~d1. (c)
~d3 is averaged from maximum bins that are 80◦ ∼ 100◦ against
~d1 and ~d2.

it belongs to in 3 directions. Different hypothesis plane can
be distinguished by color.

2.4. 3D Sample Rate

The 3D sample rate describes how a pixel of the 2D tar-
get image corresponds to a sphere diameter Ri centered at
Pi. We used camera geometry to calculate Ri as shown is
Figure 5.

Ri =

∣∣∣(Pi −QtO) · ~QtN
∣∣∣

f t
, (4)

whereQtO is the camera optical center, f t is the focal length
of target view, ~QtN is the camera direction. The overall av-
eraged 3D sample rate is

R =
∑
Pi

Ri
nP

, (5)

where nP is number of Pi.
To calculate focal length f j given projection matrix Qj ,

we tried to formulate a system of equations but without suc-
cess. Thus, we propose a matrix factorization approach, by
factoring Qj into the 3 seperate matrices as in Eq. 1. Let

A = Qj(1 : 3, 1 : 3) = K ·R, (6)

where K is an upper triangular matrix. R is an orthogonal
matrix.

AAT = KRRTKT = KKT , (7)

The common Cholesky factorization of a matrix S com-
putes an upper triangular matrix U where UTU = S, but

function [K,R,T] = factor_camera_matrix(P)
A = P(:,1:3);
T = -A\P(:,4);
K = rot90(chol(rot90(A*A',2)),2)';
R = (K\A)';

Table 1. Matlab code for camera matrix factorization

Figure 5. Geometry for computing 3D sample rate Ri at point Pi

we need a U such that UUT = S. We use a rotation trick
to keep K upper.

K = rot(chol(rot(AAT )))T , (8)

where rot() rotates matrix 180◦, and chol() computes the
upper triangular matrix of Cholesky factorization. Here we
assume focal length in x and y axes on image are the same,
so f j = K(1, 1). A very compact matlab code for camera
matrix factorization can be found at Table 1.

2.5. Downsampling Tricks

Because we are going to use MRF to infer the 2D depth
map of a 2D image pixel-by-pixel. Resolution of the target
image should be about 0.1M pixels for reasonable running
time (less than hour per view). However if we downsample
the image before the PMVS stage, the PMVS reconstruc-
tion would hardly succeed. Our trick is to use high reso-
lution image for PMVS, and in the later construction use a
downsampled image with lower dimension, say, 200× 300.
Besides the image downsampling, the projection matrix Qj
requires modification. The focal length would be therefore
scale down by a factor of B. We decompose the camera
matrix and modified the focal length in K matrix, and let
modified K times with original R and T to form a new pro-
jection matrix for downsampled images.

3. Reconstruction

From the input multiview images, select one target view
t that we are going to work on. For that w × h image, [3]
formulates it as a MRF labeling problem for each pixel. The
labels are one of the hypothesis planes. A good plane hy-
pothesis assignment would have few conflicts with the re-
constructed PMVS points Pi and with few discontinuities.
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Figure 4. Hypothesis planes of hall dataset in three directions. Points belong to the same cluster, will contribute to the same hypothesis
plane are colored the same. (a) PMVS point cloud model with color mapping along depth. (b) Hypothesis planes in ~d1. (c) Hypothesis
planes in ~d2. (d) Hypothesis planes in ~d3.

The following energy function formulates this characteristic

E =
∑
p

Ed(p) + λ
∑

{p,q}∈N(p)

Es(kp, kq), (9)

where kp is a hypothesis assigned to P , and N(p) is the set
of 4-connected neighboring pixels of p. λ is set to 0.1 by
default, which is lower than the usual choice in [3], because
we found if λ is too high, each pixel will be labeled with the
same hypothesis plane, causing every pixel labeled with the
same plane.

