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Abstract. We propose a unified Bayesian framework for detecting genetic
variants associated with a disease while exploiting image-based features as an
intermediate phenotype. Traditionally, imaging genetics methods comprise two
separate steps. First, image features are selected based on their relevance to the
disease phenotype. Second, a set of genetic variants are identified to explain the
selected features. In contrast, our method performs these tasks simultaneously to
ultimately assign probabilistic measures of relevance to both genetic and imag-
ing markers. We derive an efficient approximate inference algorithm that handles
high dimensionality of imaging genetic data. We evaluate the algorithm on syn-
thetic data and show that it outperforms traditional models. We also illustrate the
application of the method on ADNI data.

Keywords: Imaging Genetics, Bayesian Models, Variational Inference, Proba-
bilistic Graphical Model.

1 Introduction

In this paper, we propose a generative probabilistic model for genetic variants associated
with a disease using imaging data as an intermediate phenotype. The search for genetic
variants that increase the risk of a particular disorder is one of the central challenges
in medical research, and has been traditionally performed via genome-wide association
studies (GWAS). Such studies examine each genetic marker and its correlation with the
incidence of the disease independently of all other genetic markers in the study. How-
ever, some variants may have a weak but cumulative effect that cannot be identified by
traditional GWAS analysis [12]. Imaging genetics introduces imaging-based biomark-
ers as a promising intermediate phenotype (i.e., endo-phenotype) between genetic vari-
ants and diagnosis. Imaging provides a rich quantitative characterization of disease and
promises to aid in identifying genetic variations that are correlated with the clinical
variables [1, 17]. Furthermore, multivariate analysis using imaging endo-phenotypes
promises to stratify the population in more informative ways than the binary diagno-
sis. A commonly used approach in imaging genetics is to isolate image-based features
affected by the disease, and then identify the relevant genetic markers that explain the
observed image variations. In this work, we jointly model image-based phenotypes and
clinical indicators to identify genetic variants associated with the disorder.

Imaging genetics presents numerous challenges in clinical studies due to the rela-
tively small number of subjects and extremely high dimensionality of images (hundreds
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of thousands of voxels) and genetic data (millions of single nucleotide polymorphisms
(SNPs)). To address the problem of high dimensionality and small sample size, ear-
lier algorithms considered only a few imaging candidates (voxels, regions, or other
biomarkers) or only a few genetic markers in the analysis [5, 15]. The reduced joint
dataset is then analyzed in a univariate testing framework, where each pair of a candi-
date genetic variant and an imaging biomarker is tested for association via a standard
statistical test. Examples include using activation maps of the prefrontal cortex to find
SNPs associated with schizophrenia [15], and searching for changes of gray matter vol-
ume correlated with the Alzheimer’s Disease risk factor APOE gene [5].

More recently, genome-wide voxel-wise analysis has been demonstrated using uni-
variate methods [18]. Unfortunately, massive univariate analysis has several limitations.
Due to multiple comparisons, a corrected conservative significance level is selected to
limit the false positive rate, but this also dramatically reduces the power of the test.
Moreover, the univariate methods are unlikely to identify weaker variants that jointly
create an additive effect.

Multivariate techniques aim to overcome shortcomings of univariate analysis [9,20].
A common approach is to use multivariate regression combined with regularization to
extract a sparse set of coefficients for correlated genetic variants and image features.
For example, low rank representations can be approximated via sparse reduced rank
regression (sRRR) [19, 20], Partial Least Squares (PLS) [9] or Canonical Correlation
Analysis (CCA) [9]. Unfortunately, these unsupervised methods do not use the subject
class label (e.g., diagnosis) directly, and thus the detected genetic markers and image
features are not immediately related to the disease of interest. The image features rele-
vant to the disease are identified separately from modeling the relationship between the
genetic and imaging data. For example, sRRR has been demonstrated using brain re-
gions pre-selected for Alzheimer’s disease (AD) via Linear Discriminant Analysis [19].
In contrast, we model and estimate relevant genetic variants in the context of a particular
disease. Our method is applicable to any set of image biomarkers, such as anatomical
regions, tissue appearance, or functional measures. We are motivated by applications to
the AD and use local measures of atrophy as image features.

