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中文摘要 

服務型機器人在服務使用者時，必須能夠考慮到人的情境狀態，才能自主地

提供符合情境的服務。在這篇論文中，我們專注於辦公室的使用者情境，因此定

義了六種使用者狀態：專注、疲累、放鬆、休息、社交以及其他。為了要讓機器

人從影像觀察中推論使用者的情境，我們提出了一些創新且具鑑別力的特徵。這

些特徵包含使用者姿態、人與物體的互動和人與人的互動，而後面兩者為目前較

少被用於使用者狀態辨識。 

此外，為了更有效地推斷使用者情境，我們提出將使用者情境融入地圖建置。

所以使用一個空間-時間的格網地圖來記錄使用者情境與地點和時間的關係。我們

使用動態貝氏網路 (Dynamic Bayesian Network) 來作為建置地圖與推論的基礎架

構。使用情境地圖架構來推測使用者情境，總共有三項優點 1) 機器人可以動態地

根據該區域的使用者情境來調整自己的行為，2) 因為在辦公室環境中，使用者通

常有固定的行程，所以使用者行為模式可以從先前的情境觀察中累積，3) 當有多

個機器人存在於環境中的不同位置時，可以很容易地分享它們的觀察資訊。 

另一方面，機器人的行為決策也整合進同一個架構，形成一個動態決策網路，

如此機器人可以隨使用者狀況的變動來規劃要提供適當的服務。實驗部分驗證了

使用者情境辨識、地圖建置以及整個系統的有效性。 

 

關鍵字：情境地圖建置, 情境感知, 辦公室機器人。 
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Abstract 

Robot that services humans must consider human context in order to behave and 

service properly. Here, the context categories we tailor for office environment include 

concentrating, tired, relaxed, napping, social, and neutral. We design several novel 

features for inferring human context from visual observation. The features incorporate 

human pose, human-object interaction, and human-human interaction, of which the last 

two have rarely been explored in human status estimation.  

Moreover, to infer human context more efficiently, we propose a novel semantic 

mapping framework that embeds human context into a map representation. This 

produces a spatial-temporal grid map that represents the relationship of human context 

with location and time. We construct the framework using Dynamic Bayesian Network. 

There are three exclusive advantages for building such map: 1) a service robot can 

dynamically adjust its behavior and plan services based on the estimated context in an 

area; 2) because in office environment people tend to have fixed schedules, people’s 

living patterns can be extracted in the map; and 3) multiple robots can easily share their 

observations on human context at different places. 

On the other hand, robot behavior decisions are integrated into the framework, 

which leads to a unified Dynamic Decision Network. Thus, the robot can plan proper 

services according to the human-context map. The effectiveness of our proposed context 

recognition, mapping and decision framework is verified with simulation and real 

testing scenario. 

Keyword: human context mapping, context-aware, office robot 
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Chapter 1   

Introduction 

1.1  Motivation 

Mapping is the most common way to relate events and locations. In robotics field, 

researchers have been studying Simultaneous Localization and Mapping (SLAM) 

extensively, whose aim is to autonomously build a metric map or topological map for 

robot navigation. However, navigation is not enough for robots to perform higher-level 

tasks in servicing. One promising solution is to incorporate semantic content into the 

map, which leads to the study of semantic mapping. 

Semantic mapping is defined as a branch of robot mapping research which is 

concerned with the study of building a map embedded with semantic information. In 

recent years, there has been an increasing interest in this topic to enable robots to 

perform higher-level tasks that require deep understanding of the environment. The 

major researches can be divided into three categories. The first group is building a map 

with small object identification (e.g. coffee mugs) or with labels of medium to large 

structures (e.g. walls, doors) [1-10]. The second is labeling functional name of an area 
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(e.g. kitchen), so that the robot can perform certain task (e.g. go to the kitchen first to 

fetch a coke from the fridge) [11-14]. The third is adding a conceptualization that is 

comparable to human understanding of the environment, such as forming “has-a” 

relationship among objects (e.g. kitchen has a fridge) [13-16]. However, the semantic 

mapping techniques mentioned above only provide information for robots to plan tasks, 

manipulate objects or navigate, not for robots to understand human-context and to 

actively provide appropriate services.  

In this thesis, we demonstrate that embedding human-context information into a 

spatial-temporal map is an efficient way for robots to perform proper behavior for three 

reasons: 1) service robots can adapt to dynamic context of humans in an area; 2) robots 

can make predictive planning by inferring human context using previous estimates as 

prior; and 3) multiple robots can easily share their observation on human context at 

different places. 

Notice that it is the human inside that gives the meaning of the room. Also, human 

activity is dynamic, so assigning a fixed functional label of a place prohibits robots from 

adapting to the changing context. For example, when people are concentrating on their 

discussion in a meeting room, the robot should not disturb them unless it has urgent 

messages to deliver or is asked for help. On the other hand, as people are having a tea 

party in the same meeting room, the robot should actively serve drinks and entertain 

people. This example illustrates that the same place (or places with the same functional 

label) does not imply the same human context. Therefore, learning from human is a 

more adaptive way than room recognition for robots to provide context-aware services. 

One popular solution is applying activity/emotion recognition techniques to understand 

human context in time [17, 18].  
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Current methods for activity recognition are mainly based on key poses or actions. 

However, in practice, discriminative poses or actions may not appear timely for the 

robot to recognize (e.g. wassail for social context). The fact that existing methods 

typically handles deliberately displayed and exaggerated expression was pointed out in 

[19]. Moreover, current recognition accuracy is still far from achieving human-level 

performance. Our work is complementary to researches on activity recognition by 

exploring the relationship of human context with spatial and temporal domain. The 

insight here is that people tend to have certain context at certain location and at certain 

time. This phenomenon is more evident in office environment, where people tend to 

have fixed schedules. Putting this constraint into consideration, we believe that robots 

can make predictions on human-context more accurately. As a result, robots can plan 

their services more efficiently, and the efforts on gathering human-context information 

can be reduced. 

1.2  Related Work 

Here we review two topics related to our work, one with semantic mapping, and the 

other with human context estimation. 

1.2.1 Semantic Mapping 

Semantic mapping research can be divided into three categories: 1) mapping with 

object identification or structure labeling; 2) functional name assignment to places; and 

3) creating a conceptualization that is comparable to human understanding of the 

environment. 
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1.2.1.1 Object-based semantic mapping 

In this category, studies can be characterized by the sensor used, consideration of 

dynamic environment, and improvement on SLAM using semantic information. In 

terms of sensors, the most frequently used are 3D range sensors, 2D cameras, RGB-D 

cameras, and gripper. 

1) Using 3D laser scanners 

Nüchter et al. proposed a system that labels large structure such as door, wall, and 

ceiling with a constraint network [5]. On the other hand, delicate objects are recognized 

using a trained classifier. In [7], Rusu et al. developed a system for creating an object 

map of a kitchen scene. They proposed a histogram-based feature, FPFH, for 

conducting registration [20] and object recognition [21] on point cloud data.  

2) Using monocular cameras 

Civera et al. [1] proposed a real-time monocular SLAM system that incorporates 

object recognition. To recognize objects, the system is loaded with object models 

described by sparse SURF feature points. Its key advantage is that the system only 

requires sequence of 2D images as input and operates in real-time.  

3) Using RGB-D cameras 

The research team from Washington University focuses on using RGB-D camera 

from mapping to semantic labeling. Here, three recent works are listed as follows. First, 

in [22], Henry et al. made use of RGB-D camera to build dense 3D modeling by 

combining the visual and shape information. Second, in [8], Lai et al. combined 2D 

view-based recognition approach, 3D Markov Random Field (MRF), and multiple 

views along time to label small objects in a RGB-D video. Third, Ren et al. [10] used 
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kernel descriptors for RGB-D patch feature matching, a superpixel MRF and a 

segmentation tree to model contextual information for scene labeling. 

Nascimento et al. [3] proposed an RGB-D descriptor by encoding color and depth 

information into binary strings, which achieves faster processing time compared to 

SURF and BRIEF descriptors both in training and testing with an Adaboost classifier.  

4) Using grippers 

In [2], Blowdow et al. designed a semantic mapping system that uses both depth and 

color information as well as robot’s interaction with environment. The captured 

point-clouds were first registrated using Iterative Closest Point algorithm (ICP). 

Afterwards, hypotheses of movable parts such as doors and drawers in the map were 

generated. Then, the robot validated those hypotheses by manipulating those parts using 

its gripper.  

 

In terms of using semantics to improve SLAM, Rogers et al. [4] argued that using 

complex landmarks such as signs, objects, and furniture in data association have more 

advantages over low-level features, i.e. ambiguous matching can be reduced. They 

presented their idea by including a door-sign reader for data association in a graphical 

SLAM framework.  

For dynamic environment, Anguelov et al. [6] considered non-stationary objects in 

an office environment by proposing an EM algorithm for discovering those objects and 

learning their models. Wang et al. [23] proposed a framework of Simultaneous 

Localization and Mapping with Moving Object Tracking to fully utilize the information 

from both static and moving objects. Local grid maps are used to record the laser 

contour of moving objects. 
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1.2.1.2 Area-based semantic mapping 

In this category, researchers are focusing on labeling an area on the map with room 

name or other properties. Rottmann and Mozos et al. [11, 12] proposed a supervised 

learning approach to classify indoor places with different functional categories such as 

corridors, kitchens, offices, or seminar rooms. Given range and visual data, they use 

Adaboost along with associative Markov networks to label indoor environment. 

In [24], Pronobis et al. developed a system that combines multimodal cues (i.e. 

camera and laser) by Support Vector Machine (SVM) to classify areas into classes such 

as corridor, offices, and kitchen. 

Extended from room categories, other attributes can also be embedded in the map. 

Wolf et al. [14] built a system to map terrain types (e.g. navigability) and activities (e.g. 

occupancy of dynamic entities) of outdoor environment. 

 

1.2.1.3 Semantic mapping with conceptualization 

Vasudevan et al. [15, 16] proposed a conceptualization of objects using a 

probabilistic object graph representation describing the relationship among within, 

interaction, and connected-through-door. This representation is then used in place 

classification and place recognition. 

Zender et al. [13] developed a system for creating conceptual representation, which 

is composed of four layers. The layers from low to high include: metric map, navigation 

map, topological map, and conceptual map. Conceptual map is a human-level 

understanding of the environment which consists of the relationships of is-a and has-a 
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between the concepts and instances of place and object. They claimed that these 

relationships are more suitable for a situated dialogue between robots and human. 

In [14], Galindo et al. proposed a system that utilizes a hybrid map with spatial 

relationship and semantic knowledge relationship (e.g. is-a, has-a) for task planning. 

