
Direct Trajectory Optimization of Dynamic Rigid
Body Pushing

Kuan-Ting Yu

Abstract—In this project, I explore the method of direct
trajectory optimization on a dynamic pushing problem, i.e.
how to control a pusher to push an object to a target state.
Specifically, I focus on letting the optimization solver to schedule
contacts without users specifying it manually, and modeling
friction dynamics between pusher and slider, as well as slider and
the supporting surface. Implementation challenges such as non-
differentiable system dynamics at zero velocity, and convergence
problem for solvers are discussed. In experiment, I demonstrate
several successful plan of pushing.

I. INTRODUCTION

In this underactuated robotics class, we are impressed by
how underactuated robots such as acrobots and compass-gait
walker can do amazing tasks by exploiting dynamics. More-
over, we found that by considering dynamics of robots and
the environment, robots can achieve better energy efficiency,
and also move faster, as illustrated with the example of a
swimming dead fish. Inspired by the spirit of underactuation,
I want to investigate a kind of underactuated manipulation –
pushing. In our daily life, we push objects that are too large
or too heavy to lift, e.g. refrigerators and shelves. We do so
because less force and energy is required. Pushing is also
a simpler manipulation, we only need one point of contact,
rather than multiple contacts to make force or form closures.

With pushing, we can control either the force that we exert
or the acceleration of the end effector in pushing. To plan
a trajectory of input control, I apply the direct trajectory
optimization technique studied in class. It is easy to apply in
general, but we found some issues in the case of kinetic friction
in dynamics. The frcitional acceleration is a sign function of
velocity, which is non differentiable at the zero point. This
is bad for optimization. I found that by adding new variables
and a complementarity constraint, we can make the constraint
about frictions differentiable.

On the other hand, in order to learn the implementation
fully and also learn to exploit drake system, I tried different
combinations of tools to implement the system. The first
one is a full implementation by myself without drake and
only depends matlab’s fmincon function, which results in bad
solution when constraints cannot be met. In the second version,
I switched from fmincon to SNOPT optimization tool, which
gaves me the most reliable result. Third, I tried to derive my
system from the drake system. Fourth, I specified the model
in URDF, and let the drake do the work. However, this cannot
incoporate 2 objects in contact-implicit trajectory optimization.

A. Terminologies

break points
t0, t1, ..., tN , a seires of time step where we specify
a trajectory

knot points
x0, x1, ..., xN , u0, u1, ..., uN , the values correspond-
ing to the break points.

II. RELATED WORK

A. Pushing mechanics

Mason [4] provides a qualitative theory on pushing: whether
an object will turn right or turn left when pushed on a
point. The reason that he does not give an exact motion of
pushed object is because finding the total frictional force relies
on integrating over an indeterministic pressure distribution
between object and surface. Since we can never calculate it
correctly, Mason [4] mentioned that approximating the contact
using a tripod model is usually sufficient. Thus, Peshkin and
Sanderson [5] give bounds on all possible motions resulting
from pushing. The procedure is: sample all possible stable
supporting tripod contacts, and use each of them to predict
the motion. Because the motion uncertainty makes it hard
to develop a usable pushing mechanics, Lynch and Mason
[3] proposed using a fence as a pusher so that the slider’s
motion will become deterministic under quasistatic assump-
tion. During trajectory planning, the contact side is allowed to
change. To deal with dynamic pushing, Goyal [1] proposed the
concept of limit surface through which the applied torque on
the object given arbitrary force can be found easily. The limit
surface is an approximation of the mapping function using
a sphere. In this project, I want to remove the quasistatic
assumption and incoporate dynamic pushing, and I adopt the
tripod approximation so as to avoid the integral in the pushing
dynamics inside trajectory optimization.

B. Trajectory Optimization

There are two main categories in trajectory optimization:
shooting method and direct method. In shooting method, the
only decision variables are the finite control plan over discrete
time steps. Although the space of decision variable is small,
the gradients of the dynamic constraints at every time step with
respect to decision variables is a dense lower triangular matrix,
causing the time to satisfy constraints to scale quadratically
with the number of time step. Moreover, the cost gradient
over decision variables is huge for the first time step, and
decreasing toward the last time step. This is a bad situation
for numerical stability.

shooting direct method

Fig. 1: Sparsity comparison of gradient matrices for shooting
method and direct method: ci’s and di’s are the constraints for
each method.

knot point

break point

collocation
point

Fig. 2: Direct collocation method constrains the slope of the
spline at the mid points to be coherent with system dynamics
f .