Our model includes a common assumption of genetic studies that only a small set
of SNPs is associated with any particular disease. This subset of genetic markers in-
duces variation in certain image-based features, and a subset of these measures exhibits
changes that are discriminative with respect to the disease phenotype. Therefore, if a
brain region is irrelevant to the target disease, it is ignored even if its measures are
highly correlated with some genetic variants.

In the remainder of the paper, we define a generative model for the relationship
among genetic, imaging and disease measures, derive an efficient inference algorithm
to identify relevant brain regions and genetic loci, and demonstrate the method on syn-
thetic data and the ADNI study [13]. We show that our algorithm outperforms standard
univariate and regression analysis for genetic variant detection on synthetic data and
yields promising results on real data.
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Fig. 1. A schematic illustration of the relationship between genetic, imaging and clinical measures
in our model

2 Model

Our model structure is illustrated schematically in Fig.1. We are motivated by anatom-
ical brain studies, but the model is general.

Let yn be the disease phenotype (0 or 1) for subject n in the study (1 ≤ n ≤ N ).
Let xn and gn be vectors of M imaging biomarkers (features) and S genetic markers
(SNPs) for subject n, respectively. We capture the overall process via two coupled re-
gression models: a logistic regression predicts class label yn from image features xn; a
ridge regression associates genetic variants gn with image features xn. The graphical
model in Fig.2 presents the relationships among variables of the model. All variables are
summarized in Table 1. Below, we first define the relationship between imaging features
and the disease phenotype and then specify the generative model for the relationship be-
tween SNPs and image features. Note that we do not model a direct link between genetic
variants and disease label, but it is captured indirectly through image features.

2.1 From Imaging Features to Disease Phenotype

We adopt a Bayesian model based on logistic regression for predicting binary class
label yn from image features xn [2]:

p(yn|η,xn) =
[
ψ(ηTxn)

]yn
[
1− ψ(ηTxn)

]1−yn
, (1)

whereψ(a) = 1
1+e−a is the logistic function and η ∈ R

M are the regression coefficients
that we treat as latent random variables. Similar to prior work [3], we propose to use a
spike-and-slab prior to promote sparse solutions for the regression coefficientsη [7,14]:

p(η;β, σ2
η) =

M∏

m=1

[
(1− β)δ(ηm) + βN (ηm; 0, σ2

η)
]
,

where δ(·) is the Delta Dirac distribution concentrated at 0, parameter β controls spar-
sity (0 ≤ β ≤ 1), and N (·;μ, σ2) is a Gaussian distribution with mean μ and vari-
ance σ2. In a deterministic regression context, one can view the spike-and-slab prior
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Table 1. Notation and variables used throughout the paper

Model Variables
xnm Image feature m in subject n.
gns Genetic variant s in subject n.
yn Disease phenotype (class label) of subject n: 0 - healthy, 1 - diseased.
ηm Regression coefficient for image feature m in the imaging part of the model.

bm ∈ {0, 1} Indicator variable that selects image feature m.
asm ∈ {0, 1} Indicator variable that selects SNP s for modeling image feature m.

vsm Regression coefficient for SNP s for modeling feature m.
β Prior probability for selecting image features.
α Prior probability for selecting genetic variants.

σ2
η Variance of ηm.

σ2
0 Variance of noise in the genetic to image regression.

Variational Variables
ρm Probability of selecting feature m.
τs Probability of selecting SNP s.
ξn Tightness of lower bound for the logistic function.

νm, ςm Imaging parameters for feature m.
ϑ = {V, τ ,ρ, ξ, ν, ς} Set of variational parameters that we optimize when fitting the model.

as a combination of �0 and �2 norms for regularization. We find it convenient to intro-
duce a latent Bernoulli random variable bm that selects the regime for the regression
coefficient ηm:

p(bm) = βbm(1− β)1−bm , p(ηm|bm;σ2
η) =

{
δ(ηm), if bm = 0,

N (ηm; 0, ση), if bm = 1.
(2)

