
Lab 5: Motion Planning of Robot Arms

2.12: Introduction to Robotics

Fall 2016

Peter Yu, Ryan Fish, and Kamal Youcef-Toumi

Instructions:

1. When your group is done with each task, call a TA to do your check-off.

2. After the lab, zip your files and make a backup using online storage/flash drive.

3. No need to turn in your code or answers to the questions in the handout.

1 Introduction

In this lab we will experiment the following planning techniques:

1. using inverse kinematics (IK) to find joint positions given target position of tool center point
(TCP),

2. scripting a complex trajectory,

3. collision checking,

4. using Rapidly-Exploring Random Trees (RRTs) for searching obstacle-free trajectory

2 Setting up the code

Open a terminal (Ctrl-Alt-T), and enter the following commands without the leading $.

$ cd ~ # make sure we are at home folder

$ git clone https :// github.com/mit212/me212lab5.git

$ cd me212lab5/catkin_ws # go into the catkin_ws

$ catkin_make # let ROS know our packages

$ rebash # reload bash resource file , ~/. bashrc

2.1 Folders and files

• catkin_ws : ROS catkin workspace

– src : source space, where ROS packages are located

∗ me212base : for the 2.12 moving base. We moved this out of the previous me212bot.

∗ me212arm : for the arm experiment in this lab.

∗ me212bot : for integrating the arm and the moving base.

1

We will use some contents from me212bot developed previously in the new package me212arm.
Now let’s focus on the content inside package me212arm, which is for arm motion planning.

• scripts/planner.py : a Python library for inverse/forward kinematics of the me212arm.

• scripts/interactive_ik.py : a ROS node for interactive IK.

• scripts/run_planning.py : a ROS node containing scripted trajectory with multiple way
points.

• scripts/collision.py : a Python library for testing collisions.

• scripts/rrt.py : a ROS node for planning with RRT.

• model/me212arm.xacro : the URDF file of the arm represented in xacro format.

In this lab, you need to modify planner.py, run_planning.py, and collision.py. You may
modify rrt.py and me212arm.xacro for exploration.

3 Task 1: Interactive Inverse Kinematics (IK)

3.1 Introduction

System architecture of the arm planning system is shown in Figure 1.

Applications

pose of
arm
links

joint
states

joint pos

Dynamixel 2
Elbow Joint

Dynamixel
driver

Real joint state
publisher

Serial Comm

encoder

position
command

Dynamixel 1
Base Joint

Dynamixel
driver

Virtual joint state
publisher

Robot state
publisher

URDF
arm desc.

run_planning

rrt

interactive_ik

rvizJoint position
command

Figure 1: System architecture of the arm system.

Dynamixel There are two Dynamixels on the arm. Each Dynamixel contains a motor and a
controller. In the context of Lab 1 to 3, you can think of it as a wheel motor with an Arduino
controller. This allow us to directly send high level motor commands such as target joint position
or velocity. The encoder on board is an absolute encoder. The two Dynamixels given are MX-106
and model MX-64. The former can generate higher torque so it is used as base joint, and the second
one is wrist joint. They are both very powerful motors so maintain safety distance with the arm
when the motor drivers are connected.

URDF The Unified Robot Description Format (URDF) is an XML specification to describe a
robot. Think of it as D-H representation in computer language. We will use it with ROS to help

2

us with forward kinematics and visualization. There are ROS packages that subscribe to current
joint positions and publish the transform of every link and visualize the arm with mesh models.

To write a URDF file, we can write a xacro file to define macros to simplify the file and then
generate the URDF later. For example, you can define constants such as pi; use some arithmetic
operators instead of hard coding numbers; define and use macros to describe similar structures
such as left and right arms. The URDF file will be loaded to ROS parameter server with name
robot_description. During the loading time, we can invoke a xacro translator which will expand
the xacro file into a URDF file.

Joint state publisher this is a ROS node that reads in robot_description in URDF and publish
joint_states. It is useful for simulating a virtual robot.

Robot state publisher this is a ROS node that reads in robot_description in URDF and
subscribe to joint_states. It publishes transforms of each links. In the URDF we defined 3 frames:
arm_base, link_1, link_2, and tcp. Then you can use tf package to do pose transformations,
e.g. find the position of the object w.r.t. the tcp frame.