On the other hand, direct method [2] incoporates system
states at break points as variables besides the control variables.
In this way, the gradient matrix becomes sparse, as illustrated
in Figure 1.

In this project I use direct transcription and direct colloca-
tion method [2]. They mainly differ in how they impose system
dynamic constraint. In direct transcription, a euler integration
method is used: xn+1 = xn + dt · f(xn,un),∀n. In direct
collocation, the dynamics is imposed on the slope of a cubic
spline that approximates the continuous trajectory of x at the
break points and the midpoints between them (aka collocation
points), as shown in Figure 2. Constraints at collocation points
are specified as

ẋspline (t
c
n) = f (x (tcn) ,u (tcn)) ,∀n

tcn =

(
tn + tn+1

2

)
C. Contact implicit trajectory optimization

Posa et al. [6] propose using nonlinear complementarity
constraints to simultaneously resolve constraint forces and
optimize the trajectory. They leverage Sequential Quadratic
Programming (SQP) to solve the nonlinear program efficiently.
This is the approach that I based on to let the optimization
solver to schedule the contacts automatically.

III. PROBLEM FORMULATION

In our system a pusher and a slider on a planar table are
modeled. The target is to plan a input trajectory of the pusher
u(·) to push the slider to a goal state. The pusher is a massless
and volumeless point of which we can control the acceleration.
The pusher is described as its Cartesian position xp, yp, so
qp = [xp, yp]

T . The slider’s state is described as its Cartesian
position xs, ys and orientation θs.

qs = [xs, ys, θs]
T .

The whole system state becomes x = [qs,qp, q̇s, q̇p]
T . The

slider has mass m and rotational inertia I . The slider’s shape
M is described as a polygon of |M | vertices:

M =

[
vx1

vx2
... vx|M|

vy1
vy2

... vy|M|

]
A. System dynamics

The system dynamics is described as a control differential
equation of ẋ = f(x,u). In the output of funtion f , ẍs, ÿs, θ̈s
are the result from the push force and frictional force, and
ẍp, ÿp are the same as the control u.

B. Acceleration from Friction
To calculate the total frictional froce of the table acting

on the slider, the exact method involves integrating individual
friction force of every differential area of the contact surface
(Figure 3). Let the velocity at a differential area be

v(~r) = [ẋs, ẏs] + ~r⊥ · (|~r|θ),

where ~r is the relative coordinate from the center of mass of
the slider, and ~r⊥ is a unit vector at position ~r and pointing
in counter-clockwise direction about the center of mass.∫

A

µtp(~r)
−v(~r)
|v(~r)|

dA,

where µt is the coulomb kinetic friction parameter, and p(·)
denotes the pressure distribution.

The pressure distribution here is approximated at discrete
points [4], so it becomes a function composed of delta func-
tions at these support points. Then I can write the force as
a sum instead of an integral. The translational force can be
written as

Ff =

|M |∑
m=1

µtfNm

−v(~rm)

|v(~rm)|

The torque caused by friction can be expressed as

τf =

|M |∑
m=1

∣∣∣∣~rm × −v(~rm)

|v(~rm)|

∣∣∣∣
By Newton’s second law of motion, the total frictional force
will cause an translational acceleration of

[ẍf , ÿf]
T =

Ff

m
and angular acceleration of

θ̈f =
τf
I

Fig. 3: Illustration of differential area of a slider on table

C. Acceleration from pushing

The pushing force Fp causes an translational acceleration
of [ẍ, ÿ]F = Fp/m and rotational acceleration of θ̈F =
|~rp × F |/I , where rp = [xp, yp] − [xs, ys] is the pusher’s
position relative to the slider’s center of mass. In sum, the
total acceleration of slider is q̈s = q̈f + q̈F

IV. DIRECT TRAJECTORY OPTIMIZATION

A. Direct transcription

In this method, we have decision vector,

z = [x1,x2, ...,xN ,u0,u1, ...uN−1]
T

and want to minimize an objective function

x′Ts,NQx′s,N +

N−1∑
i=1

(
x′Ts,nQx′s,n + uT

nRun

)
dt,

where x′s,n = xs,n − xs,goal. Dynamic constraint is by Euler
integration:

xn+1 = xn + dt · f(xn,un).

Thus, the optimization tries to minimize the inconsistency with
dynamics.

