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Abstract. Calculational proofs—proofs by stepwise formula manipulation—are
praised for their rigor, readability, and elegance. It seems desirable to reuse this
style, often employed on paper, in the context of mechanized reasoning, and in
particular, program verification.
This work leverages the power of SMT solvers to machine-check calculational
proofs at the level of detail they are usually written by hand. It builds the support
for calculations into the programming language and auto-active program verifier
Dafny. The paper demonstrates that calculations integrate smoothly with other
language constructs, producing concise and readable proofs in a wide range of
problem domains: from mathematical theorems to correctness of imperative pro-
grams. The examples show that calculational proofs in Dafny compare favorably,
in terms of readability and conciseness, with arguments written in other styles
and proof languages.

0 Introduction

There is no automatic way to decide, for any given statement, if it holds or not. Both
in mathematics and in program verification, people construct proofs to convince them-
selves and others of the validity of statements, as well as to gain a better understanding
of those statements and why they hold. Naturally, people strive to come up with a good
notation for writing proofs: one that is easy to read and understand, and, if possible,
guards against mistakes.

One such notation is the calculational method [3], whereby a theorem is established
by a chain of formulas, each transformed in some way into the next. The relationship
between successive formulas (for example, equality or implication) is notated, and so
is a hint that justifies the transformation (see Fig. 3 in Sec. 1.1 for an example). The
calculational method encourages making the transformation steps small in order to help
the author avoid mistakes and to convince readers by fully explaining what is going on.

Even though calculational proofs are written in a strict format, they still tend to be
informal. Manolios and Moore [23] discovered several errors in calculations written by
Dijkstra (one of the biggest proponents of the style) and posed a challenge to mecha-
nize calculational proofs, asking if “any attempt to render calculational proofs suitable
for mechanical checking will result in ugly, hard to comprehend proofs” and if “the
mechanized proof checker [will] necessarily be hard to learn and difficult to use”.
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Indeed, constructing proofs within interactive proof assistants (like Coq [7], Is-
abelle/HOL [24], or PVS [25]) has a reputation of being a demanding task0. The pur-
pose of these tools is to give the user maximum control over the proof process, which is
why they favor predictability over automation. Interaction with such an assistant con-
sists of issuing low-level commands, called tactics, that guide the prover through the
maze of proof states. This mode of interaction is biased towards expert users with a
good knowledge of the tool’s inner workings.

In contrast, auto-active program verifiers [22], like Dafny [20], VCC [11], or Veri-
Fast [16], take a different approach to mechanised reasoning: they provide automation
by default, supported by an underlying SMT solver. All the interaction with such a ver-
ifier happens at the level of the programming language, which has the advantage of
being familiar to the programmer. So far, these tools have been used mostly for verify-
ing functional correctness of programs, but their domain is gradually expanding towards
general mathematical proofs.

It would be wonderful if we could just take a pen-and-paper calculational proof
and get it machine-checked completely automatically. In this paper, we add support
for proof calculations to the programming language and auto-active program verifier
Dafny [20, 19]. The extension, which we call program-oriented calculations (poC), is
able to verify calculational proofs written with the same level of detail and the same
degree of elegance as they would be on paper, thereby addressing the challenge of
Manolios and Moore.

The main contributions of the present work are as follows. We integrate proof cal-
culations as a statement in a programming language. The supporting syntax uses, for
structuring proofs, constructs already familiar to programmers (such as conditionals
and method calls). We develop tool support for machine-checking the proofs. Thanks
to the underlying SMT solver, the resulting tool provides a high degree of automation.
We provide a sound encoding of the new statement that tries to reduce the overhead of
specifying that formulas are well defined (in the presence of partial expressions). We
give a number of examples that use the proof format and provide a comparison with
proof structuring in existing tools. And by adding this streamlined proof support to an
auto-active program verifier, we are bringing SMT-based tools closer to what previously
has been territory exclusive to interactive proof assistants.

1 Background and Motivation

This section reviews existing features for writing proofs in auto-active program verifiers
and then argues in favor of adding support for calculations. While we use Dafny in our
examples, other auto-active verifiers have a similar range of features.

1.0 Proofs in an Auto-Active Program Verifier

Automatic verification attempts may fail for several reasons. One reason is that the
program correctness may depend on mathematical properties that the program verifier

0 A popular quote from an old version of the PVS website states that it takes six months to
become a moderately skilled user [28].
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datatype List〈T〉 = Nil | Cons(T, List〈T〉);

function length(xs: List): nat {

match xs

case Nil ⇒ 0

case Cons(x, xrest) ⇒ 1 + length(xrest)

}

Fig. 0. Definition of a generic datatype List〈T〉 and a function that returns the length of a list. We
omit the type parameter of List where Dafny can infer it automatically, as for function length

here.

is unable to figure out by itself. In such cases, the user of an auto-active verifier may
augment the program text with lemmas, which will give the verifier clues about how to
proceed.