3.1. Data term

Ed captures the inconsistency between a plane assign-
ment kp at pixel p and all the reconstructed points Pi by
PMVS. If k is assigned to pixel p, we can infer the 3D
point formed by the intersection of plane k and the view-
ing ray that passes through the optical center of target view
and pixel p on target image. We denote this 3D point as
Xk
p . There are three cases that will cause a conflict between

Xk
p and Pi. Let πj(X) denotes projecting a 3D point X

on view j, and let t be the target view index. We define a
signed distance of two points with respect to view j

∆j
d(P,Q) = (Q− P ) · Oj − P

‖Oj − P‖
, (10)

Case 1. If Pi is visible in target image It and πt(Pi) = q
and q is inside target image. Xk

q must be near to Pi within a

distance of γ. Thus, if
∣∣∣∆j

d(Pi, X
k
q )
∣∣∣ > γ, then Pi conflicts

with Xk
q .2

Case 2. If Pi is not visible in target view and πt(Pi) = q,
thenXk

q must be closer to optical center of target imageOt,
and therefore blocks the sight to Pi. Thus, if ∆j

d(Pi, X
k
q ) <

−γ, then Pi conflicts with Xk
q . In [3], this rule was incor-

rectly written as ∆j
d(Pi, X

k
q ) > γ.

Case 3. For any view j, except target view, if Pi
is visible on view j, and any Xk

q , πj(Xk
q ) = πj(Pi),

2The visibility of Pi on view j. is provided in output *.patch file from
PMVS

∆j
d(Pi, X

k
q ) > γ̂i,j , Pi conflicts with Xk

q . γi,j is a mod-
ified threshold

γ̂i,j =
γ

Nkp · rj(Pi)
, (11)

where Nkp is the normal of the plane corresponding to kp,
and rj(Pi) is the normalized viewing ray directing from Ij
to Pi.

Eid(hp) =

{
max(0, C(Pi)− 0.7) if hp conflicts with Pi

0 otherwise
(12)

where C(Pi) is the photometric consistency of patches Pi.
If C(Pi) is less than 0.7, the evidence of Pi is not solid
enough, and therefore not counted. Finally, the data term
for hp is given as

Ed(kp) = min(0.5,
∑
i

Eid(kp)), (13)

3.2. Smoothness term

The smoothness term Es is a combination of discontinu-
ity Ecs and prior from dominant edge.

Ecs(kp, kq) =
∣∣Xkp

p,q −Xkq
p,q

∣∣ , (14)

where p and q are neighboring pixels, and Xk
p,q is the in-

tersection point of viewing ray passing through the center
of pixel p and q, and hypothesis plane kp, kq . If kp = kq
Ecs = 0.

3.2.1 Dominant Edges

Dominant edges are edges that point toward a vanishing
point corresponding to a dominant axis. The place of dom-
inant edge has higher possibility that a transition of two
planes occurs. To find dominant edges, we first do canny
edge detection, and use gradient filters to find out the direc-
tion of each edge. Let ~ep denote the edge direction at pixel
p. Let Vm denote the mth vanishing point in target im-
age. We calculate Vm as follows. Let ~dm = (nx, ny, nz)

T

be a normal of dominant axis, and a line passing through
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Figure 6. Dominant edge detection on hall dataset. Red, green,
and blue denote the dominant direction of edges. If two vanish
points and the edge point are almost on the same line in 2D, an
ambiguous detection would occur and labeled with mixed color,
e.g. yellow. However, we only rely on whether a pixel is a domi-
nant edge regardless of the direction it belong to.

P = (Px, Py, Pz)
T with direction ~dm is ~dm · t + P . We

project this line on target view and let t→∞.

d

VxVy
1

 = Qt



nx
ny
nz
1

 t+


Px
Py
Pz
1


 (15)

Vm = lim
t→∞

πt( ~dmt+ P )

= (
nxQ11 + nyQ12 + nzQ13

nxQ31 + nyQ32 + nzQ33
,
nxQ21 + nyQ22 + nzQ23

nxQ31 + nyQ32 + nzQ33
)

