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Abstract. In this work, we explore the use of classification algorithms
in predicting mental states from functional neuroimaging data. We train
a linear support vector machine classifier to characterize spatial fMRI
activation patterns. We employ a general linear model based feature
extraction method and use the t-test for feature selection. We evaluate
our method on a memory encoding task, using participants’ subjective
prediction about learning as a benchmark for our classifier. We show that
the classifier achieves better than random predictions and the average
accuracy is close to subject’s own prediction performance. In addition,
we validate our tool on a simple motor task where we demonstrate an
average prediction accuracy of over 90%. Our experiments demonstrate
that the classifier performance depends significantly on the complexity
of the experimental design and the mental process of interest.

1 Introduction

An important component of human learning is to evaluate whether information
has been successfully committed to memory. Humans with superior judgments
of learning are shown to perform better in learning tasks [1]. Recent functional
neuroimaging studies have identified brain regions correlated with actual and
predicted memory encoding using univariate analysis techniques [2]. In this work,
we adopt the discriminative approach to predicting successful encoding. We view
this work as a first step toward the development of tools that will enhance human
learning. One of the possible applications is human-machine interfaces which
employ a feedback mechanism to ensure successful acquisition of skills in critical
applications.

Univariate techniques, such as the general linear model (GLM), are tradition-
ally used to identify neural correlates in fMRI data [3]. In contrast, multivariate
discriminative methods train a classifier to predict the cognitive state of a sub-
ject from the spatial brain activation pattern at that moment [4–6]. Most studies
use linear classifiers [7–17], while others employ nonlinear classifiers [16–19].

Functional MRI classification is challenging due to the high dimensionality of
the data, noisy measurements, motion artifacts and the small number of available
training examples. Feature selection and dimensionality reduction techniques
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promise to alleviate some of these problems. One approach is to restrict the
analysis to anatomical regions of interest [7, 18]. Another is to compute univariate
statistics to rank the features according to their discriminative power between
the conditions of interest [7, 8, 11, 12]. Multivariate feature selection methods can
evaluate the information content of subsets of features. However, such methods
have to work in a large search space of all possible combinations of features. This
problem is addressed by constraining the search space to local neighborhoods [20]
or by adding one feature at a time to the feature set [18].

Pattern classification methods have been successfully applied to fMRI exper-
iments on visual [7, 9, 10, 15, 16], motor [14], cognitive [11, 13] tasks, and experi-
ments where subject’s cognitive state cannot be inferred from simple inspection
of the stimulus, such as memory retrieval [8].

The performance of the classifier depends on the complexity of the exper-
imental paradigm [21]. O’Toole et al. [15] show that the classifier’s ability to
discriminate between different object categories decreases as the visual similar-
ity of the objects increases. In our experiments, we observe that the classifier
performance depends greatly on the complexity of the cognitive task of interest.
While we achieve high accuracy in a simple motor task, classification accuracy
is lower in a high level memory encoding task.

In this work, we explore the use of classification methods in the context of
an event related functional neuroimaging experiment where participants viewed
images of scenes and predicted whether they would remember each scene in
a post-scan recognition-memory test. We trained support vector machines on
functional data to predict participants’ performance in the recognition test and
compared the classifier’s performance with participants’ subjective predictions.
We show that the classifier achieves better than random predictions and the
average accuracy is close to that of the subject’s own prediction.

2 Methods

Here we describe all the computational steps of the analysis, including feature
extraction, feature selection and classification. We choose to use a GLM-based
feature extraction method, which increases the classification accuracy by extract-
ing the signal related to experimental conditions. We employ a feature selection
method based on univariate statistics to decrease the dimensionality of the data.
We then train a linear support vector machine and evaluate its accuracy on func-
tional neuroimaging data using a set of cross-validation procedures.

2.1 Feature Extraction

Let y(v) be the fMRI signal of N time points measured at a spatial location v, X

be the matrix of regressors, β(v) be the coefficients for regressors in the columns
of X, and M be the total number of stimulus onsets. The general linear model [3]
explains y(v) in terms of a linear combination of regression variables β(v):

y(v) = Xβ(v) + e(v), (1)
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where e(v) is modeled as i.i.d. white Gaussian noise. Each of the first M columns
of X is obtained by convolving the hemodynamic response function with a
reference vector which indicates the onset of a particular stimulus. The re-
maining columns of X include nuisance regressors that include motion cor-
rection and detrending parameters. The maximum likelihood estimate β̂(v) =
(XT X)−1XT y(v) also corresponds to the least-squares solution. We obtain a

GLM-beta map by combining m’th elements of β̂(v) over all spatial locations v

into a vector β̂m which represents the spatial distribution of activations for the
m’th stimulus. β̂m contains V elements, one for each voxel in the original fMRI
scan.

