
Specifying Reusable Components?

Nadia Polikarpova, Carlo A. Furia, and Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland
{nadia.polikarpova,carlo.furia,bertrand.meyer}@inf.ethz.ch

Abstract. Reusable software components need expressive specifications. This
paper outlines a rigorous foundation of model-based contracts, a method to equip
classes with strong contracts that support accurate design, implementation, and
formal verification of reusable components. Model-based contracts conserva-
tively extend the classic Design by Contract approach with a notion of model,
which underpins the precise definitions of such concepts as abstract object equiv-
alence and specification completeness. Experiments applying model-based con-
tracts to libraries of data structures suggest that the method enables accurate spec-
ification of practical software.

1 Introduction

The rationale for precise software specifications involves several well-known argu-
ments; in particular, specifications help understand the problem before building a so-
lution, and they are necessary for verifying implementations. In the context of reusable
software components, there is another essential application of specifications: providing
client programmers with an accurate description of the API. Design by Contract tech-
niques [9] enable authors of reusable modules to equip them with specification elements
known as “contracts” (routine pre and postconditions, class invariants).

While specification methods primarily intended for formal verification typically use
notations based on mathematics, Design by Contract approaches, such as Eiffel [9],
JML [8] and Spec# [2], rely instead on an assertion language embedded in the pro-
gramming language. This adds a significant benefit: assertions can be evaluated during
execution. As a consequence, contracts have played a major role in testing, especially
for Eiffel, where an advanced testing environment, AutoTest [10], takes advantage of
executable specifications for automatic test generation. More generally, Eiffel program-
mers routinely rely on runtime contract evaluation for testing and debugging. Another
practical benefit of Design by Contract is approachability: programmers do not need to
learn a separate notation for specifications.

These advantages of contracts have traditionally come at a price: expressiveness.
The lack of an advanced mathematical notation makes it harder to express the full spec-
ification of components (see examples in Section 2). An extensive study [3] indicates
that in practice Eiffel classes contain many contracts, but they cover only part of the
intended functional properties.

Can we get all the advanced benefits of expressive formal specifications while re-
taining an executable specification language that does not introduce complex notation?
? This research has been funded in part by Hasler Stiftung, ManCom project, grant # 2146.

2 N. Polikarpova, C. A. Furia, B. Meyer

The present paper proposes a positive answer, based on the idea of models. Specifica-
tions, in this approach, are expressed in terms of the abstract model of a class, defined
through one or more model queries. Model queries return instances of model classes:
direct translations of mathematical concepts (such as sets or sequences) into the pro-
gramming language.

The idea of using model classes and model queries in contracts is not new; our pre-
vious work [13, 12] and, among others, JML [8] introduced the concepts and provided
libraries of model classes. Two main contributions of the present paper are developing
a rigorous and systematic approach to model-based specifications and confirming the
applicability of the approach through two realistic case studies.

Section 3 shows how the interface of a class defines unambiguously a notion of
abstract object space that determines the class model. Section 3 also outlines precise
guidelines for writing contracts that refer to model queries. The guidelines come with
a definition of specification completeness (with respect to the model). The definition is
formal, yet amenable to informal reasoning; it is practically useful in assessing whether
a contract is sufficiently detailed or is likely omitting some important details.

Section 4 describes two case studies applying model-based contracts to Eiffel-
Base [4], Eiffel’s standard collection of fundamental data structures, and to the devel-
opment of EiffelBase2, intended to replace EiffelBase and to contribute to the Verified
Software Repository [14]. The results show that the method is successful in deliver-
ing well-engineered components with expressive — usually complete — specifications.
Most advantages of standard Design by Contract are retained, while pushing a more ac-
curate evaluation of design choices and an impeccable definition of interfaces. The ex-
ecutability of most model classes supports the reuse of Eiffel’s AutoTest infrastructure
with more expressive contracts, which boosts the effectiveness of automated testing in
finding defects in production software.

For lack of space, the rest of the paper omits some examples and references, which
are available in an extended version [11].

2 Motivation and Overview

Design by Contract uses the same notation for expressions in the implementation and
in the specification. This restriction ultimately impedes the formalization and verifica-
tion of full functional correctness, as demonstrated below on two examples from the
EiffelBase library [4].

Lines 1–13 in Figure 1 show a portion of class LINKED LIST. Features (members)
count and index record respectively the number of elements stored in the list and the
position of the internal cursor. The routine put right inserts an element, v, to the right of
the cursor. The precondition of the routine (require) demands that the cursor not be after
the last element. The postcondition (ensure) asserts that inserting an element increments
count by one but does not change index. This is correct, but it does not capture the
essence of the insertion semantics: in particular, it doesn’t prevent the implementation
from changing elements that were in the list before.