They argued that robot's task planning can be more efficient by deducing useful 

knowledge from semantic structure (e.g. to find fridge, first go to the kitchen; or seeing 

fridge and then know now one is in a kitchen) and by discarding irrelevant instances 

during planning. 

 

To conclude, the above mentioned semantic mapping techniques only provide 

information for task planning, manipulation, or navigation, not for robots to understand 

human-context and to infer appropriate behavior in human-robot interaction. Also, they 

mostly consider static context for each area, and ignore the fact that context involved 

with human are actually dynamic. To address these problems, we propose to embed 

human-context information into a spatial-temporal map for robots to efficiently 

determine proper behavior.  

Besides the three categories mentioned above, there were only a few researches 

attempted to build a map with human-centric information. Gupta et al. [25] used 3D 

geometric layout of a room to predict possible human poses in the scene. They argued 

that the world should be understood in a human-centric way, which is similar to our idea. 

However, they didn’t take human internal context into account. For example, sitting on 

the sofa with reclined pose, people usually feel relaxed. The robot should behave quietly 

in that surrounding in order not to disturb them. Therefore, people’s interactions with 

objects not only have functional meaning but also influence people’s internal status. 
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Another closely related domain with human-centric mapping is psychogeography. 

This was defined in 1955 by Guy Debord [26] as “the study of the precise laws and 

specific effects of the geographical environment, …, on the emotions and behavior of 

individuals.” In most related work the building process were manual, because human 

status is not easily detected by machine measurement. Recently, Nold et al. [27] 

proposed a pioneering system to record people's arousal on geographic maps. They used 

a device that combines a biometric sensor measuring Galvanic Skin Response and a 

GPS (Global Positioning System) to gather data of emotional arousal tagged with global 

location. The collected data were plotted on a geographic map. Their aim is very similar 

to ours. However, since their work was only used for self-emotion understanding, and 

for artistic purpose, no principle automatic mapping method was proposed. 

1.2.2 Human context estimation 

For human status sensing, a widely studied area is emotion recognition and activity 

recognition using human pose, voice, or physiological signal. 

Coulson [28] studied the relation between human pose and emotion. In their study, 

experiment participants were asked to rate computer-generated mannequin figures with 

one of the six emotional attributes (i.e. anger, disgust, fear, happiness, sadness, and 

surprise). The result shows that static body posture offers a reliable cue concerning 

emotion. In [29], Kapur et al. proposed an emotion recognition system using body 

skeletal movements. In [30], Sebe and Huang proposed a probabilistic graphical model 

to fuse multimodal cues (e.g. facial, voice, and physiological signal) for emotion 

recognition. In [31], Baltrusaitis et al. developed a real-time emotion recognition system, 

which includes facial action units, head gestures and shoulder gestures. For a complete 
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survey of emotion recognition, please refer to [19].  

In this thesis our goal is slightly different from traditional emotion recognition. The 

general emotion categories (anger, disgust, fear, happiness, sadness, and surprise) are 

not very suitable for office environment. People in the office usually do not have such 

dramatic emotional changes. Instead, we define a new set of categories of human status 

in office: concentrating, tired, relaxed, resting, social, and neutral. 

On the other hand, activity recognition is a wide range of study. Yao et al. [32] 

inspired our work in that activity is related not only to human pose but objects. Lan et al. 

[33] showed that group activities are also important in activity recognition. This 

inspired us to incorporate the concept of human-human interaction in activity 

recognition. These two aspects were largely unexplored in the literature of emotion 

recognition. Here, we do not provide exhaustive references for activity recognition. 

Readers can refer to Poppe’s a comprehensive survey [34] on action recognition using 

vision, and Laptev and Mori’s tutorial [18] on statistical and structural recognition of 

human actions. 
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1.3  Thesis Organization 

The rest of this thesis is organized as follows. In Chapter 2, we describe how we 

estimate human-context from robot vision, using human-object interaction, human pose, 

and human-human interaction. Chapter 3 presents the overall mapping framework. We 

explain how to build a Historical map for describing human context prior. Also, the 

fusion of current observation and prior information for human context estimation is 

described. This chapter also describes the service decision making based on the inferred 

Human-Context Instant map. In Chapter 4, we present the simulations and experimental 

results. Finally, Chapter 5 summarizes the whole 

thesis.Equation Chapter (Next) Section 1 Equation Chapter (Next) Section 1 
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Chapter 2  

Human Context from Observation 

2.1  Human Context in Office Environment 

We believe that robot services would be more human if robots can understand 

human-context. However, human-context analysis is a complicated and abstract 

procedure in engineering field. Interestingly, in the field of drama, there are some 

directions for analyzing drama by examining several dramatic elements [35, 36]. And 

drama, as we believe, is a kind of simulation of real life situation, so their ideas can be 

borrowed to gives us some guidelines for understanding human context. In [36], 

dramatic elements involve the relationships between people, the relationships between 

people and the relationships between people and environments. In [35], the author 

suggests that symbols such as props, and gestures are powerful elements that indicate 

the context. These elements are the guideline for understanding human context in this 

work. So these concepts lead us to the design of several features in the rest of this 

chapter for human-context reasoning. However, here we do not seek to completely 

understand human context, which is beyond the scope of this thesis. Instead, we aim to 
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provide robots a summary of human context so as to deliver context-aware services. In 

natural language processing, there is a similar of Probabilistic Latent semantic analysis 

(pLSA) [37], in which a set of concepts relating the documents and terms are produced. 

To achieve it, one key issue is to have an effective representation to summarize human 

context.  

In terms of representation, there are two popular methods: one is categorical, 

another is parametric. In categorical representation, adjectives that describe human 

context are first enumerated and clustered into groups according to their meanings. 

When a situation or observation is given, it will be classified into the closest group. In 

parametric representation, a continuous space is defined with each axis describing a 

specific dimension. For example, to describe human emotions, Valence-Arousal space is 

frequently used. Valence denotes the degree of positivity or negativity (e.g. happiness 

versus miserable), whereas arousal indicates the intensity of the emotion (e.g. 

astonished versus bored). 

In this thesis, we choose categorical representation to represent human context for 

two reasons. First, because our goal is to make appropriate decision on delivering 

services, for behavior designers it is easier to design the service for certain categories. If 

a continuous space is used, there might be regions with which are hard to associate 

services. Second, discretized categories are also easier for specifying their relationship 

with evidence. On the other hand, in this thesis we only focus on context in office 

environment, because studying the general contexts requires great effort, which is 

beyond the scope of this research work. 

Therefore, to define categories for robot servicing in office environment, a 

questionnaire was designed to collect people’s thinking about office context. Three 
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questions were asked: 

1) What kind of human context do you think robots should know in office 

environment? Use an adjective, or a sentence to describe. Please list at least 

three kinds. 

2) For each context above, as a human, how can you tell if people are in such 

context? 

3) In each context you filled in above, what kind of behavior do you think the 

robot should/shouldn’t behave? 

Six people who work constantly in office environment took the questionnaire. In 

the result analysis, our aim is to build a simple but effective model of human context. 

Therefore, words for describing similar context are clustered into one category. Also, 

categories which lead to similar robot behaviors are also merged, because our ultimate 

goal is for robots to infer proper behavior. As a result, we come out with the following 

six categories: concentrating, tired, relaxed, napping, social, and neutral. For each 

context, three questions are essential in our study: a) what is the definition of this 

context? b) What cues are typical for recognizing this context? c) What behavior/service 

is appropriate in this context? The latter two questions will be addressed in Chapter 3, 

whereas the first question is addressed here by text definitions. These definitions are 

adapted from Longman dictionary [38] as follows: 

1) Concentrating: focusing on someone or something, usually with steady eye 

focus. 

2) Tired: feeling that you want to sleep or rest, usually after working or meeting for 

a long time. 

3) Relaxed: doing something enjoyable at scheduled break time or after working. 
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4) Napping: sleep for a short time at scheduled break time or after working. 

5) Social: meeting people and forming relationships. This context usually happens 

in break times or social events, in which people are having light and informal 

conversations. 

6) Neutral: not people present or situation which is none of the above. 

 

2.2  Preliminary tools 

In section 2.1 , the five categories of human context have been defined for office 

environment. In the rest of this chapter, we deal with the problem of inferring human 

context by dividing the information source into three parts: human-object interaction, 

human pose, and human-human interaction.  

For simplicity, we define the following notations. Object labels are defined as a set 

L , which contains NL  descriptors, 1 2, ,..., NLL L L . Each of them represents the 

existence of an object category. Human poses are denoted as a set S , which contains 

NS  descriptors. They describe the poses performed by the NS  people in the region. 

Human-human interaction is defined as H , which contains descriptors describing the 

group interaction. The above observation variables denote the observation at current 

timestamp if not stated otherwise. Human context map at time t  is defined as 

 ( ) ( )t t

iE E , where i  denotes the grid cell index, and ( )t

iE  has the domain  

, , , ,concentrating tired relaxed social neutral . In probabilistic notation, the methods in 

this section aim to estimate ( | )P E L , ( | )P E S , and ( | )P E H  given a scene in RGB-D 

image.  
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2.2.1 Nearby region (NR) 

Given the location ( , )x y  where we want to estimate human context, the evidences 

used will be constrained inside the region, ( , , )NR x y R , which is defined as 

 

dist(( ', '),( , )) ),
( , , ) ( ', ')

no_obstacle_in(seg(( ', '),( , )))

x y x y R
NR x y R x y

x y x y

 
 
  , 

(2.1)
 

where dist( )  calculates the Euclidean distance between two points, and seg( , )A B  

defines a line segment by points A  and B . In the following, this region will be 

referred to as nearby region (NR). The no_obstacle_in(seg)  operation, is calculated by 

ray tracing in 2D occupancy grid map to examine if there are obstacles along the line 

segment. Therefore, when using observation to update human-context grid map, each 

cell, referred to by its centroid as ( , )x y , will be enumerated and updated using the 

observed information in NR. 

 

2.2.2 Proximity index (PI) 

Proximity index (PI) is an attribute which estimates how strong a human is engaged 

in the interaction with another person or an object. PI is defined as a real number, 

ranging from 0 (the weakest) to 1 (the strongest). We construct the formula of 

calculating PI with two criteria. First, the shorter the distance between humans, the 

stronger the connection. Second, if the people are facing toward each other, the 

connection is more intense and decreases as facing direction of a person is deviating 

from that toward another person. So, for two individuals ip  and jp , having their 



 

16 

 

poses being ( , , )
i i ip p px y  , and ( , , )

j j jp p px y   respectively, the angular distance can be 

defined as  

  

ang_dist( , ) =

wrap_to_pi(atan2( , ) ) ,
i j i j j

i j

p p p p p

p p

y y x x   
  (2.2) 

where wrap_to_pi( )  wraps angle in radians to    . Notice that the angular 

distance is not a symmetric distance function. By combining the angular distance 

function and Euclidean distance function, the proximity index is calculated by the 

following formula: 

 

prox( , ) (dist( , ); )

(ang_dist( , ); )

(ang_dist( , ); ),

i j i j d

i j a

j i a

p p p p

p p

p p

 










 

(2.3)
 

where ( ; )x   is a zero-mean normal distribution with variance  , dist( )  

calculates the Euclidean distance of the two people, and   is a normalization term 

making the maximum proximity 1. The visualization of proximity index function is 

plotted in Fig. 2-1 (b). 