2.2 Feature Selection

Let L = {l1, ..., lM} be a vector denoting the class label of each stimulus, li ∈

{+1,−1}. The t-statistic t(v) for voxel v,

t(v) =
µ+1(v) − µ−1(v)√

σ2

+1
(v)

n+1

+
σ2

−1
(v)

n
−1

, (2)

is a function of nl(v), µl(v) and σ2

l
(v), l = −1,+1. nl(v) is the number of stimuli

with label l. µl(v) and σ2

l
(v) are, respectively, the mean and the variance of the

components of β̂(v) corresponding to stimuli with label l. A threshold is applied
to the t-statistic to obtain a subset of coefficients that we denote β̄.

2.3 Weighted SVM

Since we work with unbalanced data sets, we choose to use the weighted SVM
variant, which imposes different penalties for misclassification of samples in dif-
ferent groups [22, 23]. Given the penalty for positive class C+, and the penalty
for the negative class C−, the weighted SVM with a linear decision boundary
solves the following constrained optimization problem:

〈w∗, b∗, ξ∗〉 =argmin
w,b,ξ

{
1

2
wT w + C+

∑

lm=1

ξm + C−

∑

lm=−1

ξm

}
(3)

s.t. lm(wT β̄m + b) ≥ 1 − ξm and ξm ≥ 0 for m = 1, . . . ,M.

The resulting classifier predicts the hidden label of a new GLM-beta map β̄

based on the sign of w∗T β̄ + b∗.

2.4 Experimental Evaluation

To evaluate the performance of this training scheme over a range of penalties
C+ and C−, we construct the ROC curves. In all experiments in this paper,
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each subject participated in several runs of the experiment. We employ a cross-
validation procedure by holding out one of the functional runs, training the
classifier on the remaining runs and testing it on the hold-out run. In the feature
selection step, we evaluate a range of threshold values and choose the threshold
value corresponding to maximum cross-validation accuracy within the training
set. We obtain the ROC curves by training the SVM classifier using varying
weights for the class penalties C+ and C− in equation (3), and averaging the
testing accuracy across runs. The values of C+ and C− are equally spaced on a
log scale where the ratio of penalties vary between 10−5 and 105. In addition, we
identify the point on the ROC curve that corresponds to the smallest probability
of error. We report the classification accuracy of that point which we call min-
error classification accuracy.

In the motor task experiments, we demonstrate the benefit of feature selec-
tion by comparing our method to an SVM classifier trained on all features. For
memory encoding experiments, we have two labels for each stimulus available to
us: the actual memory encoding and the subject’s prediction of the performance.
We employ three different training strategies which aim to explore the challeng-
ing nature of this experiment. The first strategy corresponds to the standard
training setup. We perform feature selection on the training set only, train the
classifier on all samples in the training set and evaluate the accuracy on the test
set. The second strategy restricts the training set to samples where the subject’s
prediction is correct. One of the main challenges in our experimental design is
to obtain correct labels for the samples as we rely on subject’s response for the
actual memory encoding. With the second setup we aim to improve reliability of
training samples by requiring the predicted and the actual labels to agree. For
the third strategy, we perform feature selection using both the training and test
sets while still training the classifier on samples in the training set. This setup is
impractical as in real applications we do not have access to test data. However,
it serves as an indicator of the best accuracy we could hope to achieve.

3 fMRI Experiments and Data

We acquired fMRI scans using a 3T Siemens scanner. We obtained functional
images using T2-weighted imaging (repetition time=2s, echo time=30s, 64 ×

64×32 voxels, 3mm in-plane resolution, 4mm slice thickness). We collected 1,500
MR-images in five functional runs, each run 10 minutes long. We used Statistical
Parametric Mapping (SPM5) [3] to perform motion correction using 6-parameter
rigid body registration of images to the mean intensity image and smoothing with
a Gaussian filter(FWHM=8mm) to decrease the effects of motion artifacts and
scanner noise.

In the memory encoding task, we scanned 10 participants with normal visual
acuity. We used five hundred pictures of indoor and outdoor scenes and randomly
divided them into ten lists of 50 pictures. We presented five lists during the scan
and scanned the subjects in five functional runs as they studied 50 pictures in
each run. We presented each picture for three seconds with a nine second rest
interval and instructed participants to memorize the scenes for a later memory
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Fig. 1. Left: ROC curves for the motor task for 10 subjects for classification with
feature selection. Circles show the operating points corresponding to min-error
classification accuracy. Right: Min-error classification accuracy for classification
without feature selection (light-gray) and with feature selection (dark-gray).

test. For each picture, participants predicted whether they would remember or
forget it, by pressing a response button. Following the scan we gave participants
a recognition test where we presented them all 500 pictures, including the 250
images they had not seen before. The participants judged whether they had seen
the picture during the scan. In our classification experiments, we used partic-
ipants’ responses in the recognition test to derive the binary labels and their
predictions during the scan as a benchmark for our classifier.

