
Type-Driven Repair for Information Flow Security
Supplementary Material

Well-Formedness Γ ` r Γ ` B Γ ` S

WF-ψ
Γ ` ψ : Bool

Γ ` ψ

WF-π
Γ ` π x̄ : Bool Γ(π) 6= T []

Γ ` π x̄

WF-α
Γ(α) 6= 	

Γ ` α WF-SC
Γ ` B Γ; ν : B ` r

Γ ` {B | r}

WF-FUN
Γ− ` Tx Γ;x : Tx ` T

Γ ` Tx → T

WF-D

Γ(D) = ∀◦αi.∀◦〈πj : Uj〉.T
|Ti| = |αi| Γ ` pj : Uj

Γ ` D Ti 〈pj〉

WF-FO
Γ− ` {B | r} Γ;x : {B | r} ` T

Γ ` x : {B | r} → T

WF-HO
Tx non-scalar Γ− ` Tx Γ ` T

Γ ` Tx → T

WF-∀α
Γ;α : ◦ ` S
Γ ` ∀◦α.S

WF-∀π
Γ;π : T [◦] ` S

Γ ` ∀◦〈π : T 〉.S

Figure 1. Well-formedness rules of BL.

1. BL Static Semantics
Figures 1,2, and 3 give the full version of the static semantics
of BL.

1.1 Proving Non-Interference Using Tagged2

We now prove that executions involving the Tagged monad
preserve contextual noninterference: if a sensitive value v
may not flow to a given viewer, then any pair of executions

[Copyright notice will appear here once ’preprint’ option is removed.]

Subtyping Γ ` T <: T ′

<:-REFL
Γ ` B <: B

<:-SC
Γ ` B <: B′ Valid(JΓK ∧ r ⇒ r′)

Γ ` {B | r} <: {B′ | r′}

<:-FUN
Γ ` Ty <: Tx Γ; y : Ty ` [y/x]T <: T ′

Γ ` x : Tx → T <: y : Ty → T ′

<:-D

Γ(D) = ∀◦iαi.∀◦j 〈πj〉.T
Γ ` Ti ∼◦i T ′i Γ ` pj ∼◦j p′j

Γ ` D Ti 〈pj〉 <: D T ′i 〈p′j〉
Γ ` T <: T ′

Γ ` T ∼⊕ T ′
Γ ` T ′ <: T
Γ ` T ∼	 T ′

Γ ` T <: T ′ Γ ` T ′ <: T
Γ ` T ∼� T ′

Γ;x : T ` p ∼◦ p′

Γ ` λx : T.p ∼◦ λx : T.p′

Γ ` {() | r} ∼◦ {() | r′}
Γ ` r ∼◦ r′

Figure 2. Subtyping rules of BL.

involving different assignments to v should yield equivalent
outputs.

Reasoning directly about noninterference is inconvenient
because it requires talking about two executions. We sim-
plify our noninterference proof using a technique similar
to that of Pottier and Simonet [1]: we introduce auxiliary
constructs that allow us to reason about two executions in
one. Being able to encode security labels as a library makes
the formalization particularly nice: the only auxiliary con-
struct we need for the proof is an alternative definition of
the Tagged monad. We introduce the Tagged2 monad with
new implementations of the four primitive operations, yield-
ing the property that if a program type-checks with Tagged2,
then it preserves contextual noninterference with Tagged.
The Tagged2 monad. To simplify formalization of nonin-
terference, we parameterize the semantics of BL by the con-
text, i.e. the principal who is observing the execution and the
world at the time of output. More concretely, we assume that

1 2016/11/16

Type Checking Γ ` e :: S

SUBT
Γ ` e :: T ′ Γ ` T ′ <: T

Γ ` e :: T

VAR-SC
Γ(x) = {B | r}

Γ ` x :: {B | ν = x}

VAR
Γ(x) = S S non-scalar

Γ ` x :: S

ABS
Γ ` Tx Γ;x : Tx ` e :: T

Γ ` λx : Tx.e :: (x : Tx → T)

LET

Γ ` v1 :: (y : Ty → T ′) Γ ` v2 :: T2
Γ ` T2 <: Ty Γ;x : [v/y]T ′ ` e :: T

Γ ` let x = v1 v2 in e :: T

MATCH

Γ ` x :: {D T̄x 〈p̄x〉 | rx}
Γ(D) = ∀◦ᾱ.∀◦〈π̄〉.