Expressing such complex properties is impossible or exceedingly complicated with
the standard assertion language; as a result most specifications are incomplete in the

Specifying Reusable Components 3

1 class LINKED LIST [G]
2 put right (v: G)
3 −− Add ‘v’ to the right of cursor.
4 require 0≤ index≤ count
5 do . . .
6 ensure
7 count = old count + 1
8 index = old index
9 end

10

11 count: INTEGER−− Number of elements

12 index: INTEGER−− Current cursor position
13 end
14

15 class TABLE [G, K]
16 put (v: G ; k: K)
17 −− Associate value ‘v’ with key ‘k’.
18 require . . .
19 deferred
20 end
21 end

Fig. 1. Snippets from the EiffelBase classes LINKED LIST (lines 1–13) and TABLE (lines 15–21).

sense that they fail to capture precisely the semantics of routines. Specification weak-
ness hinders formal verification in two ways. First, establishing weak postconditions
is simple, but confidence in the full functional correctness of a verified routine will be
low. Second, weak contracts affect negatively verification modularity: it is impossible
to establish what a routine r achieves, if r calls another routine s whose contract is not
strong enough to document its effect within r precisely.

Weak assertions limit the potential of many other applications of Design by Con-
tract. Specifications, for example, should document the abstract semantics of operations
in deferred (abstract) classes. Incomplete contracts cannot fully do so; as a result, pro-
grammers have fewer safeguards to prevent inconsistencies in the design and fewer
chances to make deferred classes useful to clients through polymorphism.

The feature put in class TABLE (lines 16–20 in Figure 1) is an example of such
a phenomenon. It is unclear how to express the abstract semantics of put with stan-
dard contracts. In particular, the absence of a postcondition leaves it undefined what
should happen when an element is inserted with a key that is already present: should
put replace the existing element with the new one or leave the table unchanged? Indeed,
some child classes of TABLE, such as class ARRAY, implement put with a replacement
semantics, while others, such as class HASH TABLE, disallow overriding of preexisting
mappings with put. HASH TABLE even introduces another feature force that implements
the replacement semantics. This obscures the behavior of routines to clients and makes
it questionable whether put has been introduced at the right point in the inheritance
hierarchy.

Enhancing Design by Contract with Models. This paper presents an extension of
Design by Contract that addresses the aforementioned problems. The extension conser-
vatively enhances the standard approach with model classes: immutable classes repre-
senting mathematical concepts that provide for more expressive specifications. Wrap-
ping mathematical entities with classes supports richer contracts without any need to ex-
tend the Design by Contract notation, familiar to programmers. Contracts using model
classes are called model-based contracts.

Figure 2 shows an extensions of the examples in Figure 1 with model-based con-
tracts. LINKED LIST is augmented with a query sequence that returns an instance of
class MML SEQUENCE, a model class representing a mathematical sequence; the im-
plementation, omitted for brevity, builds sequence according to the actual content of the

4 N. Polikarpova, C. A. Furia, B. Meyer

1 note model: sequence, index
2 class LINKED LIST [G]
3 sequence: MML SEQUENCE [G]
4 −− Sequence of elements
5 do . . . end
6

7 index: INTEGER−− Current cursor position
8

9 put right (v: G)
10 −− Add ‘v’ to the right of cursor.
11 require 0≤ index≤ count
12 do . . .
13 ensure
14 sequence = old (sequence.front (index).
15 extended (v) + sequence.tail (index + 1))
16 index = old index
17 end
18 end

19 note model: map
20 class TABLE [G, K]
21 map: MML MAP [G, K]
22 −−Map of keys to values
23 deferred end
24

25 put (v: G ; k: K)
26 −− Associate value ‘v’ with key ‘k’.
27 require map.domain [k]
28 deferred
29 ensure
30 map = old map.replaced at (k, v)
31 end
32 end

Fig. 2. Classes LINKED LIST (left) and TABLE (right) with model-based contracts.

list. The meta-annotation note declares the two features sequence and index as the model
of the class; all contracts will be written in terms of them. In particular, the postcon-
dition of put right can precisely describe the effect of the routine: the new sequence is
the concatenation of the old sequence up to index, extended with element v, with the tail
of the old sequence starting after index. We can assert that the new postcondition — in-
cluding the clause about index — is complete with respect to the model of the class,
because it defines the effect of put right on the abstract model unambiguously. This no-
tion of completeness is a powerful guide to writing accurate specification that makes
for well-defined interfaces and verifiable classes.

The mathematical notion of a map — encapsulated by the model class MML MAP
— is a natural model for the class TABLE. Feature map cannot have an implementa-
tion yet, because TABLE is deferred and hence it is not committed to any representation
of data. Nonetheless, availability of the model makes it possible to write a complete
postcondition of put already at this abstract level, which in turn requires to commit to a
specific semantics for insertion. The example in Figure 2 chooses the replacement se-
mantics; correspondingly, all children of TABLE will have to conform to this semantics,
guaranteeing a coherent reuse of TABLE throughout the class hierarchy.