In the motor task, we scanned another 10 subjects, using the same setup and
acquisition parameters as in the memory encoding task with the only difference
that the subject’s prediction was acquired using two buttons. We instructed
subjects to press the left button using their left hand if they thought they would
remember the presented picture and press the right button using their right hand
otherwise. We use this dataset to train the classifier to predict the hand used to
press the button.

4 Results

We first evaluate the method on the simple motor task and then present the re-
sults for the memory encoding experiment. Figure 1 shows the ROC curves and
the min-error classification accuracies for the motor task. We observe that in this
simple motor task the classifier achieves highly accurate results, the min-error
classification accuracy is over 90% for the majority of the subjects. Furthermore,
the bar graph shows that feature selection improves classification accuracy com-
pared to using all voxels for classification.

Figure 2(a) shows the results for the memory encoding task for all three
strategies for training a classifier described in Sec 2.4. For the first strategy
(blue), we note that the ROC curves of the classifier are better than random but
are lower than subject’s predictions. The ROC curves of the second strategy are
shown in red. We note that the curves improve and are closer to subject’s own
predictions. A statistical comparison between the first and the second strategies
reveals a significant difference (single-sided, paired T-test, P < 0.05). This ob-
servation confirms that the samples whose labels are correctly predicted by the
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(a) ROC curves

(b) min-error graph

Fig. 2. (a) ROC curves for memory encoding experiment for 10 subjects. Crosses
represent subject’s prediction accuracy. Blue curves correspond to strategy 1, us-
ing the training set for feature selection. Red curves correspond to training the
classifier only on correctly predicted samples (strategy 2). Green curves corre-
spond to strategy 3, including test set in feature selection. Circles show the op-
erating points corresponding to min-error classification accuracy. (b) Min-error
classification accuracy.

subject indeed provide more reliable samples for training the classifier. Green
curves correspond to the third strategy of performing feature selection on both
the training and test sets. As expected, the ROC curves are much higher, even
surpassing subject’s own predictions. However, we note that even in this imprac-
tical setting where we use the test set for feature selection, the ROC curves are
far from perfect, indicating the high level of noise present in the observations
and the labels.

Figure 2(b) shows the min-error classification accuracy for the memory en-
coding task. The min-error accuracy of the classifier is very close to, and some-
times better than the subject’s own predictions. We note that the highly un-
even frequencies of the two labels significantly affect the min-error classification
accuracy. In our dataset, the class sizes are unbalanced by a factor of about
three-to-one as subjects remember pictures more often than they forget them.
As a result, the operating points that correspond to min-error accuracy for the
classifier occur at higher false alarm rates than those of subject’s predictions.
The classifier is more biased toward predicting the “remember” class, which in-
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Fig. 3. Feature overlap maps for the best(left) and the worst(right) performing
subjects for the memory encoding task. For all five functional runs feature selec-
tion is performed on each run. The color indicates the number of runs in which
a voxel was selected. Dark red color shows the voxels selected only in one run
and white color displays voxels selected in all runs.

creases the min-error accuracy by weighting the high false alarm rate with the
relatively low probability of the “forget” class.

5 Discussion

Our experiments demonstrate that the classification accuracy is significantly
affected by the complexity of the neuroimaging experiment. While we achieve
highly accurate results for the simple motor task, the classification accuracy
drops for the memory encoding task. Compared to the motor task, memory en-
coding task involves more complex neural circuitry. In addition, it is challenging
to design an experiment in which the actual encoding labels are obtained without
subjective evaluation by the participants.

The feature maps in Figure 3 provide an insight into the performance of
the classifier. To create these maps, we performed feature selection on each
functional run for each subject and computed how often each voxel was included
in the resulting feature maps, essentially quantifying the overlap among features
selected for each run. Figure 3 shows these feature overlap maps for the memory
encoding task for the subject with the best ROC curves and the subject with
the worst ROC curves. We note that most included voxels for the worst subject
only appear in one of the runs. Such unreliable features and noisy activation
patterns lead to poor generalization performance of the classifier. On the other
hand, the map for the best subject includes contiguous regions that are present
in most of the runs. We observe a consistent spatial activation pattern across
runs that explains the high accuracy of the classier.

The future work should clearly address the problem of obtaining better train-
ing labels, perhaps by eliminating the prediction part of the task, and investi-
gating ways to bring better spatial consistency to the features selected for clas-
sification.
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