The simplest form of a lemma is an assert statement. It directs the verifier’s focus
by adding a proof obligation that subsequently can be used as an assumption. As an
example, consider an algebraic List datatype with a length function in Fig. 0. Suppose
we want to prove that there exists a list of length one:

∃ xs • length(xs) = 1

The proof of such an existential property requires supplying the witness manually, and
we can do so by inserting the following assert statement:

assert length(Cons(496, Nil)) = 1;

In more complex cases, an assert statement is not enough, perhaps because we
want to reuse a multiple-step proof, or, in case of an inductive argument, because we
want to apply the same proof recursively. For example, suppose we want to generalize
our previous statement and assert that there exists a list of any non-negative length:

∀ n • 0 ≤ n =⇒ ∃ xs • length(xs) = n

Since this property may be useful in several places, we would like to state and prove it
once as a theorem and later be able to refer to it by name.

To state a theorem in the programming language, we declare a method (see Fig. 1)
whose postcondition is the conclusion of the theorem, whose precondition is the as-
sumption made by the theorem, and whose in-parameters show how the theorem can be
parameterized. Since we intend this method only for the program verifier, we declare it
to be ghost, which means that the compiler will not generate any code for it.

To use a lemma stated in this way, the program then simply calls the method, upon
return of which the caller gets to assume the postcondition (as usual in program verifi-
cation). Given a method declaration, the program verifier will, as usual, set out to prove
that the method body is terminating and that it terminates with the given postcondition.
Thus, the method body essentially gives the proof of the theorem.

In Fig. 1, the method body introduces two cases, n = 0 and n 6= 0. In the first
case, the verifier can automatically come up with the witness using the definition of
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ghost method LemmaLength(n: int)
requires n ≥ 0;

ensures ∃ xs • length(xs) = n;

{

if (n = 0) {

// trivial

} else {

LemmaLength(n - 1); // invoke induction hypothesis

var xs :| length(xs) = n - 1;

assert length(Cons(496, xs)) = n;

} }

Fig. 1. The ghost method states a theorem and its body gives the proof. More precisely, the body
of the method provides some code that convinces the theorem prover that all control-flow paths
terminate in a state where the postcondition holds.

length, and therefore no further code needs to be given in the then branch. The else
branch performs a method call, so the verifier checks that the callee’s precondition
holds. Furthermore, since the call is recursive, the verifier needs to check termination,
which it does (in the standard program-verification way) by checking that some variant
function decreases in some well-founded ordering. In this example, the default variant
function—the argument n—is good enough, but in general it may need to be supplied
by the user. Upon return from the call, the verifier assumes the postcondition of the call:
∃ xs • length(xs) = n - 1. With this fact at hand, we use the Dafny “ :| ” (“assign
such that”) operator to save an arbitrary list of length n - 1 in a local variable xs. From
that list, we construct one of length n, whereby convincing the verifier that the enclos-
ing postcondition holds. The body of method LemmaLength is essentially a proof by
induction, where the recursive call denotes the appeal to the induction hypothesis.

The example above illustrates how auto-active program verifiers exploit the analogy
between programs and proofs to reuse programming constructs for proof structuring: if
(and match/case) statements for case splits, procedures for stating and reusing lemmas,
recursion for inductive arguments. This spares programmers the effort of learning a new
language and, more importantly, a new paradigm.

To convince the verifier of some non-trivial fact, one may need to appeal to multiple
lemmas (either assert statements or method calls), and the discovery of which lemmas
are useful is non-trivial. One way to discover what is needed is to start writing a detailed
proof, proceeding in small steps and trying to figure out in which step the verifier gets
stuck. It is for writing such detailed proofs that poC provides helpful features. Once
a detailed proof has been constructed, one often finds that the tool would have been
satisfied with some smaller set of lemmas; the user then has the choice of either deleting
the steps that are not needed or keeping the proof steps, which may facilitate better
readability and maintainability.
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function reverse(xs: List): List {

match xs

case Nil ⇒ Nil

case Cons(x, xrest) ⇒ append(reverse(xrest), Cons(x, Nil))

}

function append(xs: List, ys: List): List {

match xs

case Nil ⇒ ys

case Cons(x, xrest) ⇒ Cons(x, append(xrest, ys))

}

Fig. 2. Definition of a function reverse that reverses the order of elements in a list and its helper
function append that concatenates two lists.

1.1 Calculational Proofs

Having reviewed how manual proofs are supplied in an auto-active program verifier,
let us now turn our attention to some properties that require a somewhat larger manual
effort.

As a motivating example, we consider proving that reversing a list is an involution:

∀ xs • reverse(reverse(xs)) = xs

There are systems for automatic induction that can prove this property automatically
(e.g. [18, 10]), but it requires some manual effort in Dafny. The relevant definitions are
found in Fig. 2, along with the definition of List from Fig. 0.

Here is how one would prove this fact by hand. Because the definition of reverse
is inductive, it is natural that the proof should proceed by induction on xs. The base
case reverse(reserve(Nil)) = Nil holds trivially by definition of reverse. For the
step case, we can write a little calculation shown in Fig. 3. This calculation consists
of five steps, each stating an equality between two consecutive lines and accompanied
by a hint, which explains why the equality holds. Typically, hints reference definitions
or well-known properties of used operations, invoke auxiliary lemmas, or appeal to the
induction hypothesis. The conclusion of this calculation is reverse(reverse(x : xs)) =
x : xs (the first line is equal to the last line), which holds due to transitivity of equality.