In this work, proximity index is also applied in evaluating the degree of human’s 

attention on objects which have clear orientation relative to the potential user. For 

example, people face toward the display panel when they are using monitors. We can let 

ip  be the user, and jp  be the object to apply the proximity function. In some cases, 

objects do not have clear orientation, e.g. a bottle of beer. We can apply a degenerated 

form for estimation: 

 

prox( , ) (dist( , ); )

(ang_dist( , ); ),

i j i j d

j i a

p p p p

p p

 







 

(2.4)

 

where the notations are the same as those for the original function. 
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2.2.3 Logistic model 

Given an evidence C , which is a continuous random variable from one of the 

information sources of object labels ( L ), human pose ( S ), or human-to-human 

interaction ( H ), we model ( | )P E C  using logistic model [39]. Here, C  will be 

represented as a value indicating how strong the evidence in that source. Two criteria 

made us choose logistic model. First, we assume that the intensity of certain evidence is 

proportionate to the occurrence of certain human context. Second, as the intensity of the 

evidence grows, the influence rate decreases, which conforms to the concept of 

marginal utility [40]. Therefore, logistic model is chosen because it meets these two 

 

 

(a) (b) 

Fig. 2-1.  The proximity index function. 

(a) Illustration of angular distance, which is negatively correlated to the degree of 

facial contact. The two arrows denote the poses of two individuals. (b) A 

visualization of proximity function. A person ip  (shown in red arrow) is located 

at the center and facing right. The darkness shows the proximity index of the two 

when another person jp  (shown in blue arrow) is located at various locations and 

facing toward the person of red arrow. The value decreases as the angular distance 

or Euclidean distance increases. 
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criteria.  

So, ( | )P E C  is defined as a generalized logistic model given by 

 

, ,

', ',

'

exp( ( ))
( | )

exp( ( ))

e C e C

e C e C

e

w C b
P E e C

w C b

 
 

 
 

(2.5) 

For each pair of human-context ( E ) and evidence ( C ), we have to specify the 

parameters , ,,e C e Cw b  to meet the realistic situation (See Fig. 2-2 (a) (b)). Intuitively, the 

larger ,e Cw  implies the stronger positive correlation, and vice versa. When , 0e Cw  , 

there is no correlation between the evidence and the human context. However, the bias 

parameter, ,e Cb , suggests a decision threshold. Statistical learning can be applied to set 

the parameters from collected data using maximum likelihood. An example of using 

evidence from mean-proximity is shown in Fig. 2-2 (c). Mean-proximity measures how 

strong people are interacting based on proximity and will be detailed in Section 2.5 . 
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Fig. 2-2.  Visualization of logistic function. 

(a) Logistic model with various w , and 0.5b   (b) Logistic model with various b , 

and fixed w  (c) Probability density function of human-context conditioned on 

mean-proximity. 
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2.3  Human-Object interaction 

2.3.1 RGB-D Object Recognition using Hierarchical Sparse 

Descriptor 

In this section, we present how to obtain object labels from RGB-D images as an 

intermediate observation source for our Human-Context Instant mapping. Our proposed 

Hierarchical Sparse Shape Descriptor (HSSD) is described first. Then, we explain how 

to fuse multiple channels of information, i.e. color and depth, from RGB-D images.  

 

The hierarchical representation learning contains several layers. In each layer the 

process is similar to a function that maps input data to output. And the output will be fed 

into the function of the next layer. Each layer consists of three components: sparse 

coding, spatial pooling, and local grouping. The system overview is shown in Fig. 2-3, 

and we discuss each part in detail as follows. 

 

Fig. 2-3.  Hierarchical Sparse Descriptor System architecture. 
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2.3.1.1 Spin Representation Extraction 

Traditional sparse representation learning only focuses on 2D images without 

taking into account the physical shape information [41, 42]. One challenge of describing 

shape information is to achieve rotational invariance. Here, we use filter bank 

(dictionary) and pooling to describe the spin image and integrate it into the learning 

framework.  

To achieve rotational invariance, the 3D descriptor must be able to align the 

coordinate of each feature when the local point cloud rotates. The spin image [43] 

utilizes local normal direction to align the first axis. Afterwards, only one degree of 

freedom left to rotate is along the normal. Thus, the spin image achieves invariance by 

making a histogram of filter response along the normal. (See Fig. 2-4) 

 

          

(a)                             (b) 

Fig. 2-4.  An analogy between spin image extraction process and filtering-pooling framework. 

Suppose 4×4 spin images are used. (a) The normal is calculated for the filter to work on. 

The filter-bank is composed of 16 patterns for grids of 4x4 as shown in (b). Each filter 

contains only one black area that will respond to the presence of points. Average 

pooling is done in a spinning manner to compute the histogram. The red arrow in (b) 

indicates the normal direction of the spin image filters. 
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Next, we utilize the techniques of sparse coding to automatically find out patterns 

which can describe natural shapes most effectively. This is in contrast to that of 

manually defining shapes like plane, cylinder, and edge [44]. To provide sparse coding 

with rotationally invariant input, the spin image s sw wspin 
P  is computed with 

physical radius rs cm at each sampled point. The parameters are chosen as ws = 16 and rs 

= 5 if not stated otherwise. The shape signal is taken as ( )spin x P
1
 for sparse coding. 

 

2.3.1.2 Sparse coding 

To find a compact shape representation, a set of bases are learned so that they can 

reconstruct the input signal using the weighted sum. The corresponding weight 

coefficient is the coding result s. The bases can be represented as a set of d-dimensional 

vectors, a.k.a dictionary, 1 2[ , ,..., ] d k

kb b b  B . Given a dictionary, the sparse code of 

an input signal dx  is computed by solving the following minimization problem, 

 
2

2 1

1
argmin ,

2
 

s
x Bs s  (2.6) 

where .
n

 denotes n -norm, and   denotes the regularization parameter. The first 

term is to minimize reconstruction error, whereas the second is to minimize the number 

of nonzero coefficient used to reconstruct the observed signal x . The reason of using 

1  regularization instead of 0  is that solving 0  regularization is an NP-hard 

                                                 

 

1
 ( )  is an operator to reshape a matrix into a long vector. 
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problem. So, in the sparse coding literature, researchers use 1  regularization to 

approximate the sparseness calculated by 0 -norm. 

In coding phase, we expect the result to be stable, i.e. minor changes have small 

effect on s. To improve the stability, an additional 2 -norm regularization is introduced 

to form an elastic net problem [45]: 

 
2 2

2 1 2

1
argmin .

2 2


  

s
x Bs s s   (2.7) 

 

This problem can be reformulated into a quadratic form and solved using 

coordinate decent algorithm [46]. On the other hand, finding the most suitable 

dictionary to represent a set of data can be useful. One idea is to solve them 

simultaneously to achieve the least reconstruction error and the sparsest representation 

for a set of data randomly sampled from the input as: 

 

2 2

1 2
,

1

1
arg min

2 2
.

i

n

i i i

i

i






  
B s

x Bs s s

 
(2.8) 

 

Note that the objective function is not convex if both B and si are optimized at the 

same time. Therefore, we iteratively update dictionary B with fixed si, and update si with 

fixed B. The shape dictionary learned from RGB-D dataset [47] is shown in Fig. 2-5.  
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Fig. 2-5.  The shape dictionary learned by calculating spin images. 

The image contains 64 code words, each being of size 16×16. The red arrow indicates 

the normal direction of the first spin image. 

 

2.3.1.3 Spatial pooling 

In this component, statistical functions are used to combine the sparse codes in a 

working area into one descriptor. Functions typically used are max and average 

operations:  

 Average-pooling: 
1

1 M

i

iM 

 z s ,  (2.9) 

 Max-pooling: 
1..

max{ }i
i M

z s , (2.10) 

where M is the number of si’s  in the working windows. By making a statistics, features 

are allowed to have translational invariance in the working window. In the literature, 

Boureau has empirically [48] and theoretically [49] shown that max-pooling is more 

robust to noise. Also, the idea from [50] uses saliency pooling, which applies biological 
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saliency map [51] to raise the weight of the sparse code that describes foreground object, 

i.e.,  

 Saliency-pooling: 
1..

max{ }i i
i M

w


z s . (2.11) 

Note that pooling features can be done in different scales. For example, for spatial 

pyramid matching, the working area is divided into 1×1, 2×2 and 4×4 sub-spaces. Then, 

pooling operation is applied in each sub-space and the resulting 31 descriptors are 

concatenated to form the final descriptor. By doing so, spatial relationship can be 

retained.  

2.3.1.4 Local grouping 

After forming locally translation-invariant descriptors, the nearby features are 

grouped to construct a higher-level descriptor that can represent more complex 

structures. We can see this as a way to describe co-occurrence and spatial relationship of 

the local parts of a larger structure. Fig. 2-6 illustrates how the grouping operation is 

performed. 

 

Fig. 2-6.  Local working area grouping. 

Local working area (depicted in dashed line) grows larger from left to right. The contour 

described grows from small line segments to corners and to a square. Therefore, by 

combining the contours of the local region, a gradually higher-level representation is 

formed. 
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2.3.1.5 Fusion of Multi-channel 2D image 

It is important to note that x may contain multiple channels, e.g. for RGB-D 

images. Given a f-channel image patch w w f P , we form the observation signal by 

( ) x P . We chose 8w   if not stated otherwise. Given x, the following the steps are 

described in Section 2.3.1.2-2.3.1.4. Hierarchical descriptor with Sparsity, Saliency, and 

Locality (HSSL) [50] is computed. From our previous work [52], we obtain the best 

performance by combining feature vector of HSSD with that of 

Depth HSSL: one channel computed from RGB image, and 

Intensity HSSL: one channel computed from RGB image, 

and learn the weight by linear Support Vector Machine (SVM). Therefore, we use this 

configuration for our object recognition component.  

 

2.3.2 Object detection 

To detect small objects, such as calculators, binders, we first construct a recognition 

system using the method described in Section 2.3.1 with linear SVM [52]. Then sliding 

window approach is used to scan through the image for detection. For larger plane 

structure such as cubicles in office environment, detection method based on sliding 

window is not effective. Thus, we use the plane fitting techniques, and then apply 

rule-based decision to classify them into one of the object categories. 
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2.3.3 From Objects to Human Context 

Here, we describe how objects provide information for estimating human-context. 

