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Background and Motivation

Zippads significantly reduces memory footprint
• CMH and Zippads compress well for array-heavy apps
• Zippads compresses much better for object-heavy apps 

Baseline System: Hotpads, An Object-Based Memory Hierarchy [MICRO’18]

Evaluation

Zippads reduces memory traffic 
• Achieves the lowest memory traffic 
(40% lower than CMH)
• Combines benefits of CMH and Hotpads

Methodology:
• Simulate Zippads using Maxsim (Zsim+Maxine JVM)
• 8 Java apps from scientific, DB, graph analytics, KV store
• See our paper for C/C++ apps results

Compared schemes:
1. Uncomp: 3-level cache hierarchy without compression
2. CMH: State-of-the-art compressed memory hierarchy
3. Hotpads 4.    Zippads: With and without COCO 

See our paper (https://bit.ly/zippads) for more features, details, and evaluation results! 
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3. Many programs mainly store objects in main 
memory and their layout is therefore irregular 

2. Prior compression algorithms focus on compressing 
fixed-size cache lines and only work well for regular 

memory layout (e.g., arrays)
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Data is stored in 
compressed address

Zippads: An Object-Based 
Compressed Memory Hierarchy

COCO: Cross-Object-Compression

Insight 1: Object-based applications always follow 
pointers to access objects

Insight 2: There is significant redundancy across 
objects of the same type

• COCO adds 
extra benefits
• Zippads+COCO
improves over 
CMH by 63%
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Exploit redundancy across objects by storing only the bytes that differ 
from a representative object

The popularity of object types is skewed
→ Store representative objects with a cache

Compress

Point directly to compressed objects to avoid translation

Compressed size Compressed object address (48-X bits)
48 48-X 063 50

Compression encoding bits (X bits)

Encode compression 
info in pointers for fast 
decompression
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Feature 3. 
Bulk GC and object eviction
process that updates pointers 
to moved objects
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Example Hotpads hierarchy Feature 2. 
In-hierarchy 
object allocation
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1. Compressed memory hierarchies 
require uncompressed-to-

compressed address translation

Zippads improves performance
• Outperforms CMH by 24% while 
reducing footprint much further

Core issues loads/stores to 
uncompressed address
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Compress objects 
on eviction, when 
pointer updates 

are cheap

Paper link:
https://bit.ly/zippads
Lightning video link:
https://bit.ly/zippads-lightning
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