In Fig. 4, we show the same proof written in Dafny, in a “classical” style with each
step represented by an assert statement. This proof is harder to read than the one in
Fig. 3: it is less structured and more verbose (each inner line appears twice). In the next
section, we show how poC improves the situation.

2 Calculations in Dafny

Using poC, we can write the proof of LemmaReverseTwice as shown in Fig. 5. The cal-
culation is introduced using the calc statement, which adheres to the following gram-
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reverse(reverse(x :: xs))
= { def. reverse }

reverse(reverse(xs)++[x ])
= { lemma ∀xs, ys • reverse(xs ++ ys) = reverse(ys)++ reverse(xs) }

reverse([x ])++ reverse(reverse(xs))
= { induction hypothesis }

reverse([x ])++ xs
= { def. reverse , append }

[x ] ++ xs
= { def. append twice }

x :: xs

Fig. 3. Hand proof of reverse(reverse(x :: xs)) = x :: xs written in calculational style.
The proof uses Coq-style notation with x :: xs for Cons(x, xs), [x ] for Cons(x, Nil), and
xs ++ ys for append(xs, xy).

mar:

CalcStatement ::= “calc” Op? “{” CalcBody? “}”
CalcBody ::= Line (Op? Hint Line)∗

Line ::= Expression “;”
Hint ::= (BlockStatement | CalcStatement)∗

Op ::= “=” | “≤” | “<” | “≥” | “>” | “=⇒” | “⇐=” | “⇐⇒” | “6=”

Non-syntactic rules further restrict hints to only ghost and side-effect free statements, as
well as impose a constraint that only chain-compatible operators can be used together
in a calculation.

The notion of chain-compatibility is quite intuitive for the operators supported by
poC; for example, it is clear that<and>cannot be used within the same calculation, as
there would be no relation to conclude between the first and the last line. We treat this
issue more formally in Sec. 3. Note that we allow a single occurrence of the intransitive
operator 6= to appear in a chain of equalities (that is, 6= is chain-compatible with equality
but not with any other operator, including itself).

Calculations with fewer than two lines are allowed, but have no effect. If a step
operator is omitted, it defaults to the calculation-wide operator, defined after the calc
keyword. If that operator if omitted, it defaults to equality.

In the following, we review more features and usage patterns of poC. Most of them
we get for free, simply reusing language constructs already present in Dafny. This indi-
cates that calculations integrate well with the rest of the language.

2.0 Contextual Information

It is often desirable to embed a calculation in some context (for example, when proving
an implication, the context of the antecedent). Dijkstra gives an example [13] of how
choosing an appropriate context can significantly simplify a calculational proof.
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ghost method LemmaReverseTwice(xs: List)

ensures reverse(reverse(xs)) = xs;

{

match xs {

case Nil ⇒
case Cons(x, xrest) ⇒
// by def. reverse, we have:
assert reverse(reverse(xs))

= reverse(append(reverse(xrest), Cons(x, Nil)));

LemmaReverseAppendDistrib(reverse(xrest), Cons(x, Nil));

assert reverse(append(reverse(xrest), Cons(x, Nil)))

= append(reverse(Cons(x, Nil)), reverse(reverse(xrest)));

LemmaReverseTwice(xrest); // induction hypothesis

assert append(reverse(Cons(x, Nil)), reverse(reverse(xrest)))

= append(reverse(Cons(x, Nil)), xrest);

// by def. reverse and append:
assert append(reverse(Cons(x, Nil)), xrest)

= append(Cons(x, Nil), xrest);

// by def. append applied twice:
assert append(Cons(x, Nil), xrest)

= xs;

} }

ghost method LemmaReverseAppendDistrib(xs: List)

ensures reverse(append(xs, ys)) = append(reverse(ys), reverse(xs));

Fig. 4. Theorem that reverse is involutive stated and proven in Dafny without poC. The proof
shown here makes use of an auxiliary lemma LemmaReverseAppendDistrib, which shows how
reverse distributes over append (and whose proof we have omitted for brevity). The proof can
be improved with poC.

Inside a Dafny method, a proof is always embedded in the context of the method’s
precondition; however, whenever additional context is required, this is easily achieved
with a conventional if statement.

Fig. 6 gives an example of the same result being proven in two different ways:
with and without additional context. Theorem Monotonicity states that for a func-
tion f of a natural argument, the “single step” characterization of monotonicity, i.e.
∀ n • f(n) ≤ f(n + 1) is as good as the more common characterization with two
quantified variables: ∀ a, b • a ≤ b =⇒ f(a) ≤ f(b). Because it has been embed-
ded in a richer context, the calculation in the second proof in Fig. 6 has fewer steps and
manipulates simpler terms than the one in the first proof.