Although objects occur in a scene relates to human context, the interaction between 

human and objects can provide more precise information about human context. For 

calculating the degree of a person’s engagement to the interaction an object iL , human 

proximity to object is taken into account. That is, the higher the proximity to that object, 

the stronger the interaction. Therefore, iL  is defined as: 

 
person in NR

1

max (prox(object instance  of class  , person))
Li

N

i

j

L j i


 ,  (2.12) 

where 
iLN  is the number of object instance of class i  which appeared in the scene, 

and NR (nearby region) is defined in Section 2.2.1. If there is no person in the NR, the 

prox(.) function returns zero. Then, for each pair of object category and human-context, 

we specify the parameters in logistic model to describe ( | )iP E L , where i  is the index 

of object class. We associate objects to the context categories as shown in Table 2-1  
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Context Related object (large) Related object (small) 

Concentrating meeting table 

desk 

projector screen 

cubicle 

monitor, laptop, keyboard 

calculator 

notebook, binder 

Tired meeting table 

desk 

projector screen 

cubicle 

monitor, laptop, keyboard 

calculator 

notebook, binder 

Relaxed sofa fruit (apple, banana) 

drink (soda, beer) 

Napping N/A N/A 

Social sofa drink (soda, beer) 

Neutral N/A N/A 

Table 2-1.  Objects related with human-context categories. 
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2.4  Human Pose and Motion 

2.4.1 From human pose to human context 

In human-context estimation, human pose, especially, upper-body pose, and 

motion provides rather informative cues. Here, we propose four features that describe 1) 

hand position relative to body, 2) head leaning, 3) back leaning, 4) histogram of gradient, 

and 5) motion speed. 

Due to the recent development of real-time human-pose estimation by Sutton et al. 

[53], the first three features are based on the skeleton extracted from depth image. First, 

the hand position conveys several human statuses. For example, people propping their 

chin in their hands shows tiredness, and putting hands behind their head shows relaxing. 

Here, we record the hand position by specifying a spherical coordinate on human body. 

The center of the coordinate is at the middle of two joints of shoulders, the vertical axis 

is aligned with the back, and the line connecting two shoulder joints aligns with the 

horizontal axis. An illustration is shown in Fig. 2-7 (a). The hand position on the 

spherical axis can be specified by ( , , )p ar   : radial distance r , polar angle p , and 

azimuthal angle a . The value of r  is quantized into 2 intervals, p  into 4 bins, and 

a  into 8 bins. 

Head leaning is defined as the signed angle between neck and back. We take 

forward leaning as positive (see Fig. 2-7 (b)). A typical example is that people tend to 

lean forward as they are concentrating on something. On the other hand, we define back 

leaning to be the signed angle between back and global vertical axis (see Fig. 2-7 (c)). 

For instance, people tend to lean backward when they are relaxing. 
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(a) (b) (c) 

Fig. 2-7.  The illustration of (a) hand position (b) head leaning (c) back leaning. 

 In practice, the above three features rely on robust skeleton tracking, which is hard 

in the case of sitting at desk because of serious occlusion. However, this situation is 

very common in office environment. We have experimented on using NITE package to 

track the skeleton of sitting people, and the result was not good enough. Therefore, we 

introduce a direct image level feature: histogram of gradient (HOG). HOG was 

proposed by Dalal et al. in 2004 for human detection [54], and used for action 

recognition in [55, 56]. HOG feature encodes the 2D contour of a human by aggregating 

histograms of gradient computed in an array of local cells (16x16 pixel
2
). The gradient 

indicates the orientation of the edge feature in a cell. Therefore, we can use HOG to 

encode pose information, e.g. head leaning and back leaning, in a holistic fashion. From 

our experiments, HOG feature works better in side view whereas the skeleton tracking 

works better in frontal view, so they are complimentary features. An example of 

applying HOG on a small data set for human context classification is shown in Fig. 2-8. 

In cross-validation, accuracies of 97.5% and of 98% have been achieved on intensity 

and depth image, respectively. At this point the images contain only one person data and 
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from only one viewpoint, in experiment section, a more comprehensive experiment will 

be conducted. 

    

(a) (b) (c) (d) 

Fig. 2-8.  A small dataset of 200 RGB-D images. 

The collected images were divided into 4 of the 5 human-context categories. The 

category of social context was ignored at this point because a typical social scene 

involves multiple people. Fig. 2-8 (a-d) are examples of concentrating, tired, relaxed, 

and neutral.  

On the other hand, human motion speed can indicate the tension of people. For 

example, people walk slower when they are relaxing or having social conversation. We 

define the mean velocity in NR as: 

   
 i n  

m v e l
i

i

p
p N R

v 
 

 (2.13) 

where  E .  means expectation, and 
ipv  is the motion speed of a person ip . 

2.4.2 Estimating Human Pose and Motion from Depth 

Image 

We use OpenNI and NITE package [57] for detecting human in depth images and 

skeleton estimation. So, motion speed, hand position, head leaning and back leaning for 

each individual can be estimated.  
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2.5  Human-Human Interaction 

Here, we define two types of feature in describing Human-Human interaction, 1) 

mean proximity; and 2) orderliness. 

 

First, mean proximity is defined as the average of proximity values of every people 

in NR to the person with highest proximity. 

  in  in 
mprox E max (prox( , )) ,

i j

i j
p NR p NR

p p
 
    

(2.14) 

where NR (nearby region) is defined in Section 2.2.1, and prox(.) calculates the 

proximity index defined in Section 2.2.2. Usually, people in social context or engaged in 

discussion, will have higher proximity. On the other hand, people in individual situation 

such as relaxing, proximity is lower. 

 

Secondly, the orderliness is defined as 

 
ord ( ,2) /ppl lineC N N ,

 
(2.15) 

where C  is a combination function, lineN is the Minimum number of lines that can fit 

all the points occupied by people, and pplN  is the number of people in NR. In formal 

situation, e.g., meeting, people tend to have regular patterns in sitting, whereas in social 

context, people tend to sit or stand in arbitrary pattern. 
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Chapter 3  

Human-Context Mapping 

Framework and Behavior decision 

In this chapter, we propose a human-context mapping framework, which is a 

probabilistic framework that integrates various information sources for human-context 

inference. A Dynamic Bayesian Network (DBN) is used as the foundation of our 

probabilistic framework. This framework incorporates both current observation and 

previous estimations for reasoning. (See Fig. 3-2) 

 

3.1  Inference from the past 

In many dynamic systems, inference over time is very common, in which current 

state depends on the previous state. In our human-context inference, we observe the 

tendency that the current state is similar to the last state, so the transition probability 

from the previous to the current is defined as  
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( ) ( 1)
if 

( | )
(1 ) / ( 1) otherwise

t t

i i

E

p e f
P E e E f

p N




   
   

(2.16) 

where ( )t

iE  is the state estimate at timestamp t  and grid cell i , p  0,1  indicates 

the similarity, and EN  denotes the number of human-context categories ( 0.9p 
 
and 

5EN   in this research). In addition, due to the nature that the state of concentrating 

tends to transition to tired, and tired state usually leads to relaxed state, we can increase 

these transition probability by p  and normalize it afterwards. It is also possible to 

learn parameters statistically instead of manual tuning. 

Moreover, what we would like to point out is, in office environment, people tend to 

have fixed activity patterns in the periodicity of day and even week. Therefore, we 

propose to expand the dependency on the previous state to the past states, which are at 

the same time of day in yesterday or in the same time of week. To utilize this prior, we 

proposed a Historical map 
( )(1) (2){ , ,..., }QNQ Q Q QM M M M  , where QN  is the 

number of local timestamp in periodicity Q . Examples of periodicity Q  for normal 

humans are “24 hours a day” and “7 days a week”, so the maps that include these priors 

are specified by DayM  and Week M . In the case of daily period, the local timestamp 

only denotes time of the day (e.g. 8:00 AM). For weekly period, the local timestamp 

refers to day of the week and time of the day (e.g. Wednesday 8:00 AM). Other kinds of 

periodicity can also be incorporated if applicable. So, for each periodicity, a function 

that transforms the global timestamp to local timestamp should be defined, e.g. from 

2012/5/17 15:00 to Thursday 15:00 if we are using week periodicity. The function of 

periodicity Q is noted as small letter q(.). Therefore, we define the transform function 

for day periodicity as ( )day t , and week as ( )week t . In practice, the prior provides 
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information according to the conditional probabilistic tables of ( ) ( )( | )t tP E M q , where 

( ( )) ( ( )) ( ( )){ , }t Day day t Week week tM M Mq  for each periodicity (See Fig. 3-1). Sometime, 

( ( ))Q q tM  will be written as ( ( ))q tM  for simplicity because function name also specifies 

the periodicity. 

          

(a)                             (b) 

Fig. 3-1.  Inference over time. 

(a) General conditional inference over time. (b) Proposed conditional inference with 

periodic history prior. Obs  indicates the observations. 

 

3.2  Historical grid mapping 

Given the current estimation ( )( )tEP , the goal here is to update the 

Human-Context Historical map ( )ˆ( )t

iMP . To recursively update the Historical map of 

Q , we use discrete Bayes filter: 

 
( ) ( ) ( ) ( ) ( )

update predict

ˆ ˆ( ) ( ) ( | ) ( )q t t q t q t q t

i i i i i

e

M E M M e P M e  P P P , (2.17) 

where ( )ˆ( )t

iMP , ( )( )q t

iMP  are respectively the outdated and updated Historical map, 
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   is the learning rate, which sets the weight of the previous estimation and the current 

one, and   is the normalization term. The transition function ( ) ( )ˆ( | )q t q t

i iM MP  is 

defined the same as in (2.16).  

 

Algorithm historical_grid_mapping({ ˆ( )iMP }, { ( )iGP }, ( )q t ): 

1 for all periodicity Q 

2  let q be the transformation function of Q 

3  for all cells iM  do 

4   if ( iG  is Unoccupied ) 

5    ( )( )q t

iMP  = ( ) ( )ˆ( | )q t q t

i i

e

M M eP
( )ˆ( )q t

iM eP  

6    ( )( )q t

iMP  =  ( )( )q t

iMP
( )( )t

iEP  

7   endif 

8  endfor 

9 endfor 

10 return { ( )iMP } 

 

Table 3-1.  Historical Grid Mapping algorithm. 