2.2 From Genetics Variants to Imaging Features

In modeling the relationship between genetics and imaging, we treat image features
relevant for disease prediction differently from all other image features. If feature m is
relevant for disease prediction (i.e., bm = 1), variations in the values of this feature are
explained by a sparse subset of the genetic variants gn ∈ R

S . We define am ∈ {0, 1}S
to be a vector of latent Bernoulli random variables that specify a subset, or mask, of
relevant genetic markers that affect feature m, and arrive at the second regression com-
ponent of our model:

xnm =
S∑

s=1

(asmvsm)gns + εnm = 〈am � vm,gn〉+ εnm, (3)

where vm is the vector of regression coefficients, εnm ∼ N (·; 0, σ2
0) is the noise in the

image feature m in subject n, and 〈·, ·〉 and � denote the inner and element-wise prod-
ucts, respectively. While an obvious modeling choice for regression coefficients {vsm}
would be to treat them as latent random variables with a spike-and-slab prior, the large
number of such variables (S ×M) makes it computationally intractable. We therefore
model regression coefficients {vsm} as unknown but deterministic variables.

If image feature m is irrelevant for predicting disease (i.e., bm = 0), we do not
model genetic contributions, and assign the probability mass uniformly between the
observed feature values, i.e., p(x) = 1

N δ(x− xnm). Furthermore, we set asm = 0 with
probability 1 for all s.
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Fig. 2. Graphical representation of the generative model. Hollow circles denote random variables,
solid circles represent hyper-parameters, and shaded circles represent observed variables. The
rectangle containing vm represents deterministic variables to be estimated. The plates indicate
conditionally independent instantiations.

Combining the two regimes, we obtain the genetic selection prior:

p(asm|bm;α) =

{
δ(asm), if bm = 0,

αasm(1− α)1−asm , if bm = 1,
(4)

and the image feature likelihood:

p(xnm|bm, am,gn;vm, σ
2
0) =

{
1/N, if bm = 0,

N (xnm; 〈am � vm,gn〉, σ2
0), if bm = 1.

(5)

2.3 Complete Model

We define Z = {η,b,A} to be the set of latent variables, D = {X,y} to be the set of
data variables that we model, and π = {σ2

η, σ
2
0 , α, β} to be the set of hyper-parameters.

Here y = [y1; ...; yN ], and X = [x1; ...;xN ]. Combining the elements of the model in
Eqs. (1)-(5), we construct the joint distribution of the hidden variables Z and modeled
variables D given genetic markers G = [g1; ...;gN ]:

p(D,Z|G;V, π) =

N∏

n=1

p(yn|η,xn)

M∏

m=1

p(bm)p(ηm|bm)p(xnm|bm, am, gn;vm)

S∏

s=1

p(asm|bm).

3 Inference

Our goal is to compute the posterior probability p(Z|D;G,V, π) of the latent vari-
ables that summarizes genetic and imaging influences in our model. Because of cou-
pling of variables in the joint model, computing the posterior distribution is intractable,
necessitating approximation via sampling or variational methods. Due to the amount
of data and its dimensionality, sampling is computationally impractical. We therefore



Joint Modeling of Imaging and Genetics 771

derive a Variational Bayes approximation [2] that estimates the lower bound for the
log-likelihood p(D;G, π) and seeks distribution q that minimizes the cost functional:

F (q) =

∫
q(Z) ln

p(D,Z|G;V, π)

q(Z)
dZ. (6)

The optimal distribution q provides an approximation to the posterior distribution
p(Z|D;G, π) [2]. We choose a factorization for the distribution q that captures most
model assumptions and yet is computationally tractable:

q(η,b,A) =
M∏

m=1

q(bm)q(ηm|bm)
S∏

s=1

q(ams|bm), (7)

where:

q(bm) = ρbmm (1− ρm)1−bm , q(ηm|bm) =

{
δ(ηm), if bm = 0,

N (ηm; νm, ςm), if bm = 1,

q(asm|bm) =

{
δ(asm), if bm = 0,

τasm
s (1− τs)

1−asm , if bm = 1.
(8)

Variational parameters ρm, νm, ςm and τs of the approximating distribution q define the
optimization space. In this formulation, the estimate of τs is interpreted as relevance of
the genetic variant s. The estimate of ρm provides a measure of relevance for image
feature m. We define {τ ,ρ,ν, ς} to be the set of all parameters τs, ρm, νm, ςm.