3 Foundations of Model-Based Contracts

3.1 Specifying Classes with Models

Interfaces, References, and Objects. A class C denotes a collection of objects. Ex-
pressions such as o : C define o as a reference to an object of class C; the notation
is overloaded for conciseness, so that occurrences of o can denote the object it refer-
ences or the reference itself, according to the context. Each class C defines a notion of
reference equality ≡C and of object equality $C ; both are equivalence relations. Two
references o1, o2 : C can be reference equal (written o1 ≡C o2) or object equal (written

Specifying Reusable Components 5

1 note model: sequence, index
2 class LINKED LIST [G]
3 . . .
4 item: G
5 −− Value at cursor position
6 require sequence.domain [index]
7 do . . .
8 ensure
9 Result = sequence [index]

10 end

11 duplicate (n: INTEGER): LINKED LIST [G]
12 −− A copy of at most ‘n’ elements
13 −− starting at cursor position
14 require n≥ 0
15 do . . .
16 ensure
17 Result.sequence = sequence.interval (index, index + n− 1)
18 Result.index = 0
19 end
20 end

Fig. 3. Snippets of class LINKED LIST with model-based contracts (continued from Figure 2).

o1 $C o2). Reference equality is meant to capture whether o1 and o2 are aliases for the
same memory location, whereas object equality is meant to hold for (possibly) distinct
copies of the same actual content.

The principle of information hiding prescribes that each class define an interface [9].
It is good practice to partition features into queries and commands; queries are functions
of the object state, whereas commands modify the object state but do not return any
value. IC = QC ∪MC denotes the interface of a class C partitioned in queries QC and
commands MC .1 It is convenient to partition all queries into value-bound queries and
reference-bound queries. Value-bound queries create fresh objects to return (or more
generally objects that were unknown to the client before calling the query), whereas
reference-bound queries give the client direct access, through a reference, to preexisting
objects. In other words, clients of a value-bound query should not rely on the identity
of its result. The classification in value-bound and reference-bound extends naturally to
arguments of features.

Example 1. Query item of class LINKED LIST (Figure 3) is reference-bound, as the
client receives a reference to the same memory location that was earlier inserted in
the list. Query duplicate is instead value-bound, as it returns a copy of a portion of the
list.

Abstract Object Space. The interface IC induces an equivalence relation �C over
objects of class C called abstract equality and defined as follows: o1 �C o2 holds for
o1, o2 : C iff for any applicable sequence of calls to commands m1, m2, . . . ∈MC and
a query q ∈ QC returning objects of some class T , the qualified calls o1.m1; o1.m2; · · ·
and o2.m1; o2.m2; · · · (with identical actual arguments where appropriate) drive o1 and
o2 in states such that if q is reference-bound then o1.q ≡T o2.q, and if q is value-bound
then o1.q $T o2.q. Intuitively, two objects are equivalent with respect to �C if a client
cannot distinguish them by any sequence of calls to public features. Abstract equality
defines an abstract object space: the quotient set AC = C/ �C of C by �C . As
a consequence, two objects are equivalent w.r.t. �C iff they have the same abstract
(object) state. Any concrete set that is isomorphic to AC is called a model of C.

1 Constructors need no special treatment and can be modeled as queries returning new objects.

6 N. Polikarpova, C. A. Furia, B. Meyer

Example 2. Consider a class implementing a queue. If the remove operation were not
part of the interface, no element in the queue would be accessible to clients but the
one that was enqueued first; the model of such a class would be N × G: a set of pairs
recording the number of elements and the head element of generic type G. Including
remove in the interface, as it usually is the case for queues, allows clients to access
all the elements in the order of insertion. Hence, two queues with full interfaces are
indistinguishable iff they have all the same elements in the same order, which makes
G∗ (sequences of elements) a model for queues.

Model Classes. The model of a class C is expressed as a tuple DC = D1
C ×D2

C ×
. . . × Dn

C of model classes. Model classes are immutable classes designed for spec-
ification purposes; essentially, they are wrappers of rigorously defined mathematical
entities: elementary sorts such as Booleans, integers, and object references, as well as
more complex structures such as sets, bags, relations, maps, and sequences. The Mathe-
matical Model Library (MML) [12] provides a variety of such model classes, equipped
with features that correspond to common operations on the mathematical structures
they represent, including first-order quantification. For example, class MML SET mod-
els sets of elements of homogeneous type; it includes features such as membership test
and quantification.

Model Queries. Every class C provides a collection of public model queries
SC = s1

C , s2
C , . . . , sn

C , one for each component model class in DC . Each model query
si

C returns an instance of the corresponding model class Di
C that represents the cur-

rent value of the i-th component of the model. Clauses in the class invariant can con-
strain the values of the model queries to match precisely the abstract object space.
Consider, for example, the model of LINKED LIST (Figure 2): model query index:
INTEGER returning the cursor position should be constrained by an invariant clause
0 ≤ index ≤ sequence.count + 1. A meta-annotation note model: s1

C , s2
C , . . . lists all model

queries of the class.
It is likely that some model queries (such as index in the example above) are already

used in the implementation before models are added explicitly; additional model queries
(such as sequence) return the remaining components of the model for specification pur-
poses. Our approach prefers to implement such additional model queries as functions
rather than attributes. This choice facilitates a purely descriptive usage of references to
model queries in specifications. In other words, instead of augmenting routine bodies
with bookkeeping instructions that update model attributes, routine postconditions are
extended with clauses that describe the new value returned by model queries in terms of
the old one. This has the advantage of enforcing a cleaner division between implemen-
tation and specification, while better modularizing the latter at routine level (properties
of model attributes are typically gathered in the class invariant).