 In the case of multiple observing robots, the observations can be easily shared. Due 

to the markov assumption that current state only de Each robot can broadcast their 

estimation. 
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3.3  Information Fusion 

In Chapter 2, we presented the three observation sources, object labels (L), 

human-pose (S), and human-human interaction (H). And in Sections 3.1 , 3.2  

inference from the past and Historical map are presented. To fuse all these information 

sources, Dynamic Bayesian Network (DBN) [58] is chosen as the fusion model due to 

its flexibility. More importantly, DBN can probabilistically handle Label Bias Problem 

[58], with guaranteed global maximum likelihood convergence.  

We formulate the unnormalized conditional probability as the summation of output 

conditional probability from every information source. 

 

 

( ) ( ) ( 1)

human-object interaction human posture human-human interaction

( ) ( ) ( )

temporal co

( ) ( 1)

ln ( | , , , , )

ln ( | ; ) ln ( | ; ) ln ( | ; )

ln ( | ; )

t t t

t t t

i i i

i i i

t t

P E L S H M E

P E L P E S P E H

P E E

  



  







  



  

q

nstraint periodic constraint

( ) ( )ln ( | ; ) ,t tP E M  q

 (2.18)

 
where the first three terms are introduced in Chapter 2, and the last two terms are 

presented in Section 3.1 . 

To make conditional probability sum to 1: 

 

( ) ( ) ( 1)

( ) ( ) ( 1)

ln ( | , , , , )

ln ( | , , , , ) ln ,

t t t

t t t

P E L S H M E

P E L S H M E Z



 

q

q

 

(2.19)

 

where ( ) ( ) ( 1)( | , , , , )t t t

e E

Z P E e L S H M E 



  q  is the partition function. 

Moreover, based on the historical prior and transition probability, the robot can 

predict several steps in the future. This makes the service planning more possible to 

achieve global optimal, because in real cases we need to consider the motion time to 
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reach certain goals, and some motion primitives can be conducted at the same time to 

achieve higher efficiency.  

 

Fig. 3-2.  A Dynamic Bayesian Network for Human-Context Instant map prediction. 

 

3.4  Behavior decision in Office Environment 

From the Human-Context Instant mapping, the probability of human context is 

obtained. Based on this information, the robot can decide their service behavior with the 

awareness of human context. At the same time, the probability estimated also helps the 

robot to decide whether it needs to acquire more information. When the uncertainty is 

low, it can be very sure about the human context at certain area. Otherwise, the robot 

may need to spend some efforts to obtain more information from observation. Here, we 

focus on service providing, and information gathering is reserved for future work. 

In this work, behavior is composed of three channels of output. First, what service 

tasks and corresponding motion primitive a robot should take? Second, what is the 

loudness of speaker volume should be? Third, whether a robot should interrupt a person 

to deliver a message or not? 
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3.4.1 Service Task 

Here we define a task as high level activity such as coffee serving, which is 

composed of a series of motion primitives (MPs). MPs are defined as some short 

motions like “moving to kitchen”, “fetching coffee cup”, “filling coffee”, and “returning 

to meeting room”. So, each task can be described as a finite state machine with each 

node being an MP. (See Fig. 3-3). To achieve the goal of a task, the sequence of MPs is 

dynamically generated according to robot’s current state, and the Human-Context 

Instant map. For example, the robot’s current location is at Office 1 and it noticed there 

is a social context which is occurring in Meeting room, so it wants to serve coffee to the 

Meeting room. Before the robot fetches coffee from the kitchen, it has to include the 

behavior which leads the robot to kitchen. After the coffee is fetched, the movement 

from kitchen to Meeting room should be planned. Therefore, the task is dynamically 

organized and can be presented as a function of the robot state and a goal: 

 
( )(1) (2):{ } { } { , ,..., }TNT robotstate goal b b b  , (2.20) 

where T is task name with TN  output MPs, whereas the formats of robotstate  and 

goal  depend on the task.  

For service task, only when the robot reaches the finish state, can it receive the 

reward (utility > 0). That is, if it fails at some point because of other unpredictable event, 

it won’t receive the reward. 
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Fig. 3-3.  Using finite state machine to construct a service task, serve coffee, from 

motion primitives. 

3.4.2 Motion Planning 

Given the prediction of Human-Context Instant map 
( )( ) ( 1){ , ,..., }pt Nt tE E E
 , with 

pN  steps look ahead. The goal is to find a sequence of MPs 
( )( ) ( 1){ , ,..., }pt Nt tb b b
b , 

which leads to the highest utility score in expectation. The graphical model is shown in  

Fig. 3-4. 

We formulate the score of a sequence of behaviors as : 

 

( )( ) ( ) ( 1) ( ) ( )

0

( ,..., ) ( | ) ( , ),
p

p

N
t Nt t i t i t i t i

i

score b b P b b U b E
     




 (2.21)

 
where ( )U b  is the utility function that evaluate the MP b .So, the goal is to find b  

that maximize the target score function. 

 
argmax{ ( )}score

b

b
 (2.22) 
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Fig. 3-4.  Graphical model of decision network. 

To solve this problem, we apply depth-limited search. That is, the maximum depth 

is set to pN , and conduct depth-first search. However, if we directly conduct searching 

in MP space, the complexity will be very high for a complete search. Notice that we 

have the constraint of tasks, which group the MPs into meaningful service tasks. 

Therefore, searching in task space will greatly reduce the complexity. By doing so, the 

search tree will have branching factor equals to number of Tasks instead of number of 

low-level behaviors. 

3.4.3 Associating Behaviors with human context 

From the previous section the abstraction of task decision problem has been 

formulated and a solution was provided. Remember that besides actions, the behavior 

also include the volume of robot’s speaker volume and interruption rules. 

For each context, we build a table of associated service tasks, volume, and 

interruption rule. The content is extracted from the result of the questionnaire mentioned 

in Section 2.1 . (See Table 3-2). 
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Context Task ( ( , )U T E ) Volume Interruption 

Concentrating Serve Coffee (8) Low Important message only 

Tired Serve Coffee (8) 

Book massage (7) 

Play music (6) 

Low Important message only 

Relaxed Play music (8) Medium Yes 

Napping Turn off lights (8) Low Emergent message only 

Social Serve snacks (8)  

Report news (7)  

Shake hands (6)  

High Yes 

Neutral Greeting (3) Medium Yes 

 

Table 3-2.  Behaviors associated with human-context categories. 

( , )U T E  is zero if not specified above. 
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Chapter 4  

Evaluation 

Here, we evaluate our algorithms in three parts, 1) human-context inference from 

observation, 2) building Human-Context Instant map, 3) showing a robot servicing 

people based on the current Human-Context Instant map in real environment. 

4.1  Human-context inference from observation 

In this work, the observation source is divided into three parts: object labels, 

human pose, and human-human interaction. Each part is detailed as follows. 

4.1.1 Human-object interaction 

4.1.1.1 Object Recognition 

Dataset 

The dataset we use is the first 10 object categories from the large scale RGB-D 

dataset proposed in [47]. The objects picked are shown in Fig. 4-1. Average accuracies 

and standard deviation for each experiment were obtained across 10 trials. The objects 
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were put on a turn table and captured using a depth sensor and a higher resolution RGB 

camera.  

We subsampled the dataset by taking every fifth frame, resulting in 6,258 RGB-D 

images. The point cloud captured for each view was downsampled to approximately 

3000 points for fast evaluation. The testing theme is category level recognition. We 

follow the testing procedure described in [47]: randomly leave an object out from each 

category for testing and train the classifiers on all views of the remaining objects. 

      

     

Fig. 4-1.  objects categories from RGB-D dataset: apple, ball, banana, bell pepper, 

binder, bowl, calculator, camera, cap, and cell-phone. 

Pre-processing 

Before feeding raw images into the first layer, we whiten them as suggested in [59]. 

First, the image was resized to a fixed size of 151 pixels while maintaining the original 

ratio. If the image has multiple layers, the resizing is conducted independently on each 

channel. Second, the standard deviation of the whole image and the 9×9×d local patch is 

calculated (d=4 for RGB-D image, and d=16×16=256 for spin-image map). We choose 

the greater standard deviation as the normalizer. Then, every pixel was subtracted by the 

mean of the 9×9×d window and divided by the normalizer. Third, the image was 

zero-padded to have 143×143×d pixels. 

 

Configuration of Learning Hierarchy 
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Here, the configuration is made similar to [59] for Caltech 101 dataset but with 

some adaptation to spin image map. 

First layer: We randomly sample 200,000 8×8×d patches to learn a dictionary of 64 

codewords. Given an image, we step over it with step size one, and compute sparse 

coding for each local patch. As a result, we get 136×136 64-dimensional descriptor map. 

The sparse code is max-pooled within each 4×4 non-overlapping window, which results 

in 34×34 64-dimensional descriptors. Descriptors are grouped for each pixel within 4×4 

local window making a 31×31 1024-dimensional descriptor map. To reduce the 

dimensionality, we use PCA to project it down to 96 dimensions.  

Second layer: In this layer, ns2 codewords are learned. We chose ns2=2048 for 2D 

image HSD, and ns2=128 for HSSD. For a given output from layer one, sparse coding 

will produce 31×31 ns2-dimensional descriptor map. Finally, the max-pooling is 

operated within 1×1, 2×2, and 4×4 subspaces of the whole image. The descriptors after 

max-pooling are concatenated into one single long descriptor. 

Hierarchical Sparse Shape Descriptor 

Figure Fig. 4-2 shows two examples that illustrate first layer sparse coding. Spin 

images at every point are encoded by its major shape component. For the instance of 

bowl, due to different curvature from its bottom to top, they are encoded by shape 

words that best describe it. 

 

 

(a) Bowl 
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(b) Cap 

Fig. 4-2.  Two examples of first layer sparse coding, Left: the object image, Middle: the 

three spin image bases out of 64 that has larger response on the object, Right: the 

response of the three shape words. Red: the response of basis 1, Green: the response of 

basis 2, Blue: the response of basis 3. 

 

In Table 4-1, the accuracy of category level recognition is shown. Our proposed 

HSSD has comparable performance with directly applying HSSL on depth images, 

which encodes 2D contour. More importantly, when we combined Depth HSSL with 

HSSD, the performance increases, which shows HSSD can compensate depth image 

with physical shape information. We combined different cues by concatenating the 

feature vectors and using linear SVM [60] as the classifier. We compared our HSSD 

with VFH [21], which encodes viewpoint and geometry cues using FPFH [20] of object 

point clouds. Although the spin representation we applied does not include statistics of 

normal differences as in FPFH, by learning sparse representation and hierarchical 

structure, our HSSD outperforms VFH by 13%.  