B. Direct collocation

In direct collocation, a piecewise polynomial function is
used to represent both a state trajectory x(·) and an input
trajectory u(·). u(t) is represented with first-order hold model,
and x(t) is approximated as a hermite cubic spline, which
is defined as piecewise cubic polynomials. Let xs(t) be a
cubic polynomial defined in the interval of tn to tn+1. The
constraints imposed on xs are

xs(tn) = xn,

xs(tn+1) = xn+1,

ẋs(tn) = f(xn,un),

ẋs(tn+1) = f(xn+1,un+1).

As derived in Homework 5, with tn ≤ t ≤ tn+1, h = tn+1 −
tn, fn = f(xn,un), to let a cubic polynomial

poly(h) = ah3 + bh2 + ch+ d

satisfies the above constraints, we have

a =
2

h3
(xn − xn+1) +

1

h2
(fn + fn+1)

b =
fn+1 − fn

2h

c = fn

d = xn

Let the collocation point between tn and tn+1 be:

xc
n = polyn(h/2) =

xn + xn+1

2
+ h

fn − fn+1

8

The derivative at collocation points can be expressed using the
decision variables:

ẋc
n = − 3

2h
(xn − xn+1)−

fn + fn+1

4

Then, we can impose the constraint so that the derivative
matches system dynamics.

ẋc
n[n]− f(xc

n,u
c
n) = 0,

where uc
n = (un + un+1)/2.

C. Complementarity constraints

Let φk(x) denotes the closest distance from the pusher to
k’th side of the slider, and Fp,k be the constraint force. In
order to let the solver schedule time of contacts, I specify
complementarity constraints for all n as follows:

Fp,k,⊥[n] ≥ 0

φk(x[n]) ≥ 0

Fp,k,⊥[n] · φk(x[n]) = 0,

where Fp,k,⊥ is the push force perpendicular to the contacting
side. This constraint set imposes that only when contact
happens at k’th side – φk(x) = 0–, can the pusher exert force
on that side of the slider.

D. Non-slipping pushing

To constrain the pusher do not slide on the contact point,
I restrict the lateral push force to be inside the friction cone
caused by the normal pushing force:

µ|Fp,⊥| ≥ |Fp,‖|,

and the relative velocity of the two object should be zero if
the pusher is exerting forces: ψ(q, q̇)F⊥ = 0

E. Other constraints

In realistic scenerio, our motor of the robot arm do have
actuator limits. Also, if we do not impose the limit, the solution
space can be huge, and solver may spend time searching
in space which is undesirable. Thus, we have a input limit
constraint:

|u| ≤ umax

To constrain the trajectory to agree with the specified start
and goal state, we have:

x0 = xstart; |xs,N+1 − xs,goal| ≤ tol

For the goal constraint, we added a tolerance to help the solver
find a solution faster. Otherwise, it is very hard to end at a
specific pose and velocity.

V. EXPERIMENT

As mentioned in the introduction, for learning purpose, I
tried implementing the system with different combinations.
Among those implementations, I found the version imple-
mented using SNOPT but without drakesystem gives the most
reliable optimization result. In other implementations, the
failures usually happens because of the nonlinear complemen-
tarity constraints are not satisfied, or collocation constraints are
not satisfied, which needs further investigation. In the exper-
iment N = 10, and the optimization reach to convergence in
about 180 seconds, Figure 4 shows a planned push trajectory
planned. At t0, the pusher does not touch the slider so the
push force is computed as 0. From t1 through t9, the pusher
pushes on a side toward the goal (0.1, 0.1, 0). After t9 the
pusher leaves the slider and let the friction stop the slider at
the goal pose.

VI. DISCUSSION

A. Gradient of Frictional constraint

During the implemntation, I found that f(x, u) is not
partially differentiable with respect to q̇ at q̇ = 0, which is
required when calculating the gradient. Moreover, numerical
difference would result in very huge value near the non-
differentiable point. Here we provide a solution by rewriting
the equation. Let v denotes q̇, and a denotes q̈. Originally we
have an equation of the form:

[vx, vy]√
v2x + v2y

= α ◦ [ax, ay],

where α = [αx, αy] is a constant vector. We can fix it by
adding two variables v′x, v

′
y . Rewrite the equation as:

[vx, vy] = [v′x, v
′
y] ·
√
v2x + v2y

and
[vx, vy] = α ◦ [ax, ay],

where ◦ is Hadamard product. Then the equations are clearly
differentiable at q̇ = 0.