Model-Based Contracts. Let C be a class equipped with model queries and let its
interface IC be partitioned into queries QC and commands MC . QC now includes the
model queries SC ⊆ QC together with other queries RC = QC \ SC . The rest of the
section contains guidelines to writing model-based contracts for commands in MC and
queries in RC .

The precondition of a feature is a constraint on the abstract states of its value-bound
arguments and, possibly, on the actual references to its reference-bound arguments.

Specifying Reusable Components 7

1 note model: bag
2 class COLLECTION [G]
3 bag: MML BAG [G]
4

5 is empty: BOOLEAN
6 ensure Result = bag.is empty end
7

8 wipe out
9 ensure bag.is empty end

10

11 put (v: G)
12 ensure bag = old bag.extended (v) end
13 end

14 note model: sequence
15 class DISPENSER [G]
16 inherit COLLECTION [G]
17

18 sequence: MML SEQUENCE [G]
19

20 invariant
21 bag.domain = sequence.range
22 bag.domain.for all (agent (x: G): BOOLEAN
23 bag [x] = sequence.occurrences (x))
24 end

Fig. 4. Snippets of classes COLLECTION (left) and DISPENSER (right) with model-based contracts.

The target object, in particular, can be considered an implicit value-bound argument.
For example, the precondition map.domain [k] of feature put in class TABLE (Figure 2),
refers to the abstract state of the target object, given by the model query map, and to its
actual reference-bound argument k.

Postconditions should refer to abstract states only through model queries. This em-
phasizes the components of the abstract state that a feature modifies or relies upon,
which in turn facilitates understanding and reasoning on the semantics of a feature.

The postcondition of a command defines a relation between the prestate and the
poststate of its arguments and the target object. More precisely, the postcondition men-
tions only abstract values of its value-bound arguments and possibly the actual ref-
erences to its reference-bound arguments; the target object is considered value-bound
both in the prestate and in the poststate.

It is common that a command only affects a few components of the abstract state
and leaves all the others unchanged. Accordingly, the closed world assumption is con-
venient: the value of any model query s ∈ SC that is not mentioned in the postcon-
dition is assumed not to be modified by the command, as if s = old s were a clause of
the postcondition. When the closed world assumption is wrong, explicit clauses in the
postcondition should establish the correct semantics.

The postcondition of a query defines the result as a function of its arguments and
the target object (with the usual discipline of mentioning only abstract values of value-
bound arguments and target object and possibly actual references to reference-bound ar-
guments). Value-bound queries define the abstract state of the result, whereas reference-
bound queries describe an actual reference to it. For example, compare the postcondi-
tion of the reference-bound query item from class LINKED LIST (Figure 3) with the
postcondition of the value-bound query duplicate in the same class.

A clear-cut separation between queries and commands assumes abstract purity for
all queries: executing a query leaves the abstract state of all its arguments and of the
target object unchanged.

Inheritance and Model-Based Contracts. A class C ′ that inherits from a parent
class C may or may not re-use C’s model queries to represent its own abstract state.
For every model query sC ∈ SC of the parent class that is not among the child’s model

8 N. Polikarpova, C. A. Furia, B. Meyer

queries SC′ , C ′ should provide a linking invariant: a formula that defines the value
returned by sC in terms of the values returned by the model queries SC′ of the inheriting
class. This guarantees that the new model is indeed a specialization of the previous
model, in accordance with the notion of sub-typing inheritance.

A properly defined linking invariant ensures that every inherited feature has a defi-
nite semantics in terms of the new model. However, the new semantics may be weaker;
that is, incompleteness is introduced (see Section 3.2).

Example 3. Consider class COLLECTION in Figure 4, a generic container of elements
whose model is a bag. Class DISPENSER inherits from COLLECTION and specializes
it by introducing a notion of insertion order; correspondingly, its model is a sequence.
The linking invariant of DISPENSER defines the value of the inherited model query bag
in terms of the new model query sequence and ensures that the semantics of features
is empty and wipe out is unambiguously defined also in DISPENSER. At the same time,
the model-based contract of command put in COLLECTION and the linking invariant are
insufficient to characterize the effects of put in DISPENSER, as the position within the
sequence where the new element is inserted is irrelevant for the bag.

3.2 Completeness of Contracts

The notion of completeness for the specification of a class gives an indication of how
accurate the contracts are with respect to the model of that class. An incomplete contract
does not fully capture the effects of a feature, suggesting that the contract may be more
detailed or, less commonly, that the model of the class — and hence its interface — is
not abstract enough. A dual notion of soundness is definable along the same lines; for
brevity, this section only presents the more interesting notion of completeness.