Given the parametrization above, all terms in the cost function F (q) can be opti-
mized analytically, except for the logistic regression term p(yn|η,xn). For this term,
we employ the variational treatment [8] that leads to improved accuracy over Laplace
approximation [2] and has been successfully used in prior work [3]. Specifically, we
replace the logistic function with its lower bound:

ψ(xn) ≥ ψ(ξn) exp

{
1

2
(xn − ξn) +

1

2ξn
(ψ (ξn)− 1

2
)(x2n − ξ2n)

}
, (9)

where ξn controls the tightness of the lower bound for subject n and should be opti-
mized.

We define ϑ = {V, τ ,ρ,ν, ς, ξ} to be the full set of parameters of distribution q,
where V and ξ are deterministic parameters of the model, and the rest are parameters
of q. Using Eqs. (7)-(9), we can maximize F (q) = F (ϑ) by updating elements of the
variational parameter vector ϑ. We omit the derivations due to space constraints, but
summarize the resulting updates in Appendix A.

Every update iteration reduces the cost function F (ϑ), which in turn brings q closer
to the posterior distribution p(Z|D,G;V, π).

Our imaging genetics regression bears resemblance to previously demonstrated sRRR
regression [20] that considers X = GV. Our update for V can be viewed as a solution
of a system of linear equations:

X =

(
G+ (GT)†diag

(
1− τ

τ

))
V,
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where † indicates a pseudo-inverse, and the second term diag(1−τ
τ ) weighs the SNPs

based on their importance. We do not impose rank or sparsity constraints on the regres-
sion coefficients matrix V, although they can be added in a fashion similar to [20].

4 Results

We evaluate our model on synthetic data using univariate tests and the sRRR method [20]
as baseline algorithms. We also illustrate our method on the ADNI dataset, where we
recover several top SNPs associated with the risk of AD.

4.1 Synthetic Data

We generate synthetic data to match a realistic scenario as much as possible. In this sec-
tion, minor allele frequency (MAF) refers to the frequency of the less common allele in
the population at a particular genetic location. A genetic marker (or SNP) gns is repre-
sented by the count of minor alleles at location s in subject n, i.e., gns ∈ {0, 1, 2}. We
employ the widely used population genetics software package PLINK [16] to simulate
1,020 SNPs with a minor allele frequency uniformly sampled from an interval [0.05,
0.95], for 400 healthy subjects and 400 patients. For SNPs relevant to the disease, the
heterozygote odds ratio is defined as the ratio of patients to controls with gns = 1,
normalized by the same ratio for gns = 0. Similarly, one can define the homozygote
odds ratio. These ratios control the disease risk in the patient population. The simulated
SNPs are split into three sets:

• Set G1 includes 20 disease causative SNPs that affect selected areas of simulated
images. The odds ratio is set to 1.125 for heterozygote SNPs, with a multiplicative
homozygote risk. Other odds ratios yield similar results (we tested 1.0625 to 1.5, not
shown due to space constraints).

• Set G2 includes 20 SNPs that are irrelevant to the disease (i.e., odds ratio is 1) but
affect other areas in simulated images.

• Set G3 includes 980 null SNPs that are independent of both label and images.

Based on the class labels and the genetic variants, we generate image voxels, organized
in several sets:

• Voxels in set I1 are affected by causative SNPs (G1), and thus are indirectly associ-
ated with the disease. These voxels are separated into three regions. Voxel intensity
in this set is correlated with genetics:

crnk = wT
r g

G1
n + εrnk, 1 ≤ r ≤ 3, (10)

where crnk is the intensity value of voxel k in region r for subject n. The region
weights wr are drawn from a normal distribution N (·; 0, 1), and εrkn is Gaussian
noise. Our experiments explore a range of values for the noise variance σ2

noise.
• Voxels in set I2 are determined by non-causative SNPs G2, and thus are irrelevant to

disease. We dedicate one region to this category:

c4nk = wT
4 g

G2
n + ε4nk. (11)
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Fig. 3. Summary of results. (a) Detection rates for our algorithm (blue), the supervised sRRR
pipeline (green), and the genetic t-test (red) as a function of image noise for causative SNPs in G1

at a false positive rate of 1%. (b,c) ROC curves for low (σ2
noise = 1.2) and high (σ2

noise = 21.4)
noise levels are shown up to the selected false positive threshold of 1%.