2.1 Structuring Calculations

Since hints are statements, they can themselves contain calculations. This gives rise
to nested calculations, akin to structured calculational proofs [1] and window infer-
ence [29]. In fact, since this is a common case, a hint that consists solely of a calculation
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ghost method LemmaReverseTwice(xs: List)

ensures reverse(reverse(xs)) = xs;

{

match xs {

case Nil ⇒
case Cons(x, xrest) ⇒
calc {

reverse(reverse(xs));

= // def. reverse

reverse(append(reverse(xrest), Cons(x, Nil)));

= { LemmaReverseAppendDistrib(reverse(xrest), Cons(x, Nil)); }

append(reverse(Cons(x, Nil)), reverse(reverse(xrest)));

= { LemmaReverseTwice(xrest); } // induction hypothesis

append(reverse(Cons(x, Nil)), xrest);

= // def. reverse, append

append(Cons(x, Nil), xrest);

= // def. append (x2)

xs;

} } }

Fig. 5. Proof that reverse is involutive using Dafny’s calc statement.

need not be enclosed in curly braces. The example in Fig. 7 uses a nested calculation
to manipulate a sub-formula of the original line, in order to avoid dragging along the
unchanged part of the formula and focus the reader’s attention on the essentials.

As demonstrated by Back et al. [1], nesting is a powerful mechanism for structuring
calculational proofs, especially if a subderivation can be carried out in its own context.
For example, the following structured calculation (where s0 and s1 are sets and 6 ∩ says
that two sets are disjoint) succinctly proves an implication by manipulating subterms of
the consequent under the assumption of the antecedent:

calc {
s0 6 ∩ s1 =⇒ f((s0 ∪ s1) ∩ s0) = f(s0);
{ if (s0 6 ∩ s1) {

calc {
(s0 ∪ s1) ∩ s0;
(s0 ∩ s0) ∪ (s1 ∩ s0);
// s0 6 ∩ s1
s0;

} } }
s0 6 ∩ s1 =⇒ f(s0) = f(s0);
true;

}

Another way of adding context is parametrization: Dafny’s forall statement (which
in programming is used to perform aggregate operations) makes it possible in proofs to
introduce arbitrary values to be manipulated within a subderivation, whose conclusion
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function f(n: nat): nat

ghost method Monotonicity(a: nat, b : nat)
requires ∀ n: nat • f(n) ≤ f(n + 1); // (0)

ensures a ≤ b =⇒ f(a) ≤ f(b);

decreases b - a; // variant function

{

// The first proof:
calc =⇒ {

a < b;

a + 1 ≤ b;

{ Monotonicity(a + 1, b); }

f(a + 1) ≤ f(b);

// (0)

f(a) ≤ f(a + 1) ≤ f(b);

f(a) ≤ f(b);

}

// The second proof:
if (a < b) {

calc ≤ {

f(a);

// (0)

f(a + 1);

{ Monotonicity(a + 1, b); }

f(b);

}

}

}

Fig. 6. Theorem that connects different ways of expressing monotonicity and two proofs thereof.
Both proofs establish a < b =⇒ f(a) ≤ f(b), which is sufficient since the a = b case is triv-
ial. The difference is that the second proof uses a < b as a context for the calculation, which
simplifies it significantly.

is then universally generalized. Fig. 8 gives an example. It shows one missing step of
the extensionality proof of Fig. 7, namely the one that establishes the precondition for
the invocation of the induction hypothesis:

∀ i • 0 ≤ i < length(xrest) =⇒ ith(xrest, i) = ith(yrest, i)

The forall statement in the figure introduces a local immutable variable i, whose
values range over [0, length(xrest)) . This block will automatically export (i.e. make
available to the following statements) the conclusion of the nested calculation, quanti-
fied over the range of i, which amounts precisely to the missing precondition in Fig. 7.

3 Encoding

Since calculation statements are an incremental addition to Dafny, largely reusing ex-
isting constructs such as expressions and statements, the poC implementation required
relatively little effort. This means that a similar feature can be easily added to other
auto-active verifiers, especially ones based on verification engines like Boogie [5] or
Why3 [8].

We explain the encoding of calculation statements in terms of their desugaring into
assert and assume statements. The simplest approach would be to treat a calc state-
ment merely as syntactic sugar for asserting all of its steps, which is how one would
write such a proof in the absence of support for calculations (see Fig. 4). This approach
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ghost method Extensionality(xs: List, ys: List)

requires length(xs) = length(ys); // (0)

requires ∀ i • 0 ≤ i < length(xs) =⇒ ith(xs, i) = ith(ys, i); // (1)

ensures xs = ys;

{

match xs {

case Nil ⇒
case Cons(x, xrest) ⇒

match ys { case Cons(y, yrest) ⇒
calc {

xs;

Cons(x, xrest);

calc { // nested calculation

x;

ith(xs, 0);

// (1) with i := 0

ith(ys, 0);

y;

}

Cons(y, xrest);

{ /* Show (1) for xrest, yrest -- omitted in this figure */

Extensionality(xrest, yrest); }

Cons(y, yrest);

ys;

} } } }

Fig. 7. Extract from a proof of extensionality of lists. A nested calculation is used to transform a
subterm of a line. The omitted step is fleshed out in Fig. 8.

is trivially sound (since it does not introduce any assumes), but it has some practical
disadvantages. First, with this encoding, the SMT solver will accumulate all the facts
it learns from each calculation step and try to apply them while proving the next step;
thus in a large proof, the solver is more likely to get “confused” or “bogged down”. Sec-
ond, the conclusion of the calculation is not stated explicitly, so it might not be readily
available after the proof.