Completeness of a Model-Based Contract. The specification of a feature f of class
C denotes two predicates pref and postf . pref represents the set of objects of class
C that satisfy the precondition 2. If f is a command, postf has signature C × C and
denotes the pairs of target objects before and after executing the command. If f is a
query with return type T , postf has signature C × T ; it denotes the pairs of target
and returned objects for value-bound queries; and the pairs of target object and returned
reference for reference-bound queries. In both cases postf does not refer to the target
object after executing the query because all queries are assumed to be abstractly pure.

– The postcondition of a command m is complete iff: for every o, o′1, o
′
2 : C such that

prem(o), postm(o, o′1), and postm(o, o′2) it is o′1 �C o′2.
– The postcondition of a value-bound query q is complete iff: for every o : C and

t1, t2 : T such that preq(o), postq(o, t1), and postq(o, t2) it is t1 �T t2.
– The postcondition of a reference-bound query q is complete iff: for every o : C and

t1, t2 : T such that preq(o), postq(o, t1), and postq(o, t2) it is t1 ≡T t2.

2 For simplicity, the following definitions do not mention feature arguments; introducing them
is, however, straightforward.

Specifying Reusable Components 9

A postcondition is complete if all the pairs of objects that satisfy it are equivalent
(according to the right model of equivalence). This means that the complete postcondi-
tion of a command defines its effect as a mathematical function (as apposed to a relation)
from AC to AC . Similarly, the complete postcondition of a query defines the result as
a function from AC to AT if the query is value-bound and to the set of references if the
query is reference-bound.

Example 4. The contracts of features is empty, wipe out, and put in class COLLECTION
(Figure 4) are complete; the postcondition of put, in particular, is complete as it defines
the new value of bag uniquely. In the child class DISPENSER, however, the inherited
postcondition of put becomes incomplete: the linking invariant does not uniquely define
sequence from bag, hence inequivalent sequences (for example, one with v inserted at
the beginning and another one with v at the end) satisfy the postcondition.

Completeness in Practice. As the previous example suggests, reasoning informally —
but precisely — about completeness of model-based contracts is often straightforward
and intuitive, especially if the guidelines of Section 3.1 have been followed. Complete-
ness captures the uniqueness of the (abstract) state described by a postcondition, hence
postconditions in the form Result = exp and similar, where exp is a side-effect free ex-
pression, are painless to check for completeness.

Example 5. Consider the following example, from class ARRAY whose model is a map.

1 fill (v: G ; l, u: INTEGER) −− Put ‘v’ at all positions in [‘l’, ‘u’].
2 require map.domain [l] and map.domain [u]
3 ensure map.domain = old map.domain
4 (map | {MML INT SET} [[l, u]]).is constant (v)
5 (map | (map.domain − {MML INT SET} [[l, u]])) =
6 old (map | (map.domain − {MML INT SET} [[l, u]]))
7 end

The following reasoning shows that the postcondition is complete: a map is uniquely
defined by its domain and by a value for every key in the domain. The first clause of
the postcondition (line 3) defines the domain completely. Then, let k be any key in
the domain. If k ∈ [l, u] then the second clause (line 4) defines map (k)= v; otherwise
k 6∈ [l, u], and the third clause (lines 5–6) postulates map(k) unchanged.

How useful is completeness in practice? As a norm, completeness is a valuable
yardstick to evaluate whether the contracts are sufficiently detailed. This is not enough
to guarantee that the contracts are correct — and meet the original requirements — but
the yardstick is serviceable methodologically to focus on what a routine really achieves
and how that is related to the abstract model. As a result, inconsistencies in specifica-
tions are less likely to occur, and the impossibility of systematically writing complete
contracts is a strong indication that the model is incorrect, or the implementation is
faulty. Either way, a warning is available before attempting a correctness proof.

While complete postconditions should be the norm, there are recurring cases where
incomplete postconditions are unavoidable or even preferable. Two major sources of
benign incompleteness are:

10 N. Polikarpova, C. A. Furia, B. Meyer

1 note mapped to: ”Sequence G”
2 class MML SEQUENCE [G]
3 extended (x: G): MML SEQUENCE[G]
4 −− Current sequence extended with ‘x’ at the end
5 note mapped to: ”Sequence.extended(Current, x)”
6 do . . . end
7 . . .
8 end

9 type Sequence T = [int] T ;
10 function Sequence.extended 〈T〉 (Sequence T, T)
11 returns (Sequence T);
12 axiom (∀ 〈T〉 s: Sequence T, x:T •
13 Sequence.extended(s, x) =s[Sequence.count(s)+1 := x]) ;
14 axiom (∀ 〈T〉 s: Sequence T, x: T •
15 Sequence.count(Sequence.extended(s, x)) =
16 Sequence.count(s)+1);
17 . . .

Fig. 5. Snippets from class MML SEQUENCE (left) and the corresponding Boogie theory (right).

– inherently nondeterministic or stochastic specifications and
– usage of inheritance to factor out common parts of (complete) specifications.