T1 → . . .→ Tn → {D ᾱ 〈π̄〉 | r}
Γ; yi : [T̄x/ᾱ][p̄x B π̄]Ti;

x : {D T̄x 〈p̄x〉 | rx ∧ r} ` e :: T

Γ ` match x with D x̄→ e :: T

IF

Γ ` x :: {Bool | r}
Γ; [>/ν]r ` e1 :: T Γ; [⊥/ν]r ` e2 :: T

Γ ` if x then e1 else e2 :: T

T-GEN
Γ;α : ◦ ` e :: S

Γ ` e :: ∀◦α.S

T-INST
Γ ` e :: ∀◦α.S Γ ` {B | r}

Γ ` e :: [{B | r}/α]S

P-GEN
Γ;π : T [◦] ` e :: S Γ ` T

Γ ` e :: ∀◦〈π : T 〉.S

P-INST
Γ ` e :: ∀◦〈π : T 〉.S Γ ` p : T

Γ ` e :: [pB π]S

Figure 3. Type-checking rules of BL.

the environment always contains two variables cw : W and
cu : U ; when a program executes, it executes with all pos-
sible values of cw and cu “in parallel”, but in each of these
parallel threads, print only performs the output when its ar-
guments match cw and cu, so this parametric semantics has
no effect on the output.

We first construct a phantom encoding: a new information
flow monad, Tagged2, that explicitly relates pairs of program
executions. The intuition behind Tagged2 is as follows: it rep-
resents two versions of a sensitive value from two different
executions of the program as seen by the current context.
Mirroring what we want for our noninterference property,
the two versions are only allowed to differ for those sensi-
tive values that are not visible in the context. The Tagged2

constructor accepts two α values, l and r, which we call
projections. Its third argument prop serves as a proof of the
property p cw cu ⇒ l = r, that is, if the policy holds of the
current context, the two projections must be equal.

module Tagged2 where

private cw: W, cu: U -- Current context

5 -- | Tagged data constructor

private Tagged2: ∀α . ∀	 <p: W → U → Bool> .
l:α→ r:α→ prop: ({() | p cw cu} → {() | l = r})

→ Tagged α <p>

10 return2: ∀α . ∀	 <p: W → U → Bool> . α→ Tagged α <p>

return2 = λ x . Tagged2 x x (λ z . ())

bind2: ∀α β . ∀	 <p: W → U → Bool> . ∀ <f:α→ β →
Bool> .
x: Tagged α <p> → (y: α→ Tagged {β | f y ν} <p>)

15 → Tagged {β | f (l x) ν} <p>

bind2 = λ x . λ g .
match x with Tagged2 xl xr xp →
match g xl with Tagged2 yl _ yp →
match g xr with Tagged2 _ yr _ →

20 Tagged2 yl yr (λ z . join (xp z) (yp z))

print2: ∀α . ∀	 <p: W → U → Bool> .
w: W → u: Tagged2 {U | p w ν}<p>
→ x: Tagged2 α <p> → W

25 print2 = λ w . λ u . λ x .
match u with Tagged2 ul ur up →
if w 6= cw ∨ (ul 6= cu ∧ ur 6= cu) then w

else if ul 6= ur then fail (up ())

else match x with Tagged2 xl xr xp →
30 if xl 6= xr

then fail (xp ())

else doPrint w xl

downgrade2: ∀	 <p: W → U → Bool> . ∀ <c: Bool> .
35 x: Tagged2 {Bool | ν ⇒ c} < λ w u . p w u ∧ c>

→ Tagged2 {Bool | ν ⇒ c} <p>

downgrade2 = λ x .
match x with

Tagged2 xl xr xp →
40 Tagged2 xl xr (λ z . if xl ∨ xr then xp z else ())

Figure 4. The Tagged2 monad, which keeps track of two
projections.

A Tagged2 value with different projections corresponds
to Pottier and Simonet’s “bracket value” in [1], and the prop

requirement corresponds to their rule that all bracket values
are assigned high security labels. The main conceptual dif-
ference of our treatment is that the division between high
and low security, as well as the notion of a leak, is context-
specific.