Instead, we would like to make use of the fact that steps in a calculational proof are
conceptually independent. Our goal is to ask the SMT solver to verify each step in iso-
lation, and then simply postulate the conclusion of the calculation, without wasting the
solver’s time on putting the steps together and reasoning about transitivity. To this end,
we introduce the encoding in Fig. 9. The construct if (*) denotes non-deterministic
choice, and the conclusion relation C〈N〉 is computed from the sequence S〈0〉, . . . ,
S〈N-1〉 of the step operators. Ending each branch of the conditional with assume false
prevents the control flow from exiting it, effectively telling the SMT solver to forget ev-
erything it has learned from the branch.

To determine the conclusion relation C〈N〉, following the Isabelle/Isar approach [6],
we define a set of transitivity rules of the form R◦S ⊆ T (in the terminology of Sec. 2,
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calc {

xs;

Cons(x, xrest);

// . . .
Cons(y, xrest);

{ forall (i: nat | i < length(xrest)) {

calc {

ith(xrest, i);

ith(xs, i + 1);

// enclosing precondition

ith(ys, i + 1);

ith(yrest, i);

} }

Extensionality(xrest, yrest);

}

Cons(y, yrest);

ys;

}

Fig. 8. A missing step of the proof in Fig. 7. We use Dafny’s forall statement to introduce a
variable i in the nested calculation and then generalize its conclusion.

this makes R and S chain-compatible). One example of such a rule is a = b ∧ b <
c ⇒ a < c . Fig. 10 summarizes the transitivity rules used in poC.

We define Ci to be the conclusion relation after the first i steps: C0 is equality,
and transitivity rules are used to compute Ci+1 from the previous conclusion relation
Ci and the step operator Si . It is easy to see that if the rules are sound (which is
trivial to show for all chain-compatible operators in poC), and the individual steps of
a calculation are valid, then each intermediate conclusion line0 Ci linei , and thus the
final conclusion, is also valid.

The above argument comes with two caveats for users of traditional proof assistants.
First, Dafny is an imperative language and its expressions can depend on mutable state.
Obviously, verifying calculation steps in one state and postulating its conclusion in
another state can cause trouble. We require that all hints be side-effect free, enforced
by a simple syntactic check, and thus the state is preserved throughout the calculation
statement, which implies that the encoding in Fig. 9 is sound. Second, unlike most proof
languages, functions in Dafny (including some useful built-in functions like sequence
indexing) can be partial (i.e. they can have preconditions). Thus, we have to make sure
not only that the conclusion of the calculation holds, but also that it is well-defined.
This is discussed in the next section.

3.0 Partial Lines

Each Dafny expression e has an associated well-formedness condition wf[e], and each
Dafny statement is responsible for checking well-formedness of all its sub-expressions
(in case of the calc statement, all the lines). We modify the encoding in Fig. 9 to assert
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calc {

line〈0〉;
S〈0〉 { Hint〈0〉 }

line〈1〉;

. . .

line〈N-1〉;
S〈N-1〉 { Hint〈N-1〉 }

line〈N〉;

}

if (*) {

Hint〈0〉
assert line〈0〉 S〈0〉 line〈1〉;
assume false;

} else if (*) {

. . .
} else if (*) {

Hint〈N-1〉
assert line〈N-1〉 S〈N-1〉 line〈N〉;
assume false;

}

assume line〈0〉 C〈N〉 line〈N〉;

Fig. 9. A calc statement (on the left) and its assert/assume desugaring (on the right), where
C〈N〉 denotes the conclusion relation for the full N steps.

6=

< >

⇒ ⇐≤ ≥

= /⇔

Fig. 10. Graphical representation of the transitivity rules for poC operators: For any two operators
R and S such that S is reachable from R , add two rules: R ◦ S ⊆ S and S ◦ R ⊆ S .

wf[line〈0〉] before the first branch, and for every step i assert wf[line〈i+1〉] after
Hint〈i〉, since the hint might be useful in verifying well-formedness.

It gets more interesting with lines of type bool, because in Dafny some boolean
operators, in particular implication, have short-circuiting (aka conditional) semantics,
which is reflected in their well-formedness conditions:

wf [P ⇒ Q ] ≡ wf [P ] ∧ (P ⇒ wf [Q ])

This allows one to write expressions like P(x) =⇒ Q(f(x)), where P is the precondi-
tion of function f.