• Voxels in set I3 are related to the disease but are not related to genetic markers, and
are therefore not helpful in causative SNP detection. In fact, such features confuse
the detector as they get selected as relevant to disease at the cost of features in I1.
We generate these voxels as follows:

c5kn ∼
{
N (0.5, 1), if yn = 1,

N (−0.5, 1), if yn = 0.

• Voxels in set I4 are not relevant to either label or genetic markers. These voxels are
sampled from N (0, σ2

noise).

We use the synthetic data to evaluate detection of disease causative SNPs with our
method. We observe that our algorithm is not sensitive to the hyper-parameters, which
we set as follows: log β

1−β = −1, log α
1−α = −3, σ2

η = 1, and σ2
0 to the variance

of image features. As a first baseline, we perform univariate Bonferroni corrected t-
tests directly between SNPs and class labels, omitting imaging. As a second baseline,
which we refer to as supervised sRRR, we perform univariate voxel filtering using class
labels, followed by sRRR multivariate regression between surviving voxels and genetic
variants to recover relevant SNPs [20]. We compare the methods in different image
noise regimes by varying the variance σ2

noise in Eqs (10)- (11), and run 50 different
independent simulations for each noise regime.

Fig.3(a) reports detection rates (TP) of disease causative SNPs in G1. To set the de-
tection thresholds we fix the false positive rate to 1%. We observed similar behavior for
a broad range of low false positive rates (not shown). We focus our experiments on low
false positive rates because at higher rates false detections become comparable with,
and ultimately overwhelm true detections. We find that for a given false positive rate,
our algorithm detects significantly more disease causative SNPs in G1 than the base-
line algorithms, and has lower standard deviation than the supervised sRRR pipeline.
The direct univariate t-tests only detect SNPs that have a very strong independent as-
sociation with disease label. To illustrate the behavior of the methods at different false
positive rates, we report the receiver operating characteristic at two different noise levels
in Fig.3(b,c). Our approach achieves a better detection than the baseline methods.
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Fig. 4. Results on ADNI dataset. Top: Posterior probability τs (colored by chromosome), with 41
SNPs passing a τ = 0.5 threshold. Bottom: Image features (ρm > 0.6) overlayed on a template
MR image, with color intensities proportional to values of ρ.

4.2 ADNI Dataset

We apply our method on a subset of the Alzheimers Disease Neuroimaging Initiative
(ADNI) dataset that includes T1-weighted MR images and 620,000 genetic variants for
228 AD patients and 187 normal controls (NC). All images were pre-processed and
non-rigidly aligned to a common [4]. We compute the tissue density map, indicating
expansion or contraction of gray matter using the determinant of the Jacobian of the
deformation field. The map values in the template space are proportional to the volume
of structures in the original brain scan. To reduce image dimensionality, we aggregate
voxels into supervoxels using spatial k−means clustering [11] and obtain about 1700
supervoxels. We define our image features xnm as the average value of the tissue den-
sity map in a supervoxel. We use a SVM classifier to asses the discriminative power
of the resultant features and obtain 86% classification rate of AD versus NC, close to
the state-of-the-art results [4]. We used the ENIGMA protocol to pre-process the geno-
type data1. Briefly, PLINK was used to eliminate SNPs on the basis of standard quality
control criteria, e.g., low MAF (< 0.01), poor genotype calling (call rate < 95%) and
deviations from Hardy–Weinberg equilibrium (P < 1 × 106). We then performed im-
putation using the Mach software2. Finally, we pre-selected 960 SNPs that have the
strongest association with AD overlapped with SNPs reported in a prior AD-GWAS
study involving over 16,000 individuals [6].