Two-link manipulator The two-link manipulator is shown in Figure 2, in which we define the
length of two links (a1, a2) in meters, and joint positions (q1, q2) in rad, and target TCP position
(x, z). The solution of inverse kinematics is as follow [1]:

robot forward direction

robot upward direction

Figure 2: The kinematics of two-link manipulator.

q2 = ±2 tan−1

√
(a1 + a2)2 − (x2 + z2)

(x2 + z2) − (a1 − a2)2
, (1)

and
q1 = atan2(z, x) − atan2(a2 sin q2, a1 + a2 cos q2) − π/2, (2)

where atan2(y,x) is a function that does arctangent but can also identify the correct quadrant
using two numbers. Note that there are two solutions for (q1, q2) that corresponds to elbow-up and
elbow-down configurations.

3

3.2 Interact with virtual robot in joint space.

To get a feel of our two-link manipulator, we have set up a virtual arm using joint_state_publisher.
In pman run script run-virtual. Slide the slide bars of joint1, joint2 and see the robot arm in
rviz.Controlling robot with joint position is the most basic strategy. However, we want the tcp of
the robot arm go to a designated position. That is the inverse kinematics that we will complete.

Figure 3: Interactive IK. You can drag the grey sphere in a 2D plane to specify the input (x, z) to
the IK program, and then see the IK solution.

3.3 Instruction

Fill in function ik(target_TCP_xz, q0) in planner.py using Equation (1), and (2). Note that
the function has an input argument q0 describing the current joint positions as a Python list:
[q_1, q_2]. The purpose of feeding the correct position is that when there are multiple solutions,
we will choose the solution that is closest to the current position.

You may want to use the following functions in numpy module and the exponent Python oper-
ator.

• np.arctan(), np.arctan2(), np.cos(), np.sin(), np.sqrt()

• np.pi: constant π

• x**2: x2

To use them, we have imported numpy as np at the beginning of planner.py:

import numpy as np

Note there are alternatives that you can avoid writing the “np.” prefix every time you call the
functions. One way is to import the function as follows:

from numpy import arctan , arctan2 , cos , sqrt

Or simply:

from numpy import *

4

Although the last one is convenient for quick hacks but not recommended for usual programming
because it could create conflicts of function names, and may introduce difficult bugs.

Changing arm description To change parameters of the arm such as link length, joint limits,
etc to better match your robot arm, you can modify them in planner.py and me212arm.xacro.

3.4 Testing

Virtual Testing In practical robot programming, we often use a simulator to make sure the
program is correct before running on the real robot for safety and avoiding breaking things. In
pman, run script run-virtual. And then start command 4.1-planning-interactive. You should
see the interface shown in Figure 3. Specify the IK input with the arrows in rviz, and see if the
solution visualized with the two links is correct. The arrows are know as interactive marker, which
is a convenient tool for specifying position and orientation visually in rviz.

Real Testing After you are satisfied with the result in virtual world, you can start testing with
real robot arm. First edit joint1.yaml under me212arm/config folder so that motor_id is the
number on the motor of joint 1, the one close to the base. Also edit joint2.yaml similarly for the
motor of elbow joint. Second, in pman, stop all the processes by CTRL-A (select all) and CTRL-T
(stop). Then run script run-real. Third, start command 4.1-planning-interactive to control
the robot arm using the interactive marker in rviz. Please move the marker gently to prevent any
damage. Note that in joint.yaml is constrained within (−π/4, π/2) to prevent hitting the robot.
Also the speed limit is set to 0.3.

4 Task 2: Scripting trajectories by way points

In this task, you will specify a TCP trajectory, e.g. a circle, and then use ik to find joint positions
of each way points.

4.1 Instruction

Fill in run_planning.py to plan a circular trajectory. You will use planner.ik(target_TCP_xz, q0)

that you filled in before. Remember that argument q0 of the function takes in the current joint po-
sition. And a variable q0 is set by querying the /joint_states topic. Thus, you can feed variable
q0 to function ik.