It seems natural that implications should have the same effect in calculations. For
example, the following calculation should be considered well-formed:

calc {
P(x);

=⇒ { /* Hint with a precondition P(x) */ }
Q(f(x));
⇐⇒
R(f(x));

}
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// Step "line〈i〉 =⇒ line〈i+1〉"
assume wf[line〈i〉];
assume line〈i〉;
Hint〈i〉
assert wf[line〈i+1〉];
assert line〈i+1〉;
assume false;

// Step "line〈i〉 S〈i〉 line〈i+1〉"
assume wf[line〈i〉];
Hint〈i〉
assert wf[line〈i+1〉];
assert line〈i〉 S〈i〉 line〈i+1〉;
assume false;

Fig. 11. Encoding of an implication-step (left) and any other step (right) that supports short-
circuiting semantics. In addition, the assert wf[line0]; is performed to check the well-
formedness of line0.

The translation as defined so far will not accept this example. Moreover, the condition
that each line be well-formed in the enclosing context is too strong in this case. In-
stead, we propose the following definition: a calculation is well-formed if each of its
intermediate conclusions is well-formed.

The final version of our encoding, which allows the example to go through, is given
in Fig. 11. It differentiates between=⇒1 and other step operators, which are not short-
circuiting in Dafny. We can show that this encoding implements our definition of well-
formed calculations. For example, in a calculation with only implication steps, the in-
termediate conclusion is wf [line0] ∧ (wf [line0] ∧ line0 ⇒ wf [linei ] ∧ linei) , which
is well-formed according to Dafny rules.

4 Experiments and Discussion

4.0 Case Studies

To confirm the usefulness of poC, we tried it on five examples from various domains2:

– Identity, SingleFixpoint and KnasterTarski are mathematical theorems. The
former two state properties of functions over natural numbers and the combination
of function iteration and fixpoints, respectively; the latter is one part of the Knaster-
Tarski fixpoint theorem.

– List is a set of properties of inductively defined lists, such as ReverseTwice and
Extensionality discussed above. This case study is representative of reasoning
about functional programs.

– MajorityVote is an algorithm, due to Boyer and Moore, that finds the majority
choice among a sequence of votes. This example is representative of verifying im-
perative programs.

In total, our case studies comprise about 650 lines of Dafny.
To evaluate the benefits of calculations, we developed a second version of each ex-

ample, where all proofs are at the same level of detail, but using the traditional approach

1⇐= is handled by reversing the calculation and replacing it with=⇒.
2 The examples are available online as http://se.inf.ethz.ch/people/polikarpova/poc/.
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Table 0. Case studies and results.

Traditional Calculational
Methods Tokens Time(s) Calculations Tokens Time(s)

Identity 5 527 2.0 4 460 2.0
SingleFixpoint 3 444 2.0 4 396 2.0
KnasterTarski 1 472 13.1 2 486 4.9
List 14 2445 27.4 15 1967 3.0
MajorityVote 4 1003 2.1 5 931 2.1
Total 27 4891 46.6 30 4240 14.0

with assert statements instead of calculations, along the lines of Fig. 4. Tab. 0 gives the
comparison between the two versions of each example in terms of verbosity (expressed
as the number of code tokens) and verification times (measured on a 2.7GHz i7 CPU,
using a single core). We observe that calculations provide more concise proofs, reduc-
ing the number of tokens by around 10% on average. The effect of the more efficient
encoding on verification times does not show consistently, but it is significant in a few
larger proofs.

4.1 Comparison with Other Proof Notations

In this section, we provide a detailed comparison of poC with the proof formats used
in two prominent interactive proof assistants: Coq and Isabelle/HOL. Other tools that
support calculational proofs are briefly reviewed in related work (Sec. 5).

Proof languages are commonly divided into procedural (or imperative) and declar-
ative (see e.g. [12]). In procedural languages, the proof—also called a tactic script—
consists of commands, which make the assistant modify the proof state. Declarative
languages, which aim at human-readable proofs, are instead oriented toward writing
down the intermediate proof states, and letting the tool figure out the commands auto-
matically whenever possible. In the following, we show the same lemma proven first in
a procedural, and then in a declarative (more precisely, calculational) style.

Consider our motivational example from Sec. 1.1—list reversal is an involution—
written as a Coq tactic script in Fig. 12. The commands induction, simpl, auto, and
rewrite tell the proof assistant which tactics to apply, while rev_unit refers to a lemma
(a special case of our ReverseAppendDistrib where one of the arguments is a singleton
list). This script does not tell much to a non-expert user, except that it is a proof by
induction and that it makes use of the lemma rev_unit.

In the Isabelle standard library, the same lemma looks as follows:

lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
by (induct xs) auto

The perceived full automation is somewhat misleading: the secret is that all required
auxiliary lemmas (in particular the counterpart of ReverseAppendDistrib) have been
stated in the same theory and equipped with the [simp] attribute, which instructs the
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Lemma rev_involutive : forall l:list A, rev (rev l) = l.

Proof.
induction l as [| a l IHl].

simpl; auto.

simpl.

rewrite (rev_unit (rev l) a).

rewrite IHl; auto.

Qed.