As an example of the latter consider class DISPENSER in Figure 4, a common parent
of STACK and QUEUE. Based on the interface, its model has to be isomorphic to a
sequence, but the postcondition of feature put cannot define the exact position of the
new element in that sequence: a choice compatible with the semantics of STACK will
be incompatible with QUEUE and vice versa.

In such cases, reasoning about completeness is still likely to improve the under-
standing of the classes and to question constructively the choices made for interfaces
and inheritance hierarchies.

3.3 Verification: Proofs and Runtime Checking

This subsection outlines the main ideas behind using model-based contracts for verifi-
cation with formal correctness proofs and with runtime checking for automated testing.
Its goal is not to detail any particular proof or testing technique, but rather to sketch how
to express the semantics of model-based contracts within standard verification frame-
works.

Proofs. The axiomatic treatment of model classes [12] is quite natural: the semantics
of a model class is defined directly in terms of a theory expressed in the underlying
proof language, rather than with “special” contracts. The mapping often has the advan-
tage of reusing theories that are optimized for effective usage with the proof engine
of choice. In addition, the immutability (and value semantics) of model classes makes
them very similar to mathematical structures and facilitates a straightforward translation
into mathematical theories.

We are currently developing an accurate mapping of model classes and model-
based contracts into Boogie [2]. First, the mapping introduces axiomatic definitions of
MML model classes as Boogie theories; annotations in the form note mapped to connect
MML classes to the corresponding Boogie types (see Figure 5 for an example). Then,
each model query in a class with model-based contracts maps to a Boogie function
that references a representation of the heap. For example, the model query sequence in
LINKED LIST becomes function LinkedList . sequence(HeapType, ref) returns (Sequence
ref). Axioms that connect the value returned by the function to the attributes of the

Specifying Reusable Components 11

translated class are generated from the postconditions of model queries. The issue of
providing such postconditions (abstraction functions) is outside the scope of current
paper as here we are only concerned with interface specifications. Finally, model-based
contracts are translated into Boogie formulas according to the mapped to annotations in
model classes.

Runtime Checking and Testing. Most model classes represent finite mathematical
objects, such as sets of finite cardinality, sequences of finite length, and so on. All
these classes can have an implementation of their operations which is executable in
finite time; this supports the runtime checking of assertions that reference these model
classes.

Testing techniques can leverage runtime checkable contracts to fully automate the
testing process: generate objects by randomly calling constructors and commands;
check the precondition of a routine on the generated objects to filter out valid inputs;
execute the routine body on a valid input and check the validity of the postcondition on
the result; any postcondition violation on a valid input is a fault in the routine.

This approach to contract-based testing has proved very effective at uncovering
plenty of bugs in production code [10], hence it is an excellent “lightweight” pre-
cursor to correctness proofs. Contract-based testing, however, is only as good as the
contracts are; the weak postconditions of traditional Design by Contract, in particular,
leave many real faults undetected. Runtime checkable model-based contracts can help
in this respect and boost the effectiveness of contract-based testing by providing more
expressive specifications. Section 4 describes some testing experiments that support this
claim.

4 Model-Based Contracts at Work

This section describes experiments in developing model-based contracts for real object-
oriented software written in Eiffel. The experiments target two non-trivial case studies
based on data-structure libraries (described in Section 4.1) with the goal of demonstrat-
ing that deploying model-based contracts is feasible, practical, and useful. Section 4.2
discusses the successes and limitations highlighted by the experiments.

4.1 Case Studies

The first case study targeted EiffelBase [4], a library of general-purpose data struc-
tures widely used in Eiffel programs; EiffelBase is representative of mature Eiffel
code exploiting extensively traditional Design by Contract. We selected 7 classes from
EiffelBase, for a total of 304 features (254 of them are public) over more that 5700
lines of code. The 7 classes include 3 widely used container data structures (ARRAY,
ARRAYED LIST, and LINKED LIST) and 4 auxiliary classes. Our experiments system-
atically introduced models and conservatively augmented the contracts of all public
features in these 7 classes with model-based specifications.

The second case study developed EiffelBase2, a new general-purpose data struc-
ture library. The design of EiffelBase2 is similar to that of its precursor EiffelBase;

12 N. Polikarpova, C. A. Furia, B. Meyer

EiffelBase2, however, has been developed from the start with expressive model-based
specifications and with the ultimate goal of proving its full functional correctness —
backward compatibility is not one of its primary aims. This implies that EiffelBase2
rediscusses and solves any deficiency and inconsistency in the design of EiffelBase that
impedes achieving full functional correctness or hinders the full-fledged application of
formal techniques. EiffelBase2 provides containers such as arrays, lists, sets, tables,
stacks, queues, and binary trees; iterators to traverse these containers; and comparator
objects to parametrize containers with respect to arbitrary equivalence and order rela-
tions on their elements. The current version of EiffelBase2 includes 46 classes with 460
features (403 of them are public) totaling about 5800 lines of code; these figures make
EiffelBase2 a library of substantial size with realistic functionalities. The latest version
of EiffelBase2 is available at http://eiffelbase2.origo.ethz.ch.

