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I develop new methods of 
social data science to 
understand rumors, fads, 
conspiracies, disinformation, 
public opinion, and 
information flow.
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What about the American 
public?



20(Adamic and Glance, 
2005)
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Mass Polarization

RECENT POLLS
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Mass Polarization

POTENTIAL MECHANISMS
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• Increasing polarization in the 
electorate
(e.g., Abramowitz and Saunders, 
2008)

• Little gap in the center and 
comparatively moderate 
(e.g., Fiorina and Abrams, 2008)

Mass Polarization

EXISTING SCHOLARLY WORK
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We set out to use voting data to 
directly measure mass 
polarization
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Precinct-Level Voting Data

What we have:
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Precinct-Level Voting Data

What we have:

What we want:
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• Challenge 1: Coarse candidate 
data

• Challenge 2: Censored voter 
data

• Challenge 3: Sparse data

Using Voter Data
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Approach: We develop a mixture 
of spatial voting models in order 
to draw inference from voting 
data
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How many people here could 
write down Bayes’ Rule from 
memory?
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Why use Bayesian machine 
learning?
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Neural Model

Bayesian Model
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10 11101 011 10   001  1010   10

Neural Model

Bayesian Model

Stength #1: 
Interpretable, structured models



34

10 11101 011 10   001  1010   10

Neural Model

Bayesian Model

Stength #2:
Effective with small data
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Bayesian Inference
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Bayesian Inference
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How many people here know 
the nitty-gritty of how Bayesian 
inference in mixture models 
works?
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1) Identify data

2) Specify probabilistic generative 
model

3) Infer model parameters

Intro to Bayesian Inference

BASIC MECHANICS
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Harris
County

Montgomery
County
Montgomery
County

Political Spectrum

Solid Line = Sylvester’s Political 
Position
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1) Identify data

2) Specify probabilistic generative 
model

3) Infer model parameters

Intro to Bayesian Inference

BASIC MECHANICS
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EXAMPLE GENERATIVE STORY

A CHOOSE-YOUR-OWN ADVENTURE, WRITTEN IN 
MATH
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Montgomery
County

Harris
County

County 
“Assignment”



45Political Position

The adventure 
begins



46Political Position

Choose your 
own adventure



47Political Position
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A narrative structure 
that organizes 
information
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Intro to Bayesian Inference

SYLVESTER’S FULL “GENERATIVE STORY”



50

1) Identify data

2) Specify probabilistic generative 
model

3) Infer model parameters

Intro to Bayesian Inference

BASIC MECHANICS
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Inverting the Generative Story

TAKING SYLVESTER’S STORY
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Intro to Bayesian Inference

INFERENCE PROCESS

Observe!
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Intro to Bayesian Inference

INFERENCE PROCESS

Infer!
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Search for model parameters 
that maximize data likelihood.
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How likely is the observed data 
under each parameter setting?
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How likely is the observed data 
under each parameter setting?

When x = 1...
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How likely is the observed data 
under each parameter setting?

When x = 0...
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Which parameter setting best 
explains the observed data?

Infer x = 0! Automated 
method
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• Mixture of Normal distributions

• Same basic model structure as 
in “topic modeling”

• Same basic model structure as 
in the application in this talk

Intro to Bayesian Inference

DISCUSSION
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We set out to use voting data to 
directly measure mass 
polarization
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Precinct-Level Voting Data

What we have:

What we want:
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• Challenge 1: Coarse candidate 
data

• Challenge 2: Censored voter 
data

• Challenge 3: Sparse data

Using Voter Data

THREE CHALLENGES TO A SIMPLE STORY
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Challenge 1: Coarse Data
V

o
te

 S
h

a
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Political 
Party

NO MEASUREMENT OF CANDIDATE POSITIONS
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Assumption 1: CF-Scores

• Campaign finance (CF) scores

• Alternative to DW-NOMINATE

• Scores for all candidates

(Bonica, 
2014)

Political Position

Solid Line = Candidate Position
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Challenge 2: Censored Data

V
o
te

 S
h

a
re

Political Position

Solid Line = Candidate Position

NO DIRECT OBSERVATION OF VOTER POSITIONS
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Challenge 2: Censored Data
F
re

q
u

e
n

c
y

Political Position

Dotted Curve = Voter Distribution 
(Unknown)
Solid Line = Candidate Position

VOTER POSITIONS MAY DIFFER FROM CANDIDATES’
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Assumption 2: Spatial Voting

THE FIRST CHAPTER OF OUR “GENERATIVE STORY”

(Downs, 
1957)

Political Position

Assume distribution of voter 
preferences

Solid Line = Candidate Position 
(Known)
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Assumption 2: Spatial Voting

THE FIRST CHAPTER OF OUR “GENERATIVE STORY”

(Downs, 
1957)

Political Position

Solid Line = Candidate Position 
(Known)

Dotted Line = Voter Position 
(Unknown)

Voter Position is chosen at random 
from underlying distribution of political 
positions
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Assumption 2: Spatial Voting

THE FIRST CHAPTER OF OUR “GENERATIVE STORY”

(Downs, 
1957)

Political Position

Solid Line = Candidate Position 
(Known)

Dotted Line = Voter Position 
(Unknown)

Compute 
distances
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Assumption 2: Spatial Voting

THE FIRST CHAPTER OF OUR “GENERATIVE STORY”

(Downs, 
1957)

Political Position

Solid Line = Candidate Position 
(Known)

Dotted Line = Voter Position 
(Unknown)

Voter chooses closest 
candidate
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Assumption 2: Spatial Voting

THE FIRST CHAPTER OF OUR “GENERATIVE STORY”

(Downs, 
1957)

Political Position
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Assumption 2: Spatial Voting

• “Inverting” model allows us to 
infer distribution of voter 
positions

• What distribution of voter 
positions makes the observed 
votes most likely?