Fig. 12. Proof that list reversal is an involution written as a Coq tactic script. The example is taken
from the standard library.

simplifier to automatically apply them as rules. Introducing rewrite rules in this way
is dangerous, and rarely works in user proofs. Moreover, this approach, though very
concise, damages readability even more: the above script does not even contain the
information about the required lemmas.

Now let us turn to declarative proofs. Both Isabelle and Coq have a built-in declar-
ative language. The former one is called Isar (“Intelligible semi-automated reason-
ing”) [30] and is well-established in the Isabelle community. The latter, named simply
the Mathematical Proof Language [12], is more recent and not widely used. Both of
them support some form of calculations.

Fig. 13 shows a proof of the same lemma in Isar, written in a calculational style. Isar
supports calculations through a set of shortcuts [6]: ... refers to the right-hand side of
the most recently stated fact; also applies transitivity rules to the current intermediate
conclusion and the new step to obtain the new conclusion; finally is like also, expect
that it instructs the prover to use the new conclusion in proving what follows (in this
case ?thesis, which refers to the goal of the enclosing proof block).

The by clauses play the role of hints: they tell the prover which tactics and facts to
use in establishing the step. For this example, we removed the magic [simp] attributes
from the supporting lemmas, so we have to specify the lemma rev_append explicitly at
the second step. We can use the lemma-rule to justify this calculation step because the
step matches its statement exactly; otherwise, we would need additional, more sophis-
ticated tactics to massage the formula into the right shape first (like in the third step,
which appeals to the induction hypothesis).

The tactics used in this example are quite simple. Isabelle users also have more
powerful tactics, such as auto, and even the metaprover Sledgehammer [9] at their
disposal, so in practice Isar proofs can be written without excessive detail. However
using this powerful automation still requires deep understanding of how the tool works.
In particular, the by clauses include elements of the procedural proof language, such as
the names of tactics3, while poC hints are stated entirely in the language of the problem
domain.

3 Even what looks like punctuation (dash and dot) actually denotes tactics!
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lemma rev_rev_ident: "rev (rev xs) = xs"

proof (induct xs)

show "rev (rev []) = []" by simp

next
fix x xs

assume IH: "rev (rev xs) = xs"

show "rev (rev (x # xs)) = x # xs"

proof -

have "rev (rev (x # xs)) = rev (rev xs @ [x])" by simp

also have "... = rev [x] @ rev (rev xs)" by (rule rev_append)

also have "... = rev [x] @ xs" by (simp, rule IH)

also have "... = [x] @ xs" by simp

also have "... = x # xs" by simp

finally show ?thesis .

qed
qed

Fig. 13. Proof that list reversal is an involution written in Isar in a calculational style. In Isabelle,
Cons is written as # and append as @.

The support for calculations in Isar is very flexible: the step relations are not hard-
coded, and are easily customizable through the addition of new transitivity rules. This
comes at a price that sometimes Isabelle does not know which transitivity rule to apply,
and you have to specify this explicitly.

Finally, we believe that the possibility to introduce custom syntax, such as infix
operators for list functions above, increases proof readability and it would be nice to
have it in Dafny as well.

In conclusion, Isar and Dafny in general (and their respective support for calcu-
lations in particular) have different target audiences: Isar is focused on flexibility and
maximum control, oriented towards experts with a strong background in formal meth-
ods, while Dafny takes the “automation by default” approach, which provides for a
lower entrance barrier.

Calculational proofs in Coq’s declarative language are not as flexible, in particular
equality is the only supported step relation. Fig. 14 shows our running example. This
notation is entirely declarative (and thus closer to poC): note that there is no mention
of tactics inside the calculation and the trivial steps do not require justification. The
downside is that the default justification tactic, though sufficient for this example, does
not provide the same level of automation as SMT solvers.

4.2 Irrelevant Hints and Bogus Steps

One benefit of rule-based proof assistants, like Isabelle, is their ability to determine if
the justification of a proof step does not make sense: they will either fail to apply a rule
or the rule application will fail to reach the desired proof state.

This is not always the case in poC: one can provide hints that do not justify the step,
as well as construct bogus steps, which just happen to be true by chance. Although these
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Lemma rev_involutive {A: Type} (l:list A) : rev (rev l) = l.

proof.
per induction on l.

suppose it is nil.

thus thesis.
suppose it is (x :: xs) and IH:thesis for xs.

have (rev (rev (x :: xs)) = rev (rev xs ++ [x])).

∼= (rev [x] ++ rev (rev xs))

by (rev_unit (rev xs) x).

∼= (rev [x] ++ xs)

by (IH).

∼= ([x] ++ xs).

thus ∼= (x :: xs).

end induction.
end proof.
Qed.

Fig. 14. Proof that list reversal is an involution written in Coq’s Mathematical Proof Language in
a calculational style. In Coq, Cons is written as :: and append as ++.

issues do not pose any threat to soundness, they are detrimental to readability, and thus
important nevertheless. We have not implemented any solution to this problem, but we
discuss some possibilities in this section.