4.2 Results and Discussion

How Many Model Classes? Model-based contracts for EiffelBase used model classes
for Booleans, integers, references, (finite) sets, relations, and sequences. EiffelBase2
additionally required (finite) maps, bags, and infinite maps and relations for special
purposes (such as modeling comparator objects). This suggests that a moderate number
of well-understood mathematical models suffices to specify a general-purpose library
of data structures.

Determining to what extent this is generalizable to software other than libraries
of general-purpose data structures is an open question which belongs to future work.
Some problem domains may indeed require domain-specific model classes (e.g., real-
valued functions, stochastic variables, finite-state machines), and application software
that interacts with a complex environment may be less prone to accurate documentation
with models. However, even if writing model-based contracts for such systems proved
exceedingly complex, some formal model is required if the goal is formal verification.
In this sense, focusing model-based contracts on library software is likely to have a
great payoff through extensive reuse: the many clients of the reusable components can
rely on expressive contracts not only as detailed documentation but also to express their
own contracts and interfaces by combining a limited set of well-understood, highly
dependable components.

Another interesting remark is that the correspondence between the limited number
of model classes needed in our experiments and the classes using these model classes
is far from trivial: reusable data structures are often more complex than the mathemat-
ical structures they implement. Consider, for example, class SET: EiffelBase2 sets are
parameterized with respect to an equivalence relation, hence the model of SET is a pair
of a mathematical set and a relation; correspondingly, the postcondition of feature has
relies on the model by defining Result = not (set ∗ relation.image of (v)).is empty. Another
significant example is BINARY TREE: instead of introducing a new model class for trees
or graphs, BINARY TREE concisely represents a tree as a map of paths to values, where
paths are encoded as sequences of Booleans.

How Many Complete Contracts? Reasoning informally, but rigorously, about the
completeness of postconditions — along the lines of Section 3.2 — proved to be

Specifying Reusable Components 13

straightforward in our experiments. Only 18 (7%) out of 254 public features in Eiffel-
Base with model-based contracts and 17 (4%) out of 403 public features in EiffelBase2
have incomplete postconditions. All of them are examples of “intrinsic” incompleteness
mentioned at the end of Section 3.2; EiffelBase2, in particular, was designed trying to
minimize the number of features with intrinsically incomplete postconditions.

These results indicate that model-based contracts make it feasible to write system-
atically complete contracts; in most cases this was even relatively straightforward to
achieve. Unsurprisingly, using model-based contracts dramatically increases the com-
pleteness of contracts in comparison with standard Design by Contract. For example,
42 (66%) out of 64 public features of class LIST in the original version of EiffelBase
(without model-based contracts) have incomplete postconditions, including 20 features
(31%) without any postcondition.

Contract-Based Testing with Model-Based Contracts. The standard EiffelBase li-
brary has been in use for many years and has been extensively tested, both manually
and automatically. Are the expressive contracts based on models enough to boost au-
tomated testing finding new, subtle bugs? While preliminary, our experiments seem to
answer in the affirmative. Applying the AutoTest testing framework [10] on EiffelBase
with model-based contracts for 30 minutes discovered 3 faults; none of them would
have been detectable with standard contracts. Running these tests did not require any
modification to AutoTest or model classes, because the latter include an executable im-
plementation.

The 3 faults reveal subtle mistakes that have gone undetected so far. For exam-
ple, consider an implementation of routine merge right in LINKED LIST (not shown for
brevity); the routine merges a linked list other into the current list at the cursor position
by modifying references in the chain of elements. The routine deals in a special way
with the case when the cursor in the current list is before the first element; in this case
the first element reference is attached directly to the first element of the other list. This is
not sufficient, as the routine should also link the end of the other list to the front of the
current one, otherwise all elements in the current list become inaccessible. The original
contract does not detect this fault; in particular the postcondition clause count = old count
+ old other.count is satisfied as the attribute count is updated correctly, but its value does
not reflect the actual content of the new list. On the contrary, the clause sequence = old
(sequence.front (index)+ other.sequence + sequence.tail (index + 1)) of the complete model-
based postcondition specifies the desired configuration of the list after executing the
command, which leads to easily detecting the error.

5 Related Work

Hoare pioneered the usage of mathematical models to define and prove correctness of
data type implementations [7]. This idea spawned much related work; the following
paragraphs shortly summarize a few significant representatives, with particular focus
on the approaches that are closest to the one in the present paper.

Algebraic Notations. Algebraic notations formalize classes in terms of (uninter-
preted) functions and axioms that describe the mutual relationship among the functions.

14 N. Polikarpova, C. A. Furia, B. Meyer

The most influential work in algebraic specifications is arguably Guttag and Horning’s
[6] and Gougen et al.’s [5], which gave a foundation to much derivative work. The
former also introduced a notion of completeness. Algebraic notations emphasize the
calculational aspect of a specification. This makes them very effective notations to for-
malize and verify data types at a high level of abstraction, but does not integrate as well
with real programming languages to document implementations in the form of pre and
postconditions.