We show the implementation of the Tagged2 in Fig. 4.
The phantom encoding provides alternative implementations
of the four primitive operations. The function return2 gives
the same value for both projections, while bind2 applies the

2 2016/11/16

function projection-wise. The BL type checker can easily
show both implementations type-safe.

The function print2 is designed to fail when it detects in-
terference: namely, whenever the target of the output is dif-
ferent in the two executions (ul 6= ur) or because it outputs
two different values (xl 6= xr). We assume that fail has the
type {() | False}→a, so the only way to type-check print2

is to prove that both failing branches are unreachable, which
the BL type checker successfully accomplishes. To under-
stand why the first failing branch is unreachable, recall that
from the type of u we know that p w ul ∧ p w ur; we also
know that w = cw and ul = cu ∨ ur = cu from the path con-
dition, thus p cw cu holds, which gives ul = ur guaranteed
by the Tagged2 constructor.

The function downgrade2 simply reconstructs its argu-
ment, but provides a proof that xl = xr under a weaker
assumption. The proof can be understood as follows: if
xl ∨ xr, then c must hold, so we can invoke the proof xp

of xl = xr that we obtained form the argument; otherwise
xl = xr = False.
Contextual noninterference. We now show that type-
checking with Tagged2 implies contextual noninterference
with Tagged. Because the Tagged2 functions type-check and
because the type system of BL is sound [2], we know that no
type-correct program that manipulates Tagged2 values can go
wrong, i.e. attempts to print the results of two executions that
are different. Now we only have to formally connect com-
putations with Tagged values and those with Tagged2 values,
and show how type safety of the latter implies noninterfer-
ence for the former.

We first show that replacing a Tagged2 value with its
projection in Tagged at the beginning of an execution yields
the same result as projecting at the end of an execution. A
projection of an expression e (written becj , for j = {l, r})
is an expression where every occurrence of Tagged2 xl xr _

in e is replaced by Tagged xj .

Lemma 1 (Projection). If e →∗ e′ then becj →∗ be′cj , for
j = {l, r}.

Proof outline. The only steps that are different in the eval-
uation of e and its projections are those resulting from the
bodies of bind and print. By inspection of bind2 it is easy to
see that it applies the function projection-wise, and thus pre-
serves the property of the lemma. In case of print2, since it
does not fail, either it does not do any output, or the two pro-

jections are the same; in both cases, projections of its body
will have the same behavior.

Theorem (Contextual Noninterference). Let

Γ;x : Tagged α 〈p〉 ` e :: W

and ¬(p cw cu). Let for j ∈ {l, r}, Γ ` vj :: α and
[(Tagged vj)/x]e→∗ wj . Then wl = wr.

Proof outline. Since ¬(p cw cu), we know

Γ ` Tagged2 vl vr id :: Tagged α 〈p〉

for any vl, vr. Let e2 be [(Tagged2 vl vr id)/x]e; note that
be2cj = [(Tagged vj)/x]e. By inspection of typing rules
of BL, substitution of a subterm with the same type does
not change the type of the term, so Γ ` e2 :: W . By
soundness of the type system, e2 either diverges or reduces
to a value w of type W . Note that the execution of e2

differs from the executions of either [(Tagged vj)/x]e only
in the bodies of bind and print functions; since none of
them introduces divergence, e2 cannot diverge either. By
Lemma 1, be2cj →∗ bwcj , that is wj = bwcj , but bwcl =
bwcr since w is a value of type W , which is different from
Tagged.

A note on the proof technique. Being able to express
tagged values as a data type with a phantom predicate pa-
rameter is not only simpler, but also allows us to prove
non-interference over pairs of traces simply by grounding
phantom predicates. In the information flow monad Tagged,
policies are phantom predicates that do not appear in the
arguments of data constructors. In Tagged2, the predicates
are no longer phantom, but appear negatively in the type of
prop, consistent with its variance annotation. Using these
predicates for explicitly relating multiple program execu-
tions helps simplify the formalization and proof of non-
interference.

References
[1] F. Pottier and V. Simonet. Information flow inference for ML.

ACM Transactions on Programming Languages and Systems,
25(1), Jan. 2003.

[2] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement
types. In ESOP, 2013.

3 2016/11/16

	BL Static Semantics
	Proving Non-Interference Using [language=lifty,basicstyle=,columns=fixed]Tagged2