4.2 Testing

Virtual Testing Run the code in virtual: stop all commands and run script run-virtual. And
then run the command 4.2-planning-scripted. See if the result is correct in rviz.

Real Testing run the code in real: stop all commands and run script run-real. And then run
the command 4.2-planning-scripted.

Question 1 You may notice the jerky motion when executing on the real arm. Why? Is there a
way to fix it?

5

5 Task 3: collision checking

Collision checking is the core function of generating obstacle-free path.

5.1 Instruction

Fill in function in_collision() in collision.py to test whether there are robot links intersecting
with the obstacles. Both of them are approximated as a list of line segments. You may use the
intersect(A,B,C,D) function which test whether line AB is intersecting line CD, where each input
is a Cartesian coordinate (x, z). The intersect function is based on using cross product to check
whether the vectors formed by the 4 points is arranged counter clockwise or clockwise. You can
use the examples in Figure 4 to do a sanity check of the provided intersect function.

Figure 4: Possible relationships of 2 line segments.

Hint1 - Nested for loop: Here is an example of Python.

vlist = [1, 3, 5]

ulist = [2, 4]

for v in vlist:

for u in ulist:

print v, u

Result:

1 2

1 4

3 2

3 4

5 2

5 4

Hint2 - Nested lists: The line segments are represented as a nested list. Note that list index
starts at 0.

segs = [[[1,2], [3,4]], [[5,6], [7,8]]]

print segs [0]

print segs [0][1]

print segs [0][1][0]

Result:

[[1,2], [3 ,4]]

[3,4]

3

6

5.2 Testing

In pman, run the command 4.3-planning-collision-test and see if the test example matches
the answer. This part you only need to run in virtual environment.

6 Task 4: searching obstacle-free path using RRT

As discussed in lecture, RRT is a sampling-based planning method that searches for a trajectory
in a continuous configuration space [2]. A pseudo code for general RRT search is shown below. We
will utilize the collision checking from the previous task to check whether a new joint configuration
is in collision and therefore not valid.

Algorithm RRT Search

Input: Initial configuration: qinit ,

target configuration: qtarget ,

function to check if a configuration is valid: VALID(),

number of vertices in RRT: K,

incremental distance: eps

Output: A path from initial to neighbors of target configuration.

G.init(qinit)

for k = 1 to K

qrand = RAND_CONF ()

qnear = NEAREST_VERTEX(qrand , G)

qnew = NEW_CONF(qnear , qrand , eps)

if VALID(qnew)

G.add_vertex(qnew)

G.add_edge(qnear , qnew)

if CLOSE(qnew , qtarget)

return BACKTRACE(G, qnew)

return NO_SOLUTION

6.1 Instruction

The RRT code is provided. You should experiment modifying obstacles in obstacle_segs, and
target TCP position in target_x, and other parameters in the top section of rrt.py to see how
the RRT planner behaves.

6.2 Testing

Virtual Testing Stop all processes. Run script run-virtual in pman. Run the command
4.4-planning-rrt and see if the searching works as expected. You should see the search tree
growing in rviz as in Figure 5.

Real Testing Stop all processes. Run script run-real in pman. Run the command 4.4-planning-rrt

again.

Question 2 Do you see some path penetrate through the obstacles? Why?

7

Figure 5: RRT path planning. Red lines: obstacles. Magenta sphere: starting point. Blue sphere:
goal, Green lines: search tree.

References

[1] D. Gordon. Robotics: Forward and inverse kinematics. [Online]. Available: http:
//www.slideshare.net/DamianGordon1/forward-kinematics

[2] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” 1998.

8

http://www.slideshare.net/DamianGordon1/forward-kinematics
http://www.slideshare.net/DamianGordon1/forward-kinematics

	Introduction
	Setting up the code
	Folders and files

	Task 1: Interactive Inverse Kinematics (IK)
	Introduction
	Interact with virtual robot in joint space.
	Instruction
	Testing

	Task 2: Scripting trajectories by way points
	Instruction
	Testing

	Task 3: collision checking
	Instruction
	Testing

	Task 4: searching obstacle-free path using RRT
	Instruction
	Testing