Feature Accuracy(%) 

Intensity HSSL 90.7±4.8 

HSSD 84.8±4.8 

Depth HSSL 85.7±4.0 

HSSD + Depth HSSL 91.3±5.4 

VFH [21] 71.5±2.6 

Intensity + Depth HSSL 95.5±3.4 

HSSD + Intensity + Depth HSSL 96.9±2.9 

Table 4-1.  Accuracies (%) of several descriptors on the RGB-D10 object dataset. 
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4.1.1.2 Object Detection 

The above result is for a formal testing of our recognition algorithm, so we used 

the published RGB-D dataset in order to compare the recognition performance. 

However, for office environment, we collected another dataset, which includes monitors, 

bottles, sofa, tables, chairs. 

Although our proposed recognition method is accurate but the current 

implementation using MATLAB requires much time (about 3.7sec) to classify an object 

in a cropped image. So, using exhaustive sliding window approach with this method for 

detection is impractical. Therefore, we used a more simple but efficient detection 

algorithm [61] to propose detection hypotheses, and then used our recognition to 

validate each proposal. By tuning the threshold of the detection algorithm for proposal, 

we can tradeoff between computation time and detection performance. 
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4.1.2 Human-Pose 

4.1.2.1 RGB-D image collection 

In order to build a discriminative classifier for human-context recognition using 

RGB-D images, a set of training images were collected. A piece of sampled data is a 

human RGB-D image with a label of human-context category.  

To make the data as complete as possible, human poses are divided into two cases, 

namely, sitting and standing. Also, images from every viewpoint were collected, 

because robots may observe frontal, profile, or back in natural office environment. This 

is different from the scenario of human-computer interaction where the testing views are 

mostly frontal. Therefore, in the data collection process, subjects were asked to sit at a 

desk, and perform natural postures related to each context category. We used a moving 

platform, Pioneer 3DX, mounted with ASUS Xtion Pro Live to circle the subject in 

order to capture images from different view angles. In Fig. 4-3(a), a subject was sitting 

at a desk in the center and performed posture associated to a specific human-context. A 

mobile robot mounted with an RGB-D camera circled the subject and captured images 

at a rate of 240 per cycle. In Fig. 4-3(b), Top view of the configuration. The radius of 

the circular path is 150 cm. 

  
(a) (b) 

Fig. 4-3.  Configuration of human posture data collection. 
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4.1.2.2 Preprocessing 

The most important step in the preprocessing stage is to automatically crop the 

region occupied by human. We construct a simple but effective algorithm to achieve this 

goal. There are mainly three steps, illustrated in Fig. 4-4. First, the background is 

subtracted using depth value, so only user and foreground objects are left. We set the 

depth threshold to 2 meter (Fig. 4-4(a)). Second, every pixel is transformed into real 

world coordinates as point clouds. Then, we set a horizontal scan plane of 1 cm thick, 

and scan from top (1.8 m above ground) to bottom (1.0 meter above ground). The 

scanned region is where user head may locate (Fig. 4-4(b)). Once a sufficient amount of 

pixels is detected at h meter, we push the location of pixels located between (h+ε) and 

(h-ε) above ground into a queue (Fig. 4-4(c)). Third, given the queue, we perform 

connected component algorithm to find all points of the body (Fig. 4-4(d)). Finally, we 

can reject a hypothesis if the portion of skin color is less than a threshold. 

  
(a)                      (b) 

  
(c)                      (d) 

Fig. 4-4.  The process of human detection. 
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4.1.2.3 Experiment on HOG feature 

We collected data from 5 people in sitting case, and data from 6 people for 

standing case. Then, the data were processed as follows. First, we extracted the features 

representing human pose described in Section 2.4 . The data were clustered according to 

their view angles. Here we divided the view angles into 8 segments as shown in Fig. 4-5. 

Each view segment along with the context label forms a subclass. That is, there would 

be a total of 6 context categories × 8 segments → 48 subclasses. By doing so, the 

classifier can accommodate intra-class variations due to different view angles. 

 

Fig. 4-5.  Illustration of view angle clustering 

 

The ultimate goal is to construct a human-context classifier which can 

accommodate views from view angles or from users that are not trained before. 

Therefore, we conduct two kinds of test. One is leave-frames-out (LFO), and the other 

is leave-one-person-out (LOPO). In LFO, frames are randomly picked 1/5 of all frames 

as the validation set, and the rest are used as training set. The validation process is 

conducted 10 times and the accuracies are averaged. In LOPO, all data from a randomly 

picked user are used as a validation set, and the rest forms a training set. The accuracy 
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of LFO is 98.68±0.14%, which is surprisingly high. Probably, this is due to intense 

sampling (approximately one frame for every 1.5°) and that consecutive frames are 

quite similar so the loss of small portions of frames does not affect the performance.  

On the other hand, the accuracy of LOPO is 55.38±7.56%, which is quite lower 

than that of LFO. One fundamental difficulty lies in the variation of poses performed by 

different people. Other variations such as body configuration will also degrade the 

performance of HOG feature. This may resolved by collecting more comprehensive data 

to train the classifier.  
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Fig. 4-6  Confusion matrix of sitting case using HOG feature, leave frames out (user 

dependent classification) 
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Fig. 4-7.  Confusion matrix of sitting case using HOG feature, leave one person out 

(user independent classification) 

 

 For the case of standing, because usually people in office won’t sleep in a standing 

pose, so we did not capture training data for napping case. The accuracy of LFO is 

93.84±0.25%, which is slightly lower than the accuracy in sitting case. This 

phenomenon can be attributed to the subtle difference in standing case, where people do 

not lean forward or backward so much as they did when sitting. On the other hand, the 

accuracy of LOPO is 52.13±6.43%. Still, due to inter-person variations, constructing a 

user independent classifier is difficult and should incorporate other cues.  

 



 

53 

 

0.97

0.01

0.01

0.00

0.01

0.01

0.00

0.92

0.01

0.00

0.01

0.04

0.01

0.00

0.94

0.00

0.02

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.02

0.03

0.00

0.93

0.06

0.00

0.04

0.00

0.00

0.03

0.88

concentrating

tired
relaxed

napping

social

neutral

concentrating

tired

relaxed

napping

social

neutral

 

Fig. 4-8.  Confusion matrix of standing case using HOG feature, leave frames out (user 

dependent classification) 
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Fig. 4-9.  Confusion matrix of standing case using HOG feature, leave one person out 

(user independent classification) 
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4.1.2.4 Experiment on skeleton-based feature 

 In this section, we evaluate our proposed skeleton-based feature: hand position, 

head leaning, back leaning for office context classification. Their definitions are in 

Section 2.4.1. For hand-position feature ( , , )p ar   , the specific coordinate used in the 

following experiments is shown in Fig . Polar angle p  ranges over  0 360   and 

starts from axis v1, and increase clockwise when the person is seen above head. a  

ranges over  90 90    has 0  on the plane spanned by v1 and v2. It increases in the 

direction toward head direction.  

 We collected a human pose dataset, in which each frame has complete upper body 

skeleton information using NITE package. Because the current version of the package 

can only capture skeleton in a frontal view and we assume that skeleton extraction 

system can obtain consistent skeleton from different view angle using RGB-D images, 

only frontal views are captured. Example views and their corresponding skeletons with 

extracted skeleton-based features are shown in Fig. 4-11. The information beside each 

view follows the format: [context name], [pose name], [left hand (LH)], [right hand 

(RH)], [head leaning (HL)], [back leaning (BL)], [velocity]. Lengths are in mm, angles 

are in degree, velocities are in mm/sec. 

 

Fig. 4-10.  Coordinate of hand-position feature.  
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Sitting poses 

 

concentrating,  

reading 

LH (509 106 -38) 

RH (464 79 2) 

HL 8 BL 10 

Vel 8  

tired,  

stretching 

LH (689 187 34) 

RH (660 348 32) 

HL 3 BL -18 

Vel 19 

 

neutral,  

normal sitting 

LH (618 109 -30) 

RH (587 25 -68) 

HL 4 BL -2 

Vel 9  

relaxed,  

hands on head 

LH (235 203 61) 

RH (233 336 62) 

HL 1 BL -33 

Vel 9 

 

napping,  

leaning backward 

LH (219 52 -45) 

RH (267 128 -58) 

HL 0 BL -25 

Vel 6  

social,  

hand shaking 

LH (647 110 -16) 

RH (537 69 -49) 

HL 2 BL 1 

Vel 8 

Standing poses 

 

concentrating, 

reading 

LH (438 81 -27) 

RH (197 70 -22) 

HL 21 BL -6 

Vel 23 
 

tired, tired walking 

LH (333 169 -59) 

RH(311 27 -61) 

HL 9 BL 13 

Vel 294 

 

tired, stretching 

LH (665 186 36) 

RH (646 347 35) 

HL 2 BL -13 

Vel 30 
 

neutral,  

normal walking 

LH (645 150 -27) 

RH (583 42 -71) 

HL 2 BL 1 

Vel 406 

 

relaxed, drinking 

LH (323 108 38) 

RH (603 23 -73) 

HL 0 BL -7 

Vel 15  

social,  

hand shaking 

LH (618 109 -30) 

RH (587 25 -68) 

HL 4 BL -2 

Vel 9 

Fig. 4-11.  Example views of captured user postures. In this figure, left and right are 

viewed from observer’s side. 
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To test the discriminating ability of proposed skeleton-based features, we 

performed the leave one person out (LOPO) testing scenario. Sitting and standing cases 

are tested separately because whether a user is sitting or standing can very efficiently 

discriminated by the height of the user’s head above ground. We used SVM with RBF 

kernel as the classifier. The accuracy of sitting is 97.20±2.65%, and that of standing is 

90.39±12.76% for untrained user. The dataset used here is not exactly the same as the 

one used in HOG feature, but actors were asked to perform similar actions. So, we can 

say that our features is a great improvement from using HOG feature in terms of 

invariance over different users. Besides, our features only composed of 9 values in total. 
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Fig. 4-12.  Confusion matrix of sitting case using skeleton-based feature, leave one 

person out (user independent classification). 
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Fig. 4-13.  Confusion matrix of standing case using skeleton-based feature, leave one 

person out (user independent classification). 
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4.1.3 Human-Human Interaction 

4.1.3.1 Orderliness feature 

Here we show six examples to test our proposed orderliness feature as shown in 

Fig. 4-14(a-f). In each sub-figure, 8 solid circles represent 8 people on the 2D ground 

with different configurations, and the lines show a solution of using minimum number 

of lines to fit the people. Fig. 4-14(a)(b) simulate social context, where people prone to 

randomly form clusters. In (b), the minimum number of lines to fit all the people (NLine) 

is 4, in which 3 of them are explicitly shown on the image and 1 of them is degenerated 

to a point that fits the point at the upper-right corner. Fig. 4-14(c)(d)(e)(f) simulate 

formal meeting activities (classified as concentrating context), where people sits or 

stands quite orderly. The values of NLine are 3, 2, 2 and 3 respectively. The value of 

orderliness features (ord) is calculated using (2.15). As shown in the figure, orderliness 

of (c), 9.33, (d), 14.00, (e), 14.00 and (f), 9.33, are greater than that of (a) and (b), 7.00. 