To check if a hint is required to justify a calculation step, the tool might try to re-
move it and check if the program still verifies (within the given timeout). Unfortunately,
this does not cover the cases when Dafny can do without the hint, but it would still be
useful for a human reader: for example, since Dafny has an automatic induction heuris-
tic, invoking the induction hypothesis will be considered irrelevant most of the time.
Perhaps such a mode would be still useful; this remains a part of future work.

One might hope that most irrelevant hints are filtered out just because they are either
not applicable in the current context (i.e. their precondition does not hold) or they fail
to make the step go through. This highlights another benefit of stating the assumptions
a lemma makes in its precondition, as opposed to adding them as antecedents to the
postcondition: in the latter case, a useless lemma would be simply ignored.

Bogus steps are most likely to occur in calculations with boolean lines, where the
truth value of some or all the lines is fixed4. Here is an example inspired by an actual
error in an old version of one of our case studies. Recall the Monotonicity lemma from
Fig. 6, whose postcondition is an implication a ≤ b =⇒ f(a) ≤ f(b). When trying to
prove this postcondition with a calculation, for the case of a < b, one might write:

if (a < b) {
calc {
a ≤ b;
f(a) ≤ f(a + 1);

4 In other cases, the probability that the values of the lines are related by pure chance is low.
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. . .
=⇒ f(a) ≤ f(b);

}
}

The first step of this calculation looks suspicious to say the least, but it holds because
a ≤ b follows from the case split, and f(a) ≤ f(a + 1) is implied by the method’s
precondition, thus the step reduces to true ⇐⇒ true. This calculation is logically
valid, but it does not serve to explain the proof to a human reader, if anything, it only
confuses them.

In this example, one can avoid the risk of bogus lines by choosing a weaker context
(see the proof in Fig. 6). In general, it is a useful methodological rule to always perform
a calculation in the weakest context required for it to go through.

Unfortunately, it is not always possible to avoid lines with fixed truth values: it is a
common pattern to establish validity of a boolean formula by transforming it into the
literal true by a chain of ⇐⇒ or⇐=. Such calculations are dangerous: as soon as the
formula is simple enough for Dafny to prove it, all subsequent steps (which might still
be useful for a human reader) are potentially bogus. One approach could be to verify
such steps out of (some parts of) their context, so that the validity of the lines cannot be
established anymore, while the relation between the lines is still verifiable.

5 Related Work

It is hard to say who invented calculational proofs, but Dijkstra (who credits W. H. J.
Feijen) definitely played an important role in popularizing them [14].

There are numerous dialects and extensions of this proof format. Back, Grundy and
von Wright propose nested calculations [1], combining “the readability of calculational
proof with the structuring facilities of natural deduction”. They show how common
proof paradigms (such as proof by contradiction, case split, induction) can be expressed
using nested calculations, with the ultimate goal to make it possible to write a large
proof as a single calculation, without the need to “escape” into natural language. A
follow-up to this work is structured derivations [2]. Window inference [26, 29] is a
related paradigm focusing on managing context during the transformation of subterms.
As we showed in Sec. 2.1, poC naturally supports such structuring paradigms.

Attempts to mechanize calculational proofs go back to the Mizar system developed
in the early 1990s [27], which supports iterated equality reasoning. There exists a num-
ber of implementations of window inference within various proof systems (e.g. [15]).
The capabilities of those tools are constrained (for example, Mizar only supports equal-
ities), and the level of automation is quite low.

The structured proof language Isar for the Isabelle proof assistant provides a very
general support for calculations [6]. However, it is not purely declarative, and one still
has to explicitly issue commands that modify the proof state.

At the other end of the spectrum is Math
∫
pad [4], where one can write proofs in

common mathematical notation, not restricted to a particular formal language. It is a
document preparation system oriented towards calculational construction of programs.
Verhoeven and Backhouse [28] present an attempt to combine it with PVS in order to
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machine-check the proofs, however a fully automatic translation of the informal com-
ponents of the notation is, of course, not possible.

“Programs as proofs” is a paradigm commonly used in auto-active program verifiers
(see e.g. [17]), which allows the reuse of common programming language constructs
familiar to programmers for structuring proofs. Pushing auto-active verification into
areas previously exclusive to interactive proof assistants is currently an active research
topic, with recent advances in automatic induction [21] and even co-induction.

6 Conclusions and Future Work

We have presented a tool for verifying calculational proofs, which stands out due to the
combination of a high degree of automation and a programmer-friendly proof language
oriented towards to the problem domain rather than the mechanics of the prover.

We believe that poC is not just a useful feature in a program verifier, but also an
important step towards a full-fledged auto-active proof assistant. We envision such a
tool to be very close to Dafny, in particular, reusing the programs-as-proofs paradigm,
but perhaps putting more emphasis on proof concepts rather than on, say, method dec-
larations. Towards this goal, we would need to extend Dafny with support for more
general mathematical constructs, such as infinite sets. In order to provide soundness
guarantees for an SMT-based proof assistant, a promising approach is generating proof
certificates [0] that can be checked by a system with a small trusted core, such as Coq.
This seems to be a fertile opportunity for combining the automation found in poC with
the rigor inherent in Coq.
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