B. Constraint relaxation
In order to help SNOPT find a solution satisfying comple-

mentarity constraints, I introduce some slack variable to relax
these constraint. That is, the equality constraints are fixed into
a bounding box constraint from 0 to a small value ε. ε is
decreased everytime SNOPT find a new solution based on the
last optimal solution. This can improve the rate of convergence
greatly and avoid having poor solutions.

VII. TECHNIQUES AND CONCEPTS LEARNED

Here is a list of techniques/concepts learned during the
project.

A. Ordinary Differential Equation (ODE)
– Initial value problem: given ẋ = f(x) and x(t = 0) = x0,

find x(t).
– Runge-Kutta: Numerical method to integrate an ODE
through time.
– RK4: A widely used configuration of Runge-Kutta method

yn+1 = yn + h/6(k1 + 2k2 + 2k3 + k4) +O(h5),

where
tn+1 = tn + h

k1 = f(tn, yn),

k2 = f(tn + h/2, yn1/2k1h),

k3 = f(tn + h/2, yn1/2k2h),

k4 = f(tn + h, yn + k3h).

– Stiff equation: A differential equation with bad numerical
stability when calculate it, unless with extremely small step.
– Numerical stability: Calculations that can be proven not to
magnify approximation errors are stable.
– Forward Euler method: xk+1 = xk + hf(xk)
– Backward Euler method: xk+1 = xk + hf(xk+1)

B. Numerical Method
– Newton-Raphson method: find the root of f(x) by itera-

tively computing xn+1 = xn−f(xn)/f ′(xn) till convergence.

VIII. CONCLUSION AND FUTURE WORK

In this project, I have modeled a pusher-slider system, and
applied direct trajectory optimization to plan a push trajectory
to push the slider from a start to an end pose. Complementarity
constraints are used to let the pusher schedule the contactin
time by itself. However, to satisfy this sort of constraints is
hard for optimization solvers. Thus, I employed a constraint
relaxation scheme to help solver converge to a valid solution.
I also provide a fix to the frictional acceleration, which is non-
differentiable w.r.t the velocity in the original formulation. In
the future, a multi-slider can be studied, so that the dynamics
of friction can help to move sliders in parallel. However, multi-
sliders would also require special care in collision between
objects. On the other hand, due to the uncertainty in pushing
motion in real world, and errors in approximating the trajec-
tory, using a time variant LQR to follow the planned trajectory
is needed in real application.

(a) t0 (b) t1 (c) t2

(d) t3 (e) t4 (f) t5

(g) t6 (h) t7 (i) t8

(j) t9 (k) t10

Fig. 4: A push plan found using direct transcription. The green circles denote the pusher, which is volumeless in model, but
enlarged here for visualization. The black arrows denote the push force. The red squares denote the slider’s pose

ACKNOWLEDGMENTS

I thank Hongkai Dai for his insights in solving the nondif-
ferentiable problem in finding gradient of frictional constraint,
and Michael Posa for his guidance in contact-implicit trajec-
tory planning.

REFERENCES

[1] Suresh Goyal. Planar sliding of a rigid body with dry
friction: limit surfaces and dynamics of motion. PhD
thesis, Cornell University, 1989.

[2] Charles R Hargraves and Stephen W Paris. Direct tra-
jectory optimization using nonlinear programming and
collocation. Journal of Guidance, Control, and Dynamics,
10(4):338–342, 1987.

[3] Kevin M Lynch and Matthew T Mason. Stable pushing:
Mechanics, controllability, and planning. The Interna-
tional Journal of Robotics Research, 15(6):533–556, 1996.

[4] Matthew T Mason. Mechanics and planning of manip-
ulator pushing operations. The International Journal of
Robotics Research, 5(3):53–71, 1986.

[5] MA Peshkin and Arthur C Sanderson. The motion of a
pushed, sliding object. part 1. sliding friction. Technical
report, DTIC Document, 1985.

[6] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct
method for trajectory optimization of rigid bodies through
contact. The International Journal of Robotics Research,
33(1):69–81, 2014.

	Introduction
	Terminologies

	Related Work
	Pushing mechanics
	Trajectory Optimization
	Contact implicit trajectory optimization

	Problem Formulation
	System dynamics
	Acceleration from Friction
	Acceleration from pushing

	Direct Trajectory Optimization
	Direct transcription
	Direct collocation
	Complementarity constraints
	Non-slipping pushing
	Other constraints

	Experiment
	Discussion
	Gradient of Frictional constraint
	Constraint relaxation

	Techniques and Concepts Learned
	Ordinary Differential Equation (ODE)
	Numerical Method

	Conclusion and Future Work