Therefore, this orderliness feature is effective to discriminate social or concentrating 

context in a scene with multiple human. 

 The orderliness feature provides a cue to discriminate between social and 

concentrating context in a multi-people scene. To evaluate our proposed orderliness 

feature, we captured a 3.5-hour-long RGB-D video of our lab’s seminar. The full video 

is segmented into 35 6-minute-long sequences, and each sequence is labeled with its 

context. In Fig. 4-15, human detection and orderliness feature extraction were 

performed on four sequences. In (a) and (b), mean orderliness values are similar, 5.98, 

and 5.61 respectively, and are larger than those of (c) and (d), 2.47, and 2.56 

respectively. The variance of (a) is larger than (b) is probably because before seminar, 
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some people were already seated but others were still walking around chatting, which 

results in a mixture of both context. On the other hand, the corresponding histogram of 

orderliness feature extracted from each frame also shows the tendency that the 

concentrating context has the distribution at larger orderliness values than social context 

does. 

 

(a) NLine = 4, ord = 7.00 

 

(b) NLine = 4, ord = 7.00 

 

(c) NLine = 3, ord = 9.33 

 

(d) NLine = 2, ord = 14.00  

 

(e) NLine = 2, ord = 14.00 

 

(f) NLine = 3, ord = 9.33 

Fig. 4-14.  Four simulated examples of orderliness feature extraction. Solid circles 

indicate people’s position. Lines show a solution of using minimum number of lines to 

fit the people.  
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(a) Seq1: before seminar (concentrating and social context), mean ord=5.98±2.32 
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(b) Seq4: during seminar (concentrating context), mean ord =5.61±1.32 
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(c) Seq34: after seminar (social context), mean ord=2.47±1.53 
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(d) Seq35: after seminar (social context), mean ord=2.56±1.66 

Fig. 4-15.  Four real examples of orderliness feature extraction. Left: sampled image of 

the sequence, and people detection result. Right: histogram of orderliness feature 

extracted from frames in the sequence. 
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4.2  Human-Context Mapping 

In this section, we evaluate the efficacy of our human-context mapping algorithm. 

The efficacy is defined as the rewards collected by the robot in the execution of service 

in a period. In order to fully demonstrate the superiority of our system, we need an 

office environment which is large enough (e.g. more than 10 people), and the mapping 

duration should be sufficiently long (e.g. more than 1 month). However, this is requires 

great effort to employ our robot in real environment. Therefore, we begin by building a 

simulation environment as the platform to tune the parameters and evaluate the result. 

4.2.1 Simulation 

4.2.1.1 Environment Setup 

The simulated office environment is based on occupancy grid map and incorporates 

possible locations for humans to stay. As shown in Fig. 4-16, the dark regions indicate 

inaccessible places or obstacles. The occupancy map was originally built using Laser 

Range Finder at the second floor of Minda Building in National Taiwan University and 

later manually refined to form a clearer version. The blue markers show all the possible 

locations where human may stay. There may be a desk, sofa, or meeting tables. Below 

we will refer to these locations as people staying locations (PSLs). Notice that we 

include the direction of each location only for robot to serve people from their socially 

acceptable direction (e.g. from left or right but not from behind). These details are 

counted because in real cases every movement requires ineligible time. And time is a 

key factor of our algorithm. By doing so, we can make our simulation environment to 
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be as closer to real environment as possible. 

When the simulation begins, a robot will be sent out to explore the surrounding and 

actively serves people according to the context inferred. Here, we assume the context 

inference is given but with some noises to simulate imperfect sensing in real cases. So, 

each PSL will provide a noisy human-context inference result represented by ( )EP  at 

the current timestamp. Also, robots can only make inference from observation at places 

inside its camera’s field of view. 

 

Fig. 4-16.  The simulation environment. 
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(a)                               (b) 

 

Fig. 4-17.  Snapshots of the simulation. Date is shown at bottom right. The number 

besides people is the identification number of a staying location. Color on the people 

shows the ground-truth of human-context. 

  

(a)                               (b) 
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(c)                               (d) 

 

   
(e)                               (f) 

Fig. 4-18.  Context mapping. (a) beginning of mapping, (b) robot recognized neutral 

context and updated the map, (c) robot exploring the meeting room, (d) robot 

recognized tired context and updated the map, (e)(f) following exploration. Color on 

map shows the Context mapping result. Cyan: neutral, Blue: tired, Gray: no information, 

Orange: robot location. 



 

65 

 

4.3  Context Aware Servicing 

Here we integrate the human-context recognition ability, context mapping ability, 

and service planning to test our robot in a realistic scenario. Three staying places, A 

(manager’s office), B (boss’s office), and M (meeting room) are in an office 

environment as shown in Fig. 4-19. Users will follow the schedule of human context 

shown in Fig. 4-20 to perform corresponding pose. For fast evaluation we only simulate 

users’ actions between 13:00 and 14:00 in work days. The schedule was performed 

several times to simulate several days. 

The robot has two modes: one is mapping and passive servicing (MPS) mode, and 

the other is mapping and active servicing (MAS) mode. In MPS mode, robot performs 

depth-first traversal to traverse the whole environment and records human context on 

the Historical map. Also, it serves users on user’s calling. In MAS mode, it will actively 

serve the users according to its inference of human context. The robot switched between 

the two modes by examining whether the entropy of the Instant map inferred (E) is 

higher than a threshold or not. If entropy is high, the robot will be in MPS mode, 

otherwise, in MAS mode. 

 At the first arrival at the new office, the robot did not have any information in its 

Historical map (M) defined in Section 3.2 . So in the first few days, the robot was in the 

MPS mode and wandering around. Fig. 4-21 shows several snapshots of the robot 

observing people in its first working day. (a) Robot observed the manager at A was 

concentrating at 13:10. (b) Robot observed the boss at B was napping at 13:15. (c) 

Robot observed the boss at B was tired at 13:26 in the first day. (d) Robot observed the 

people at M was in social context at 13:42 in the first day. After several observations, 
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the robot had accumulated sufficient information and switched into MAS mode and 

provided services actively.  

 

Fig. 4-19.  Environment for overall test. 

13:00 13:20 13:40 14:00 

A Concentrating Concentrating Relaxed 

B Napping Relaxed  Tired 

M Neutral Neutral Social 

Fig. 4-20.  Schedule of human context in testing environment. 

  
(a)                 (b) 

  

(c)                   (d) 

Fig. 4-21.  Robot wandered and observed human context to build the Historical map. 
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After several observations in one day (actually a day with only 1 hour), robot 

switched into MAS mode. Fig. 4-22 shows the behaviors performed by robot, and we 

described it in detail as follows. In the second day, the robot started its work on the 

cooridor (Fig. 4-22 (a), 13:00). The manager at A called the robot via a controller 

(13:00). The robot approached A and received the task of delivering the document to the 

boss at B (Fig. 4-22 (b)(c), 13:03). However, according to robot’s human context map, it 

inferred that the boss was currently taking a nap, so it planned to serve coffee to the 

manager before delivering the document to the boss. It planned so because this earns 

more rewards in the predicted interval than going directly toward the boss. It prepared 

coffee at K (13:08) After the coffee was deliverred to the manager (13:15), it planned to 

carry the document to the boss because according to the prediction the boss would be 

awake and in concentrating mode when it arrived at B. After it delivered the document 

(Fig. 4-22 (f), 13:21), it observed that the boss was tired from his pose (Fig. 4-22(g)), so 

it provided play_music and book_massage (13:23).  By the rule that robot should not 

serve one person for too long the robot planned to serve snacks to C (13:30), because it 

predicted that there would be social context occuring around 13:40. Before it went to C, 

it planned to grab the snack at K, which eliminated a great amount of time traveling. If 

the robot had had no prior information from Historical map, it would have had to go to 

C, and made observation and then moved to K to grab the snack. The robot delivered 

the snack to the place C (Fig. 4-22(i), 13:45). Afterwards, it reported news for the users 

at C, because of the inferred social context. 
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(a)                  (b)                 (c) 

   

(d)                  (e)                  (f) 

   

(g)                  (h)                  (i) 

Fig. 4-22.  Robots planned and provided services according to Human-Context Instant 

map and the utility function. 
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Chapter 5  

Conclusion 

We propose a context-aware robot service system that enables the robot to infer 

human context in office environment so as to behave and service properly. By 

questionnaire, we define 6 context categories for office environment, including 

concentrating, tired, relaxed, napping, social, and neutral. Three major contributions 

are listed as follows: 

First, we design several novel and discriminative features for inferring human 

context from visual observation. The features incorporate cues from human pose, 

human-object interaction, and human-human interaction.  

Second, to infer human context more efficiently, we propose a novel 

human-context mapping framework that records human context into a spatial-temporal 

grid map. The map represents the relationship of human context with location and time. 

We construct the inference and mapping framework using Dynamic Bayesian Network.  

Third, robot behavior decisions are integrated into the framework. A unified 

dynamic decision network is applied for the robot to plan proper services according to 

the Human-Context Instant map.  
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In the experiment, using our proposed skeleton-based features can recognize 

human context with an accuracy of 93.75%. The overall system has been tested in a real 

scenario, and the result shows the correctness and efficiency of our context-aware robot 

service system.  

 

 



 

71 

 

REFERENCE 

[1] J. Civera, D. Galvez-Lopez, L. Riazuelo, J. D. Tardos, and J. M. M. Montiel, 

"Towards semantic SLAM using a monocular camera," in Proc. of the IEEE Int. 

Conf. on Intelligent Robots and Systems (IROS), 2011. 

[2] N. Blodow, L. C. Goron, Z.-C. Marton, D. Pangercic, T. Ruhr, M. Tenorth, and 

M. Beetz, "Autonomous semantic mapping for robots performing everyday 

manipulation tasks in kitchen environments," in Proc. of the IEEE Int. Conf. on 

Intelligent Robots and Systems (IROS), 2011. 

[3] E. R. Nascimento, G. L. Oliveira, M. F. M. Campos, and A. W. Vieira, 

"Improving Object Detection and Recognition for Semantic Mapping with an 

Extended Intensity and Shape based Descriptor," in IROS 2011 workshop - 

Active Semantic Perception and Object Search in the Real World, 2011. 

[4] J. G. Rogers, A. J. B. Trevor, C. Nieto-Granda, and H. I. Christensen, 

"Simultaneous localization and mapping with learned object recognition and 

semantic data association," in Proc. of the IEEE Int. Conf. on Intelligent Robots 

and Systems (IROS), 2011. 