BAYESIAN INFERENCE
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• Story doesn’t have to be literally 
true

• Vote by party versus position

• Other factors ignored

• “Revealed preferences” model

Assumption 2: Spatial Voting

BAYESIAN INFERENCE
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Challenge 3: Sparse Data

V
o
te

 S
h

a
re

Political Position

Solid Line = Candidate Position

ONLY TWO DATA POINTS PER PRECINCT!
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Challenge 3: Sparse Data
F
re

q
u

e
n

c
y

Political Position

Dotted Curve = Voter Distribution 
(Unknown)
Solid Line = Candidate Position

IDENTIFIABILITY
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Assumption 3: Statistical Pooling

WELL-KNOWN “TRICK” IN BAYESIAN MODELING

To illustrate the idea: Suppose all different 
regions share the same underlying 
distribution
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Assumption 3: Statistical Pooling

THE SECOND CHAPTER IN OUR “GENERATIVE 
STORY”

Suppose some regions share the same 
underlying distribution
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similar voting patterns



83

Assumption 3: Statistical Pooling

THE SECOND CHAPTER IN OUR “GENERATIVE 
STORY”

Suppose some regions share the same 
underlying distribution

Allows inference to cluster according to 
similar voting patterns



84

Mixture of Spatial Voting Models

What region’s voting patterns are 
best explained by the same 
distributions of political 
positions?

BAYESIAN INFERENCE

What distributions are 
needed to best explain 
observed votes?
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Mixture of Spatial Voting Models
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Mixture of Spatial Voting Models

Observe!
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Mixture of Spatial Voting Models

Infer!
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Data

2006, 2008, 
2010
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Aggregation Method

COMBINE PRECINCTS TO STATE / COUNTY LEVEL
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Bimodality 

Mass Polarization

DIFFERENT FORMS OF POLARIZATION

(DiMaggio et al., 
1996)

Political Position Political Position 
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Dispersion

Mass Polarization

DIFFERENT FORMS OF POLARIZATION

(DiMaggio et al., 
1996)

Political Position Political Position 
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Dispersion

Mass Polarization

DIFFERENT FORMS OF POLARIZATION

(DiMaggio et al., 
1996)

Political Position Political Position 
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Results

TEXAS 2008

Histogram = Candidates’ Political Positions (Known from 
CF-Scores)
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TEXAS 2008

Histogram = Candidates’ Political Positions (Known from 
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Results

TEXAS 2008

Histogram = Candidates’ Political Positions
Dotten Curve = Inferred Distribution of Voter 
Positions
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Results

TEXAS 2008

Histogram = Candidates’ Political Positions
Dotten Curve = Inferred Distribution of Voter 
Positions
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Results

TEXAS 2010

Histogram = Candidates’ Political 
Positions
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Results

Histogram = Candidates’ Political Positions
Dotten Curve = Inferred Distribution of Voter 
Positions

TEXAS 2010
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Construct Validity

(Also checked against several other 
metrics)

OUR ESTIMATES CORRELATE WITH EXISTING 
METRICS

CCES Data
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We set out to use voting data to 
directly measure mass 
polarization
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We find reliably lower levels of 
bimodality than in distributions of 
candidate positions 
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BUT reliably higher levels of 
dispersion
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Bayesian machine learning is 
useful across many applications
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Methodolo
gyEpistemolog
y
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My Work in the Broader Web of OII

Rumors

Popularity
Dynamics

Media
Manipulation

Cryptocoins

Alt-Right

Social
Learning

Machine
Learning

Digital
Ethnography

Digital
Experiments
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Epistemolog
y

Methodolo
gy
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Senior Personnel 
$2,000,000 2-year 
grant
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Senior Personnel 
$2,000,000 2-year 
grant
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Senior Personnel 
$2,000,000 2-year 
grant

Combining more 
structured (Bayesian) 
and less structured 
(Neural) models
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Bayesian Analysis of 
Rumors

(Krafft et al., CHI 2017)
(Krafft & Spiro, Under Review)
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Bayesian Analysis of 
Rumors
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Methodolo
gyEpistemolog
y

Work that touches on 
both
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Collective Intelligence

(Celis, Krafft, Kobe, ICWSM 2016)
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Collective Intelligence

(Celis, Krafft, Kobe, ICWSM 2016)

Apply to coding misinformation?

AI-in-the-Loop Crowdsourcing
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Methodolo
gyEpistemolog
y

3-5 Year Plan:

Bridging the Cyber and the Social

1) Semi-structured models

2) AI-in-the-Loop

3) Bayesian qualitative methods
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Collective Intelligence

(Celis, Krafft, Kobe, ICWSM 2016)

Relation to Fairness, Bias, and Inclusion

Participatory Machine Learning
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Collective Intelligence

(Celis, Krafft, Kobe, ICWSM 2016)

AI-in-the-Loop Mixed Methods
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