(16)
For each edge point, place a 7× 21 (pixel) window cen-

tered at that point with long side following the direction of
that edge point. For each cell i in the window, we can in-
terpolate the gradient direction ~ep,i, at cell i let ~lm be the
direction from p to Vm, and ~l⊥m be perpendicular to ~lm. If∑

i
~l⊥m · ~ep,i∑

i
~lm · ~ep,i

> β, (17)

then we delare p to be a dominant edge. Here, we choose
β = 2. Figure 6 is a dominant edge detection result, the
color red, green, and blue denote dominant edges of differ-
ent dominant axes. If two vanishing points and p lies almost
on the same line, an ambiguous result occurs. Finally, we
want the smooth penalty is small at dominant edges, so we
define Es as following:

Es(kp, kq) =

{
0.01× Ecs(kp, kq) if p is dominant edge

Ecs(kp, kq)
(18)

3.3. MRF Labeling

We used gco [9] software for labeling. From [6], we
found that the smooth function should conform to submod-
ular constraint: suppose α, β, γ are three labeling of two
neighboring pixel p, q,

Ecs(α, γ) ≤ Ecs(α, β) + Ecs(β, γ), (19)

For real number distance, this constraint will be satisfied
because Xk

p,q lies on the same line and

∥∥Xα
p,q −Xγ

p,q

∥∥ ≤ ∥∥Xα
p,q −Xβ

p,q

∥∥+
∥∥Xβ

p,q −Xγ
p,q

∥∥ (20)

However, in practice, α-expansion only accepts integer
cost function. One solution is to scale up all costs by a factor
and truncate the fractions, but this would cause violations
of submodularity. We amend the solution by taking ceil()
operation after scaling and before truncation. With a simple
proof, the ceil() can maintain submodularity in the process
of quantization.

4. Experiment

We compare our result with the state-of-the-art sur-
face reconstruction-Poisson surface reconstruction [5]. Fig-
ure 7, 8, 9, and 10 show some of the reconstructed hall
dataset. The images from left to right are: camera view,
dominant edge detection, Poisson surface reconstruction,
our Manhattan-world surface reconstruction, our recon-
struction with texture, and texture mesh with side view. Our
observations are as follows:

1. Sky: This model does not consider depth at infinitely
far away. There is no reconstructed PMVS points for sky.
Thus, the sky will share the dominant plane with neighbor-
ing regions of the building.

2. Ground: In Figure 9, there are very few Pi for ground,
so for some view, the ground share the same vertical plane,
instead of its horizontal plane.

3. Discontinuity: The plane discontinuity matches the
pixel detected as dominant edges (Figure 7). On the other
hand, if we do not provide the edges, the reconstructed out-
put would be labeled with the same plane. Hence dominant
edge information is crucial.

4. Insufficient evidence: At some view points, there are
too few Pi associated with that view, so the data cost is not
informative enough to guide the labeling, and therefore the
smoothness term dominates. The MRF result would be just
one single plane (Figure 10).

5. Although our model is not perfect, we can avoid the
“blob” effect in the Poisson reconstruction. The reason is
that we have the Manhattan-world assumption where only
perpendicular planar surfaces exist.
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Figure 7. A reconstructed view from hall dataset.

Figure 8. A reconstructed view from hall dataset.

We combined some successfully reconstructed textured
mesh from several views, and build a whole model of the
hall dataset (Figure 11).

5. Conclusion
In this project, we implemented the Manhattan-world

stereo system proposed in [3]. First, we contribute
the first publicly available implementation of this system
at http://people.csail.mit.edu/peterkty/
code/manhattan/. Second, we fill in some gaps that
are crucial to complete the implementation with the knowl-
edge of Computer Vision learned in class 6.869. Third, we
successfully run our system on the hall dataset and gener-
ate textured Manhattan-world plane reconstruction from the
point cloud.
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Figure 9. A failing reconstructed view from hall dataset, where ground plane is vertical

Figure 10. A failing reconstructed view from hall dataset, where all pixels are labeled with the same plane hypothesis

Figure 11. Combining all successful reconstructed meshes to build the hall model.
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