
Objects, not cache lines, are the natural unit of compression!

Compress Objects, Not Cache Lines:
An Object-Based Compressed Memory Hierarchy

Po-An Tsai and Daniel Sanchez
{poantsai, sanchez}@csail.mit.edu

Background and Motivation

Zippads significantly reduces memory footprint
• CMH and Zippads compress well for array-heavy apps
• Zippads compresses much better for object-heavy apps

Baseline System: Hotpads, An Object-Based Memory Hierarchy [MICRO’18]

Evaluation

Zippads reduces memory traffic
• Achieves the lowest memory traffic
(40% lower than CMH)
• Combines benefits of CMH and Hotpads

Methodology:
• Simulate Zippads using Maxsim (Zsim+Maxine JVM)
• 8 Java apps from scientific, DB, graph analytics, KV store
• See our paper for C/C++ apps results

Compared schemes:
1. Uncomp: 3-level cache hierarchy without compression
2. CMH: State-of-the-art compressed memory hierarchy
3. Hotpads 4. Zippads: With and without COCO

See our paper (https://bit.ly/zippads) for more features, details, and evaluation results!

Up to
75%

3. Many programs mainly store objects in main
memory and their layout is therefore irregular

2. Prior compression algorithms focus on compressing
fixed-size cache lines and only work well for regular

memory layout (e.g., arrays)

100 100 102 101 103 103 102 104 108 109 109 111

100 +
0

+
2

+
1

+
3

+
3

+
2

+
4

108 +
1

+
1

+
3

Compressed
layout

Uncompressed
layout

1.1 1.2 1.3

0x18 0x30 0x48

……

Float array

Reference array

……

……

64B cache line

[BDI, PACT’12] [FP-H, MICRO’15] [BPC, ISCA’16]

Int array

0xFF18 0x????

Data is stored in
compressed address

Zippads: An Object-Based
Compressed Memory Hierarchy

COCO: Cross-Object-Compression

Insight 1: Object-based applications always follow
pointers to access objects

Insight 2: There is significant redundancy across
objects of the same type

• COCO adds
extra benefits
• Zippads+COCO
improves over
CMH by 63%

4527

123

0xaabb

0x0000ffffaabbaabb

4527 (class id)

123

0xccdd

0x0000ffffccddccdd

4527 (Base id) Bitmap(32/8=4B)

0xccdd 0xccddccdd Unused

Base object (32B)

Compressed object (16B)

Uncompressed object (32B)
0x00

0x10

0x20

0x10

0x00

b00000000 00000000
b00000011 00001111

No diff
No diff
2B diff
4B diff

Exploit redundancy across objects by storing only the bytes that differ
from a representative object

The popularity of object types is skewed
→ Store representative objects with a cache

Compress

Point directly to compressed objects to avoid translation

Compressed size Compressed object address (48-X bits)
48 48-X 063 50

Compression encoding bits (X bits)

Encode compression
info in pointers for fast
decompression

Feature 1.
Object-based
data movement

L1 Pad L2 Pad Main MemRegFile

Objects

Free
space

A

B

Feature 3.
Bulk GC and object eviction
process that updates pointers
to moved objects

A

B (stale)
A
B
C
D

A

B
A
B
C

A

B
A
B

A

B (stale)

B

D

Free
space

Example Hotpads hierarchy Feature 2.
In-hierarchy
object allocation

Collection
-Eviction

(CE)

1. Compressed memory hierarchies
require uncompressed-to-

compressed address translation

Zippads improves performance
• Outperforms CMH by 24% while
reducing footprint much further

Core issues loads/stores to
uncompressed address

Object A1 Object B1 Object A2 Object C Object B2Uncompressed
layout

Object A1 Object B1 Object A2 Object C Object B2Compressed
layout

0xFF0x00

0xDF0x00

Compress objects
on eviction, when
pointer updates

are cheap

Paper link:
https://bit.ly/zippads
Lightning video link:
https://bit.ly/zippads-lightning

Decompress

https://bit.ly/zippads
https://bit.ly/zippads
https://bit.ly/zippads-lightning