Descriptive Notations. Descriptive notations formalize classes in terms of simpler
types — ultimately grounded in simple mathematical models such as sets and relations
— and operations defined as input/output relations. Descriptive notations can be used
in isolation to build language-independent models, or to give a formal semantics to
concrete implementations. Languages and methods such as B [1] pursue the former
approach; other specification languages and tools such as Jahob [15] are examples of
the latter approach. Descriptive notations are apt to develop correct-by-construction
designs and to accurately document implementations, often with the goal of verifying
functional correctness; using them in contracts, however, introduces a new notation on
top of the programming language, which requires additional effort and expertise from
the programmer. This weakness is shared by algebraic notations alike.

Design by Contract Approaches. Design by Contract [9] introduces formal spec-
ifications in programs using the same notation for implementation and annotations, in
an attempt to make writing the contracts as congenial as possible to programmers. The
Eiffel programming language epitomizes the Design by Contract methodology, together
with many similar solutions for other languages such as Spec# [2] for C#. As we
discussed also in the rest of the paper, using a subset of the programming language
in annotations often does not provide enough expressive power to formalize (easily)
“complete” functional correctness.

Model-Based Annotation Languages. The Java Modeling Language (JML) [8] is
likely the approach that shares the most similarities with ours: JML annotations are
based on a subset of the Java programming language and the JML framework provides
a library of model classes mapping mathematical concepts. While sharing a common
outlook, the approaches in JML and in the present paper differ in several details. At the
technical level, JML prefers model variables while our method leverages model queries;
each approach has its merits, but model queries have some advantages (discussed in
Section 3.1). A notational difference is that JML extends Java’s expressions with no-
tations for logic operators, while our method reuses Eiffel notation such as agents to
express quantifications and other aspects. In terms of scope, our approach strives to
be more methodological and systematic, with the primary target of fully contracting
complete libraries of data structures, while keeping the additional effort required to the
programmer to a minimum. The present paper extends in scope the previous work of
ours on model-based contracts [13, 12], and systematically applies the results to the
re-design and re-implementation of a rich library of data structures. The experience
gained in this practical application also prompted us to refine and rethink aspects of the
previous approach, as we discussed at length in the rest of the paper.

Specifying Reusable Components 15

6 Conclusions and Future Work

The present work introduces a method to write strong interface specifications for
reusable object-oriented components. The method is soundly based on the concept of
model and features a notion of specification completeness which is formal, yet easy to
reason about. The application of the method to the development of a library of general-
purpose data structures demonstrates its practicality and its many uses in analysis, de-
sign, and verification.

Future work includes short- and long-term goals. Among the former, we plan to
apply model-based contracts to more real-life examples, including application soft-
ware from diverse domains. A user study will try to confirm the preliminary evidence
that model-based contracts are easy to write, understand, and reason about informally.
Longer term work envisions integrating model-based contracts within a comprehensive
verification environment.

Acknowledgements to Marco Piccioni, Stephan van Staden, and Scott West for com-
ments on a draft of this paper.

References

1. J.-R. Abrial. The B-book. Cambridge University Press, 1996.
2. M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M. Leino, W. Schulte, and H. Venter.

The Spec# programming system: Challenges and directions. In VSTTE 2005, volume 4171
of LNCS, pages 144–152. Springer, 2008.

3. P. Chalin. Are practitioners writing contracts? In Rigorous Development of Complex Fault-
Tolerant Systems, pages 100–113, 2006.

4. http://freeelks.svn.sourceforge.net.
5. J. A. Gougen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the specifica-

tion, correctness, and implementation of abstract data types. In Current Trends in Program-
ming Methodology, pages 80–149. Prentice Hall, 1978.

6. J. V. Guttag and J. J. Horning. The algebraic specification of abstract data types. Acta Inf.,
10:27–52, 1978.

7. C. A. R. Hoare. Proof of correctness of data representations. Acta Inf., 1:271–281, 1972.
8. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design of JML

accommodates both runtime assertion checking and formal verification. Sci. Comput. Pro-
gram., 55(1-3):185–208, 2005.

9. B. Meyer. Object-oriented software construction. Prentice Hall, 2nd edition, 1997.
10. B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf. Programs that test themselves.

Computer, 42(9):46–55, 2009.
11. N. Polikarpova, C. A. Furia, and B. Meyer. Specifying reusable components. Extended

version available at http://arxiv.org/abs/1003.5777.
12. B. Schoeller. Making classes provable through contracts, models and frames. PhD thesis,

ETH Zurich, 2007.
13. B. Schoeller, T. Widmer, and B. Meyer. Making specifications complete through models. In

Architecting Systems with Trustworthy Components, pages 48–70, 2004.
14. http://vsr.sourceforge.net/.
15. K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of linked data structures.

In PLDI 2008, pages 349–361. ACM, 2008.