We ran our algorithm with 10 initializations, and selected the run that achieved the
lowest value of the cost function. As before, we set: log β

1−β = −1, log α
1−α = −3 and

σ2
η = 1. We set σ2

0 = ω ·σ2
x, where we sweep ω ∈ [0.1, 0.9] and σ2

x is the variance of im-
age features. Fig.4 illustrates the posterior probabilities of SNP relevance τ , averaged

1 http://enigma.loni.ucla.edu/protocols/genetics-protocols/
2 http://www.sph.umich.edu/csg/abecasis/MaCH/index.html
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Table 2. Summary of selected SNPs with the highest posterior probability τs

rank τs SNP (Gene) chr

1 0.78 APOE-ε4 19
2 0.74 APOE-ε3 19
3 0.73 rs283812 (PVRL2) 19
4 0.70 rs5117 (APOC1) 19
5 0.69 rs75627662 19

rank τs SNP (Gene) chr

6 0.68 rs6857 (PVRL2) 19
7 0.68 rs75843224 22
8 0.67 rs59007384 (TOMM40) 19
9 0.66 rs66626994 (APOC1P1) 19
10 0.65 rs12721051 (APOC1) 19

over the swept parameters. We list the top SNPs in Table 2. The top variants are APOE-
ε4 and APOE-ε3, which are strongly correlated with AD [6]. We also detect variants on
APOC1, TOMM40 and PVRL among our top hits, all of which are on chromosome 19
and have been frequently reported [6]. Similarly, several chromosome 22 variants are
identified [10]. Fig.4 illustrates the average posterior probability of feature relevance ρ.
Among high probability regions are hippocampus and temporal lobe, which have been
frequently reported to undergo significant shrinkage in AD [4], and are associated with
memory.

5 Conclusion

We proposed and demonstrated a unified framework for identifying genetic variants
and image-based features associated with the disease. We capture the associations be-
tween imaging and disease phenotype simultaneously with the correlation from genetic
variants and image features in a probabilistic model. We derive an algorithm that itera-
tively refines the relevant variants using disease phenotype and imaging features. It also
isolates representative features that are discriminative with respect to the disease and
are modulated by the genetic variants. We demonstrated the benefit of simultaneously
performing these two tasks in simulations and in a context of a real clinical study.
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Appendix A

We define X ∈ R
N×M to be a matrix of all image features (each row is a subject),

J (x, y) := (1− x) log(1−x
1−y ) + x log(xy ), and use diag(·) to transforms a vector into a

diagonal square matrix or the diagonal of a square matrix into a vector. Em = 〈·〉q|bm=1
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denotes expectation with respect to q conditioned on bm = 1 of the genetics-to-image
regression. We define Q = GTG, and D = diag(diag(Q)� 1−τ

τ ).
Parameters of the genetic part of the model are updated as follows:

Em:=
∑

n

〈xnm − gT
n (vm � am)〉q|bm=1 = (12a)

(xm)Txm + vT
m(Q� (ττT − diag(τ2 − τ )))vm − 2(xm)TGdiag(τ )vm,

vm= diag(τ )D−1GT [UO((I +ΣO)
−1)UT

O]x
m, (12b)

log
1− τs
τs

= log
1− βs

βs
+

2∑
m ρm

M∑

m=1

ρm
2σ0

∂Em

∂τs
. (12c)

UOΣOU
T
O is the Singular Value Decomposition of GD−1GT , whose complexity

O(N3) is not expensive for a modest number of subjects N . xm denotes column m
of matrix X. In Eq.(12c), the posterior log-odds ratio is updated by adding the prior
log-odd ratio and a weighted sum of the derivatives of the regression error terms for all
m with respect to τs. Moreover, we obtain

ξ2n= xT
n (diag(ν

2 + ς2))xn, (13a)

1/(ςm)2= (XTX)mm + 1/σ2
μ, (13b)

νm= (ςm)2((XT ŷ)m −
∑

j �=m

(XTX)jmρjνj), (13c)

log
1−ρm
ρm

= log
1−α
α

+ log
σμ
ςm

+

S∑

s=1

J (τs, βs)−1
2
(
νm
ςm

)2 +
Em
2σ2

0

+ log σ0. (13d)

Eq.(13b)-(13c) update the mean and standard deviations of the normal distributions in
the approximate posterior. Eq.(13d) updates posterior probability of the relevance of
regionm.
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