[5] A. Nüchter and J. Hertzberg, "Towards semantic maps for mobile robots," 

Robotics and Autonomous Systems, vol. 56, pp. 915-926, 2008. 

[6] D. Anguelov, R. Biswas, D. Koller, B. Limketkai, and S. Thrun, "Learning 

hierarchical object maps of non-stationary environments with mobile robots," in 

Proc. of the Eighteenth conference on Uncertainty in artificial intelligence, 

2002. 

[7] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, "Towards 3D 

Point cloud based object maps for household environments," Robotics and 

Autonomous Systems, vol. 56, pp. 927-941, 2008. 

[8] K. Lai, L. Bo, X. Ren, and D. Fox, "Detection-based Object Labeling in 3D 

Scenes," in Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 

2012. 

[9] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, "Semantic labeling of 3d 

point clouds for indoor scenes," in Neural Information Processing Systems, 

2011. 

[10] X. Ren, L. Bo, and D. Fox, "RGB-(D) Scene Labeling: Features and 

Algorithms," in IEEE Int. Conf. on Computer Vision and Pattern Recognition, 

2012. 

[11] A. Rottmann, O. M. Mozos, C. Stachniss, and W. Burgard, "Semantic place 

classification of indoor environments with mobile robots using boosting," in 

National Conference on Artificial Intelligence, 2005. 

[12] Ó . Martínez Mozos, R. Triebel, P. Jensfelt, A. Rottmann, and W. Burgard, 

"Supervised semantic labeling of places using information extracted from sensor 

data," Robotics and Autonomous Systems, vol. 55, pp. 391-402, 2007. 

[13] H. Zender, O. Martínez Mozos, P. Jensfelt, G. J. M. Kruijff, and W. Burgard, 

"Conceptual spatial representations for indoor mobile robots," Robotics and 

Autonomous Systems, vol. 56, pp. 493-502, 2008. 

[14] C. Galindo, J.-A. Fernández-Madrigal, J. González, and A. Saffiotti, "Robot task 

planning using semantic maps," Robotics and Autonomous Systems, vol. 56, pp. 

955-966, 2008. 



 

72 

 

[15] S. Vasudevan, S. Gächter, V. Nguyen, and R. Siegwart, "Cognitive maps for 

mobile robots—an object based approach," Robotics and Autonomous Systems, 

vol. 55, pp. 359-371, 2007. 

[16] S. Vasudevan and R. Siegwart, "Bayesian space conceptualization and place 

classification for semantic maps in mobile robotics," Robotics and Autonomous 

Systems, vol. 56, pp. 522-537, 2008. 

[17] M. Pantic, A. Pentland, A. Nijholt, and T. Huang, "Human Computing and 

Machine Understanding of Human Behavior: A Survey," in Artifical Intelligence 

for Human Computing. vol. 4451, T. Huang, A. Nijholt, M. Pantic, and A. 

Pentland, Eds., ed: Springer Berlin / Heidelberg. 

[18] I. Laptev and G. Mori. (2010). Statistical and Structural Recognition of Human 

Actions  [Online]. Available: 

https://sites.google.com/site/humanactionstutorialeccv10/ 

[19] Z. Zhihong, M. Pantic, G. I. Roisman, and T. S. Huang, "A Survey of Affect 

Recognition Methods: Audio, Visual, and Spontaneous Expressions," IEEE 

Trans. on Pattern Analysis and Machine Intelligence, vol. 31, pp. 39-58, 2009. 

[20] R. B. Rusu, N. Blodow, and M. Beetz, "Fast Point Feature Histograms (FPFH) 

for 3D registration," in Proc. of the IEEE Int. Conf. on Robotics and Automation 

(ICRA), 2009. 

[21] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, "Fast 3D recognition and pose 

using the Viewpoint Feature Histogram," in Proc. of the IEEE Int. Conf. on 

Intelligent Robots and Systems (IROS), 2010. 

[22] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping: Using 

Kinect-style depth cameras for dense 3D modeling of indoor environments," The 

International Journal of Robotics Research, vol. 31, pp. 647-663, 2012. 

[23] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte, 

"Simultaneous Localization, Mapping and Moving Object Tracking," The 

International Journal of Robotics Research, vol. 26, pp. 889-916, 2007. 

[24] A. Pronobis, O. Martínez Mozos, B. Caputo, and P. Jensfelt, "Multi-modal 

Semantic Place Classification," The International Journal of Robotics Research, 

vol. 29, pp. 298-320, 2010. 

[25] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert, "From 3D scene geometry to 

human workspace," in IEEE Conf. on Computer Vision and Pattern Recognition 

(CVPR), 2011. 

[26] G. Debord, Introduction to a critique of urban geography, 1955. 

[27] C. Nold, "Emotional Cartography," Bio Mapping website, 2009. 

[28] M. Coulson, "Attributing Emotion to Static Body Postures: Recognition 

Accuracy, Confusions, and Viewpoint Dependence," Journal of Nonverbal 

Behavior, vol. 28, pp. 117-139, 2004. 

[29] A. Kapur, A. Kapur, N. Virji-Babul, G. Tzanetakis, and P. Driessen, 

"Gesture-Based Affective Computing on Motion Capture Data," in Affective 

Computing and Intelligent Interaction, 2005. 

[30] N. Sebe, I. Cohen, and T. S. Huang, "Multimodal emotion recognition," 

Handbook of Pattern Recognition and Computer Vision, vol. 4, pp. 387-419, 

2005. 

[31] T. Baltrusaitis, D. McDuff, N. Banda, M. Mahmoud, R. el Kaliouby, P. Robinson, 

and R. Picard, "Real-time inference of mental states from facial expressions and 

upper body gestures," in IEEE Int. Conf. on Automatic Face & Gesture 



 

73 

 

Recognition and Workshops, 2011. 

[32] B. Yao and F.-F. Li, "Recognizing Human-Object Interactions in Still Images by 

Modeling the Mutual Context of Objects and Human Poses," IEEE Trans. on 

Pattern Analysis and Machine Intelligence, vol. 99, 2012. 

[33] T. Lan, Y. Wang, W. Yang, S. Robinovitch, and G. Mori, "Discriminative Latent 

Models for Recognizing Contextual Group Activities," IEEE Trans. on Pattern 

Analysis and Machine Intelligence, vol. PP, pp. 1-1, 2011. 

[34] R. Poppe, "A survey on vision-based human action recognition," Image and 

Vision Computing, vol. 28, pp. 976-990, 2010. 

[35] The 12 Dramatic Elements. Available: 

http://www.thedramateacher.com/dramatic-elements/ 

[36] Elements of Drama - Notes. Available: 

http://www.slideshare.net/cathtallks/elements-of-drama-notes 

[37] T. Hofmann, "Unsupervised Learning by Probabilistic Latent Semantic 

Analysis," Machine Learning, vol. 42, pp. 177-196, 2001. 

[38] S. Bullon, "Longman dictionary of contemporary English," ed: Pearson 

Longman, 2009. 

[39] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression (2nd ed.): Wiley, 

2000. 

[40] P. H. Wicksteed, The Common Sense of Political Economy, 1910. 

[41] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, "What is the best 

multi-stage architecture for object recognition?," in IEEE 12th Int. Conf. on 

Computer Vision, 2009. 

[42] Y. Jianchao, Y. Kai, G. Yihong, and T. Huang, "Linear spatial pyramid matching 

using sparse coding for image classification," in IEEE Conf. on Computer Vision 

and Pattern Recognition, 2009. 

[43] A. E. Johnson and M. Hebert, "Using spin images for efficient object 

recognition in cluttered 3D scenes," Pattern Analysis and Machine Intelligence, 

IEEE Transactions on, vol. 21, pp. 433-449, 1999. 

[44] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, "Learning informative 

point classes for the acquisition of object model maps," in Int. Conf. on Control, 

Automation, Robotics and Vision., 2008. 

[45] H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," 

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 

67, pp. 301-320, 2005. 

[46] D. Bertsekas, Nonlinear Programming: Athena Scientific, 1999. 

[47] K. Lai, B. Liefeng, R. Xiaofeng, and D. Fox, "A large-scale hierarchical 

multi-view RGB-D object dataset," in IEEE Int. Conf. on Robotics and 

Automation (ICRA), 2011. 

[48] Y. L. Boureau, F. Bach, Y. LeCun, and J. Ponce, "Learning mid-level features for 

recognition," in IEEE Conf. on Computer Vision and Pattern Recognition 

(CVPR), 2010. 

[49] Y. L. Boureau, J. Ponce, and Y. LeCun, "A theoretical analysis of feature pooling 

in visual recognition," in ICML, 2010. 

[50] J. Yang and M. H. Yang, "Learning Hierarchical Image Representation with 

Sparsity, Saliency and Locality," BMVC, 2011. 

[51] L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for 

rapid scene analysis," IEEE Transactions on Pattern Analysis and Machine 

http://www.thedramateacher.com/dramatic-elements/
http://www.slideshare.net/cathtallks/elements-of-drama-notes


 

74 

 

Intelligence, vol. 20, pp. 1254-1259, 1998. 

[52] K.-T. Yu and L.-C. Fu, "Learning Hierarchical Representation with Sparsity for 

RGB-D Object Recognition," in IEEE Int. Conf. on Intelligent Robots and 

Systems (IROS), 2012, to be published. 

[53] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. 

Kipman, and A. Blake, "Real-time human pose recognition in parts from single 

depth images," in IEEE Conf. on Computer Vision and Pattern Recognition 

(CVPR), 2011. 

[54] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," 

in IEEE Conf. Computer Vision and Pattern Recognition, 2005. 

[55] C. Thurau and V. Hlavac, "Pose primitive based human action recognition in 

videos or still images," in IEEE Conf. on Computer Vision and Pattern 

Recognition, 2008. 

[56] L. Wei-Lwun and J. J. Little, "Simultaneous Tracking and Action Recognition 

using the PCA-HOG Descriptor," in The 3rd Canadian Conf. on Computer and 

Robot Vision, 2006. 

[57] OpenNI. Available: http://www.openni.org/ 

[58] Z. Ghahramani, "Learning dynamic Bayesian networks," 1998. 

[59] J. Yang and M. H. Yang, "Learning Hierarchical Image Representation with 

Sparsity, Saliency and Locality," BMVC 2011. 

[60] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, "LIBLINEAR: 

A Library for Large Linear Classification," J. Mach. Learn. Res., vol. 9, pp. 

1871-1874, 2008. 

[61] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, "Object 

Detection with Discriminatively Trained Part-Based Models," IEEE Trans. on 

Pattern Analysis and Machine Intelligence, vol. 32, pp. 1627-1645, 2010. 

 

 

http://www.openni.org/

